
Economics 154-257

Winter Term
V. Zinde-Walsh
Topic 4. Simple Linear Regression.
A relation between an explanatory variable and the dependent variable of

interest:
A. May be given by a theoretical model, esp. in science.
Example. Boyle’s law that relates the pressure and volume of an ideal gas

at a constant temperature.
B. May be inferred from observation, e.g. it is observed that taller parents

generally have taller children; IQ and other test scores generally predict better
grades; GDP increases over the years, etc.
In either case the relation is not exactly observed, due to possible measure-

ment errors, other unaccounted for factors, etc.
F. Galton in "Regression towards mediocrity in hereditary stature" (1886)

observed that extreme characteristics (e.g., height) in parents are not passed on
completely to their offspring. Rather, the characteristics in the offspring regress
towards a "mediocre point"; we say regression towards the mean.
Two issues to examine: (a) the underlying theoretical probability model of

the dependence between two variables and (b) what kind of a linear depen-
dence can fit the data best. Then follows the issue of inference about the true
relationship between the variables from the data.
1. The linear regression model (simple regression: one explanatory

variable).
The dependent (stochastic) variable Y depends on the explanatory vari-

able (predictor), X.
Assumption "average linear dependence". E(Y |X = x) = f(x), where

f(x) = β0 + β1x.
Note that some non-linear cases can be approximated: f(x) = f(x0) +

f ′(x0)(x − x0) + R(x, x0), where R is the remainder term; if R is small the
linear approximation may not be bad. Some non-linear cases transform into
linear: Y = AXβ , then lnY = lnA+ β lnX.

From the assumption it follows that for any observed (Xi, Yi) we can write

Yi = β0 + β1Xi + εi,

where the error term εi has the property that Eεi|Xi = 0.
The error term characterizes the deviations of individual randomly drawn

observationsXi, Yi from the ones that lie on the true regression line: (Xi, E(Yi|Xi)).
The case of non-random (non-stochastic, fixed) X. Then the Assump-

tion is E(Yi) = β0 + β1Xi, implying in the model E(εi) = 0.
If the error εi comes from a normal distribution N(0, σ2), then Yi is normal

N(β0 + β1Xi, σ
2). Show.

2. Least squares estimator (OLS).

1



Gauss proposed the least squares criterion to fit the regression line to the
data.
Example. Tire tread wear vs mileage. Lab test data.
Mileage(in 1000 miles) Groove depth of tire (in .001 inches)

0 394.33
4 329.5
8 291.00
12 255.17
16 229.33
20 204.83
24 179.00
28 163.83
32 150.33
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Different straight lines can be fitted. Question: what is the line of best fit?
We measure fit by sum of squared vertical deviations and minimize over
all lines to get the least squares line.
Consider any line ŷ = a + bX; deviations from this line of observed Yi are

ei = Yi − ŷi = Yi − a− bXi.
Sum of squared deviations: SS = Σe2

i = Σni=1(Yi − a− bXi)
2.

Definition of the OLS (ordinary least squares) estimator.
OLS estimator of the parameters is the argument of the function

SS(a, b) = Σni=1(Yi − a− bXi)
2

at which this function is minimized.
Denote this value

(
β̂0, β̂1

)
. Then the definition:
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(β̂0, β̂1) = arg min
a,b

Σni=1(Yi − a− bXi)
2.

Solving for OLS estimators.
To solve minimize Σni=1(Yi − a− bXi)

2 with respect to the two values.
First-order condition (FOC).

∂SS

∂a
= −2Σ(Yi − a− bXi) = 0; (1)

∂SS

∂b
= −2Σ(Yi − a− bXi)Xi = 0. (2)

This is equivalent to {
ΣYi = an+ bΣXi

ΣYiXi = aΣXi + bΣX2
i .

Then dividing the first equation by n we get the so-called normal equations:{
Ȳ = a+ bX̄

ΣYiXi = aΣXi + bΣX2
i .

(3)

These are two linear equations with two unknowns, a, b.
Solving two linear equations with two unknowns.
Recall how you solve a system{
B1 = A11x+A12y
B2 = A21x+A22y

or, equivalently in matrix form:
(
A11 A12

A21 A22

)(
x
y

)
=(

B1

B2

)
.

The inverse matrix is 1
A11A22−A12A21

(
A22 −A12

−A21 A11

)
; solution

(
x
y

)
=

(
A22B1−A12B2

A11A22−A12A21−A21B1+A11B2

A11A22−A12A21

)
.

Solution for first order conditions for OLS.
So solution to (3) denoted (β̂0, β̂1) is

β̂0 =
(ΣX2

i )Ȳ − X̄(ΣYiXi)

ΣX2
i − (ΣXi) X̄

;

β̂1 =
(ΣXiYi)− nX̄Ȳ
ΣX2

i − (ΣXi) X̄
.

Denote Σ(Xi − X̄)Σ(Yi − Ȳ ) = (ΣXiYi) − nX̄Ȳ by Sxy; Σ(Xi − X̄)2 =
ΣX2

i − nX̄2 by Sxx; Σ(yi − Ȳ )2 = ΣY 2
i − nȲ 2 by Syy.
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Then β̂1 can be expressed as:

β̂1 =
Sxy
Sxx

.

Also
β̂0 = Ȳ − β̂1X̄;

In the example. (complete the calculation)
i Xi Yi X2

i XiYi
1 0 394.33
2 4 329.5
3 8 291.00
4 12 255.17
5 16 229.33
6 20 204.83
7 24 179.00
8 28 163.83
9 32 150.33
Σ 144 2197.32 3264 28167.72

X̄ = 16; Ȳ = 244.15; Sxy = 28167.72 − 1
9 (144 × 2197.32) = −6989.4;Sxx =

3264− 1
9 (144)2 = 960.

β̂1 = −6989.4
960 = −7. 281;

β̂0 = 244.15 + 7.281× 16 = 360. 65
The OLS line is y = 360. 65− 7. 281x.
Fitted values and residuals.
The values on the regression line Ŷi = β̂0 + β̂1Xi are fitted values (predictors

of Yi), and the differences ei = Yi − Ŷi are regression residuals.
We can compute them for the example (finish the computation).
i Xi Yi X2

i XiYi Ŷi êi
1 0 394.33 360. 65 33. 68
2 4 329.5 331. 53 −2. 03
3 8 291.00 302. 4
4 12 255.17 273. 28
5 16 229.33
6 20 204.83
7 24 179.00
8 28 163.83
9 32 150.33
Σ 144 2197.32 3264 28167.72 0
Properties:
Sum of regression residuals is zero: Σei = 0 (from FOC(1)).
Regression line passes through the point of means (X̄, Ȳ ), (from normal

equations (3)).

Then the average fitted value is the same as the average of observed: Ŷ = Ȳ .
3. Goodness of fit of the regression line.
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In the example SSresiduals=Σe2
i = Σ(Yi − Ŷi)2 = 2531.53.

This is a minimal possible value for any straight line.
How good is it? One way to evaluate this is to compare with just evaluat-

ing the dependent variable by its expectation, Ȳ , without conditioning on X.
Of course, the sum of squared deviations will be larger (why?), but will the
difference be suffi cient to justify the extra complication?
We want to compare the TSS (total sum of squares): TSS = Σ(Yi− Ȳ ) with

the SSresiduals: Σ(Yi− Ŷ )2 and see (a) what the difference represents; (b) how
large is it.
(a) Yi− Ȳ = (Ŷi− Ȳ )+(Yi− Ŷi); total variation is decomposed into variation

coming from the regression (explained, "between") and variation of the residuals
("within").
Square and sum:

TSS = SY Y = Σ
(
Yi − Ȳ

)2
= Σ(Ŷi − Ȳ )2 + Σ(Yi − Ŷi)2,

since 2Σ(Ŷi− Ȳ )(Yi− Ŷi) = 0 (from Σ(Ŷi− Ȳ )(Yi− Ŷi) =
(
β̂0 − Ȳ

)
Σ(Yi− β̂0−

β̂1Xi) + β̂1ΣXi(Yi − β̂0 − β̂1Xi) = 0 from FOC).
So TSS=SSresiduals+SSexplained by regression.
Coeffi cient of determination

R2 =
SSexplained by regression

TSS
= 1− SSresiduals

TSS
.

Note that 0 ≤ R2 ≤ 1.
In example TSS=53418.73; SSexplained=TSS-SSresiduals=53418.73-2531.53=50887.2.
R2 = 50887.2

53418.73 = 0.952 61.

SSexplained=Σ(Ŷi − Ȳ )2 = Σ(β̂0 + β̂1Xi − (β̂0 + β̂1X̄))2 = β̂
2

1SXX .
Thus

R2 =
SSexplained by regression

TSS
=
β̂

2

1SXX
SY Y

=
S2
XY

S2
XX

SXX
SY Y

=
S2
XY

SXXSY Y
.

Correlation coeffi cient.
Recall correlation between X and Y.

r =
Sxy/n− 1√
Sxx
n−1

√
Syy
n−1

=
SXY√
SXXSY Y

.

There is a relation between correlation of X,Y and regression. The formulas
imply that

r = β̂1

√
SXX
SY Y

;

r2 = R2.
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In the example r2 = 0.952 61, the sign of r is the same as that of β̂1, -ve. so
r = −

√
0.952 61 = −0.976 02.

There is a straightforward relation. The stronger the linear relation, the
higher the |r| and R2.
4. Estimation of variance, σ2.
σ2 = Eε2

i , where εi = Yi − β0 − β1Xi.
The errors are not observed, we only observe the regression residuals: ei =

Yi − β̂0 − β̂1Xi.
We estimate the population moment of the unobservable errors, Eε2

i , by the
sample moments of the regression residuals; we divide by d.f. whai here is n−2,
since 2 parameters, β0 and β1 were estimated:

σ̂2 =
1

n− 2
Σe2

i =
1

n− 2
Σ(Yi − β̂0 − β̂1Xi)

2.

This is similar to the way the variance of a population was estimated based on
the average of squared deviations from the estimated mean σ̂2 = 1

n−1Σ(Yi− Ȳ ),
for an unbiased estimator we divide by d.f., where for the mean one was lost
because we use the estimated by Ȳ population mean.
In the example SSresiduals=2531.53, n=9, so σ̂2 = 2531.53

7 = 361. 65.
Topic 4. Simple linear regression. Part 2.
5. Inference in the simple linear regression model.
Assumptions.
Yi = β0 + β1Xi + εi,
where X is non-stochastic (non-random), and

Eεi = 0;

E(ε2
i ) = σ2;

E(εiεj) = 0 for i 6= j.

5.1. Properties and the distribution of the OLS estimators.
5.1.1 Linearity.
Recall that

β̂0 = Ȳ − β̂1X̄;

β̂1 =
ΣYiXi − nȲ X̄
ΣX2

i − nX̄2

and write

=
ΣYi(Xi − X̄)

Σ(Xi − X̄)2
= ΣwiYi

with wi = Xi−X̄
Σ(Xi−X̄)2

.

The estimators are linear functions of the random Yi with non-random
coeffi cients. (Show for β̂0, too).
Lemma. Properties of the weights: a. Σwi = 0; b. ΣwiXi = 1; c. Σw2

i =
1

Σ(Xi−X̄)2
.

6



Proof.
a. Σwi = Σ Xi−X̄

Σ(Xi−X̄)2
=

Σ(Xi−X̄)
Σ(Xi−X̄)2

= 0;

b. ΣwiXi = Σ(Xi−X̄)Xi
Σ(Xi−X̄)2

=
ΣX2

i−X̄ΣXi
Σ(Xi−X̄)2

=
Σ(Xi−X̄)

2

Σ(Xi−X̄)
2 = 1

since Σ
(
Xi − X̄

)2
= ΣX2

i − 2ΣXiX̄ + nX̄2 = ΣX2
i − ΣXiX̄.

c. Σw2
i = Σ

(Xi−X̄)
2

(Σ(Xi−X̄)2)
2 = 1

Σ(Xi−X̄)2
.

�
5.1.2. Unbiasedness.
The estimators are unbiased.
Theorem. E

(
β̂0

)
= β0;E(β̂1) = β1.

Proof.
Eβ̂1 = ΣwiEYi = Σwi(β0 + β1Xi) = β0Σωi + β1ΣwiXi.

Then from properties a. and b. of the Lemma Eβ̂1 = β1.

Eβ̂0 = E
(
Ȳ − β̂1X̄

)
= EȲ − X̄Eβ̂1 = 1

n (nβ0 + β1ΣXi)− X̄β1 = β0.

�
5.1.3. Variance and MSE.
Variance of the estimators.
Theorem. var

(
β̂1

)
= σ2 1

Σ(Xi−X̄)2
;

var
(
β̂0

)
= σ2

(
1
n + X̄

Σ(Xi−X̄)2

)
.

Proof.
varβ̂1 = Σw2

i varYi = σ2Σw2
i = σ2

Σ(Xi−X̄)2
from c. of the Lemma.

varβ̂0 = varȲ − 2cov
(
Ȳ , β̂1

)
X̄ + var(β̂1)X̄2 = σ2

n − 2X̄Σwicov(Ȳ , Yi) +

σ2 X̄2

Σ(Xi−X̄)2
;

note that cov(Ȳ , Yi) is the same for all i, then by a. of Lemma we find that
the middle term is zero and

var
(
β̂0

)
= σ2

(
1
n + X̄2

Σ(Xi−X̄)2

)
.�

Recall MSE (mean squared error) of an estimator β̂ is defined as MSE(β̂) =

E
(
β̂ − β

)2

and thus (adding and subtracting E
(
β̂
)

) :

MSE
(
β̂
)

= E
(
β̂ − E

(
β̂
))2

+
(
E
(
β̂
)
− β

)2

= var
(
β̂
)

+
(
bias

(
β̂
))2

.

Since the estimators are unbiased the variance and MSE are the same.
5.1.4. Gauss-Markov Theorem.
Theorem. The OLS estimators in the linear model

Yi = β0 + β1Xi + εi,
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where X ′s are non-random and Eεi = 0;Eεiεj = σ2, if i = j, zero otherwise,
have the smallest variance (and MSE) among all unbiased linear estimators.
Proof.
The proof is optional for your reading.

The proof here is provided for var
(
β̂1

)
, variance of the slope (the intercept

is similar); the proof uses constrained optimization via a Lagrangian. Consider
an unbiased linear estimator for the slope: β̃ = Σw̃iYi (linear form); since
unbiased Eβ̃ = β1, where

Eβ̃ = Σw̃iEYi = Σw̃i (β0 + β1Xi)

= β0Σw̃i + β1Σw̃iXi,

so Σw̃i = 0; Σw̃iXi = 1.

Variance of this linear estimator is var
(
β̃
)

= Σw̃2
i varYi = σ2Σw̃2

i since

cov (Yi, Yj) = cov (εi, εj) = 0 for i 6= j by the assumptions of the model.
The linear unbiased estimator with the smallest variance will have weights,

{w̃i}ni=1 such that Σw̃2
i is minimized, and the conditions Σw̃i = 0; Σw̃iXi = 1

are satisfied.
Consider the Lagrangian

L = Σw2
i − µΣwi − λ(ΣwiXi − 1).

The FOC for constrained minimization are

∂L

∂wi
= 2wi − λXi − µ = 0; i = 1, ..., n;

(∗) ∂L

∂λ
= ΣwiXi − 1 = 0;

(∗∗) ∂L

∂λ
= Σwi = 0.

To solve, first sum the first set of n equations:

2Σwi − λΣXi − nµ = 0,

then substituting from (∗∗) express:

(∗ ∗ ∗) µ = −λX̄.

Next multiply each of the first n equations by corresponding Xi and sum:

2ΣwiXi − λΣX2
i − µΣXi = 0,

From (∗) and (∗ ∗ ∗) we get
(
ΣXi = nX̄

)
:

2− λ
(
ΣX2

i − nX̄2
)

= 0.

Then λ = 2 1
ΣX2

i−nX̄2 ;µ = −2 X̄
ΣX2

i−nX̄2 and substituting into the each of the

first n equation from the FOC the weights are wi = Xi−X̄
ΣX2

i−nX̄2 .
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These solutions are the weights of the linear unbiased OLS estimator. Then
any β̃ with weights w̃ that do not coincide with these cannot be a solution to
the minimization, and thus would have a larger variance.�
This property of the OLS estimator is BLUE (Best Linear Unbiased Esti-

mator).
This means that for any other linear estimator β̃0, β̃1 of β0, β1 such that it

is unbiased var
(
β̃0

)
≥ var

(
β̂0

)
and var

(
β̃1

)
≥ var

(
β̂1

)
.

For example, the sample mean β̂ = Ȳ is the least squares estimator of the
expectation β for the model Yi = β + εi (without any X).
Example. In a sample of n observations of an i.i.d. variable Y with variance

σ2 consider an estimator for the mean given by the average of all but the first

and last observation in the sample: β̃ =
Σn−1i=2 Yi
n−2 of β. Show that it is linear and

unbiased, compute its variance and show that it is bigger than for OLS.
5.1.5. The distribution of the estimators.
In the classical regression model (the errors are independent N(0, σ2), the

X ′s non-stochastic) the OLS estimators are normally distributed (this follows
from the facts that the estimators are linear in Yi; Yi are normally distributed
if εi are; a linear combination of normal variables is normal).

β̂0 is N(β0, σ
2
(

1
n + X̄2

Σ(Xi−X̄)2

)
; β̂1 is normal N(β1, σ

2 1
Σ(Xi−X̄)2

).

In the more general regression model under suitable assumptions, the dis-
tribution of OLS estimators can be approximated by a normal distribution (as-
ymptotic distribution).
5.2. Confidence intervals and hypotheses tests in the simple linear

regression.
5.2.1. Confidence intervals and hypotheses tests for the coeffi cients and

significance of the model.

β̂0 is N(β0, σ
2
(

1
n + X̄2

Σ(Xi−X̄)2

)
); denote the standard deviation of the dis-

tribution by SD
(
β̂0

)
; standardize:

z =
β̂0 − β0

SD
(
β̂0

) ∼ N (0, 1) .

Similarly, β̂1 is N(β1, σ
2 1

Σ(Xi−X̄)2
); denote the standard deviation of the distri-

bution by SD
(
β̂1

)
; standardize:

z =
β̂1 − β1

SD
(
β̂1

) ∼ N (0, 1) .

For confidence intervals and hypotheses tests when σ2 is known we can use
the normal distribution.
When σ2 is not known we use the estimator σ̂2 = 1

n−2Σe2
i = 1

n−2Σ(Yi− β̂0−
β̂1Xi)

2.
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For β̂0 substituting estimated σ̂
2 gives as estimated variance σ̂2

(
1
n + X̄2

Σ(Xi−X̄)2

)
and standard error of the estimator is

s(β0) = σ̂

√
1

n
+

X̄2

Σ(Xi − X̄)2
.

Similarly, for β̂1

s
(
β̂1

)
= σ̂

√
1

Σ(Xi − X̄)2
.

Then the ratio has a t distribution with d.f.=n-2.

β̂0 − β0

s
(
β̂0

) ∼ tn−2;

β̂1 − β1

s
(
β̂1

) ∼ tn−2.

Example. At a public utility with 312 employees the linear model to explain
the effect of age of employee on wage was estimated.
Model yi = β0 + β1xi + εi, where yi represents wage of employee i, xi− age.

Assume classical regression model. Results of estimation.
coeffi cients value st.error t− ratio p-value
constant 46950.64 4551.36 10.32 0.0000
age 309.27 95.10 3.25 .0013

For p-value the t− ratio is evaluated using the t310, since d.f.=n-2=312-2.
Interpretation of coeffi cients.
Significance testing.
H0 : β1 = 0, vs H1 : β1 6= 0.
Rejection of H0 means that the explanatory varible does play a role and

helps (at the approprite level of the test) explain variation in the dependent
vriable of interest.
Here the p-value indicates that the age slope is significant.
95% confidence interval for the slope coeffi cient provides (t300,.025 =

1.96):

309.27− 1.96 · 95.10 < β1 < 309.27 + 1.96 · 95.10.

In that example despite the significance of the regression coeffi cients the fit
was poor: R2 = .033.
It turns out that an important variable was not considered: gender of the

employee. Once that was included the R2 increased to .298. (we shall examine
this in Multiple regression part of the course).
Example. Demand for long-distance bus travel route depending on fare.

n = 11.
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The estimated regression ŷi = 338.43− .938xi, where xi is a real fare index
(varies the ticket fare from the average real fare with index x̄=100). The output
from the OLS

coeffi cients value st.error t− ratio
constant 338.43 19.72 11.16
fare index −.938 .1909 −4.91
The coeffi cients are significant.
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Estimated σ̂ = 5.974; R2 = .728.
Although R2 indicates goodness of fit it is not a statistic with a known

distribution.
Test of goodness of fit.
In order to perform a test of goodness of fit of the regression model we

can apply ANOVA.
The null is that the regression does not add to explaining the dependent vari-

able. In simple regression this means H0 : β1 = 0. (later in multiple regression
we’ll see the separate importance of this test).
We also say that we are testing one restriction: β1 = 0.
To calculate the coeffi cients various sums of square were computed: TSS=Syy;

SSresiduals=Σe2
i=Σ (yi − ŷi)2

= Σ
(
yi − β̂0 − β̂1xi

)2

, then SSexplained=Σ(ŷi−
ȳ)2 = TSS − SSresid. Enter them into the ANOVA table:

source SS d.f. MSS
regression (explained) 860.81 1 860.81
error(residuals) 321.19 9 35.69

total 1182.00 10
D.f. in regression = # of restrictions=1.
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The F ratio computed for the example is 860.81
35.69 = 24. 119. The F ratio is

distributed as F1,9; for α = .05 the critical value is 5.12. The null is rejected
and the regression is significant.
Note. For simple regression F−ratio is equal to t2β1 .

Algebraic proof (optional). t2β1 =
β̂
2
1

ŝ2β1
, substitute (derived earlier) s2

β1
=

SSresid/(n−2)
SXX

and (recall) the SSexplained=β̂
2

1SXX .

In this example 4.912 = 24. 108, the difference is due to rounding error in
computation.
Forecasting with the simple regression model.
Suppose that we wish to estimate the demand for bus travel at x = 125.
There are two different questions:
(a) one is what is the expected demand E(y at x = 125)?
(b) the other is fare index will be 125 next week, what will be the actual

demand y at x = 125?
For (a) we want E(y|x = 125) = β0 + β1 · 125.
For (b) we would like to have y(x = 125) = β0 + β1 · 125 + ε (including the

value of ε that will occur for x = 125).
Start with question (a). Forecast of the expected value of y.
We do not have β0 and β1, but we have estimators and can estimate E(y|x =

125) by ŷ(x = 125) = 338.43− .938 · 125 = 221. 18.
This is an unbiased estimator of expectation.
Indeed,
E(ŷ(x)) = E(β̂0) + E(β̂1) · x = β0 + β1 · 125 = E (y|x = 125) .
How accurate is our forecast? We evaluate the mean squared error

(MSE) of the forecast.
The forecast error (=difference between the estimated forecast and the true

value we are trying to forecast) is ef = ŷ(x)−E(y|x) = β̂0 + β̂1 ·x−β0−β1 ·x.
The mean square error of the forecast for the expected value (equals the

variance of forecast error since Eef = 0) :

MSEf = E
(
ef
)2

= E
(
β̂0 − β0

)2

+2E
(
β̂0 − β0

)
(β̂1−β1) ·x+x2E(β̂1−β1)2.

Derivation of the expression (optional).
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First, the term E
(
β̂0 − β0

)
(β̂1 − β1) =

E(Ȳ − β̂1X̄ − β0)(β̂1 − β1)

= E

(
β0 + β1X̄ +

1

n
Σεi − β̂1X̄ − β0

)
(β̂1 − β1)

using β̂0 = Ȳ − β̂X̄ and Ȳ = β0 + β1X̄ +
1

n
Σεi, then

= E

(
β1X̄ − β̂1X̄ +

1

n
Σεi

)
(β̂1 − β1)

= −X̄E
(
β̂1 − β1

)2

+
1

n
ΣEεiβ̂1.

Show that 1
nΣEεiβ̂1 = 0.Indeed, substitute β̂1 = ΣwjYj = β0Σwj+β1ΣwjXj+

Σwjεj = β1 + Σwjεj (recall Σwi = 0; ΣwjXj = 1),

since Eεi = 0 it follows that
1

n
ΣEεiβ1 = 0,

then
1

n
ΣEεiβ̂1 =

1

n
ΣEεi

(
Σnj=1wjεj

)
and (recall Eεi = 0;Eεiεj = σ2, if i = j, 0 otherwise) :

Thus Σni=1EεiΣ
n
j=1wjεj = Σwjσ

2 = 0.

So substituting −X̄E
(
β̂1 − β1

)2

= −σ2 X̄
Σ(Xi−X̄)2

we get the result:

MSEf = σ2(
1

n
+

X̄2

Σ(Xi − X̄)2
− 2

X̄x

Σ(Xi − X̄)2
+

x2

Σ(Xi − X̄)2
)

= σ2

(
1

n
+

(x− X̄)2

Σ(Xi − X̄)2

)
.

Confidence interval for the forecast of the expected value.
Thus a 1− α confidence interval for the forcast of the expected value is

[ŷ − tn−2,α/2σ̂

√(
1

n
+

(x− X̄)2

Σ(Xi − X̄)2

)
, ŷ − tn−2,α/2σ̂

√(
1

n
+

(x− X̄)2

Σ(Xi − X̄)2

)
]

This interval depends in particular on how far from the mean of the sample is
the point at which we wish to forecast.
Forecast of the actual value of y.
For (b) add unknown ε. Thus for the forecast of the actual value y (x) =

β0 + β1x+ ε at some x the estimate of the forecast is still the same, β̂0 + β̂1x.
This is an unbiased forecast. (Show).
The forecast error:

ef = ŷ(x)− y(x) = β̂0 + β̂1 · x− β0 − β1 · x− ε.
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The MSE of the forecast:

MSEf = σ2

(
1 +

1

n
+

(x− X̄)2

Σ(Xi − X̄)2

)
.

It is more diffi cult to predict a particular outcome than the expected value due
to the fact that the actual value of y will include the random error that cannot
be predicted but is taken account of in the forecast error and increases (relative
to the MSE for forecast of the expected value) the MSE of the forecast.
Example. Consumption function.
Y denotes consumption, X - income.
Y = β0 + β1X + ε
The estimated model is for a sample of size n = 25,

(
where X̄ = 61.92,ΣX2

i = 99862
)

Ŷ = 8.83 + .76X

with σ̂2 = .6548;R2 = .993. The standard errors were (SE (β0))
2

= .669; (SE (β1))
2

=
.000167.
Significance test: for β̂0 the t-statistic

8.83√
.669

= 10. 796; for β̂1 we get
.76√
.000167

= 58. 811. With the asymptotic distrbution t23 these are highly signif-
icant (H0 : β· = 0 is rejected).
Prediction.
Suppose that we wish to predict consumption level for income at 73.36.
Ŷ = 8.83 + .76 · 73.36 = 64. 584.
Construct the 90% CI for the prediction.
We need to compute ΣXi−X̄)2 = ΣX2

i −nX̄2 = 99862−25 ·61.922 = 4009.
8. Also σ̂ =

√
.6548 = 0.809 20.

Then

[64. 584−t23,.050.809

√(
1 +

1

25
+

(73.36− 61.92)2

4009. 8

)
, 64. 584+t23,.050.809

√(
1 +

1

25
+

(73.36− 61.92)2

4009. 8

)
]

Substitute t23,.05 = 1.71 and compute 1.71 · 0.809

√(
1 + 1

25 + (73.36−61.92)2

4009. 8

)
=

1. 432 8

[64. 584− 1. 432 8, 64. 584 + 1. 432 8]

= [63. 151, 66. 017] .

Suppose we were predicting the expected value of consumption at x =
73.36.The predicted value is the same, 64.584. But now the MSE is smaller:

.6548
(

1
25 + (73.36−61.92)2

4009. 8

)
= .04756 4 as compared to the MSE of the fore-

cast of the actual value,
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.6548
(

1 + 1
25 + (73.36−61.92)2

4009. 8

)
= 0.702 36.

Forecast accuracy (summary).
Forecast accuracy of the expected value is better (confidence intervals nar-

rower) than for the actual value.
Forecast accuracy depends on the distance of the point X at which we wish

to forecast from the mean of the x′s, X̄; the farther from X̄ the wider the
confidence interval.
A few comments on OLS regression.
(a) Changing units of measurement.
Changing measurement of y (say ỹ = 100y) but not x inflates the β′s ac-

cordingly (by 100).
So e.g. regress wages on years of schooling and use wages in $ ves 1000$.
Changing unit of measurement of x (say, x̃ = 100x) reduces the slope, β1 by

that (divide by 100) but does not change the intercept.
In the example with O-rings measure the temperature in C rather than F.

Note that here not just scale change but also shift in X : (◦F - 32) x 5/9 = ◦C
This will affect both the intercept and slope: y = β0 + β1(bX̃ + a) + ε =

β̃0 + β̃1X̃ + ε, where β̃0 = β0 + aβ1; β̃1 = bβ1.
R2 does not depend on units of measurement.
(b) Incorporating nonlinearities in regression.
model dep.var. indep.var. effect of change in x interpretation of β1

level/level y x ∆y = β1∆x change in y per unit change in x
level/ log y log x ∆y = (β1/100)%∆x change in y per 1% change in x
log/level log y x %∆y = (100β1)∆x % change in y per unit change in x
log/log log y log x %∆y = β1%∆x % change in y per 1% change in x

Examples.
1. Model log(wage) = β0 + β1educ + u ; then in expectation %∆wage =

(100β1)∆educ we get percent change in wage for each additional year of ed-
ucation, so the the change in wage is assumed to increase here as education
increases providing wage as an expenential function exp (β0 + β1educ+ u) .

2. Constant elasticity model: log(salary) = β0 + β1 log(sales) + u. Here β1

is the elasticity of salary with respect to sales.
(c) Problem of outliers.
Outliers in the y direction.
An unusually large +ve or -ve εi was drawn. This results on a value of y

that is far from the expected value. The OLS regression is affected; because
of squaring of the residuals the regression line is drawn in the direction of the
outlier.
Example.
Consider the data
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X Y
70 155
63 150
72 180
60 135
66 156
70 168
65 160

Ŷ = 2. 874 7X − 33. 657

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
130

140

150

160

170

180

x

y

Suppose one of the observations were (66, 186) instead of (66, 156) , then
ŷ = 2. 721 2x− 19. 156.
This result is very different. Is this due to the fact that the replacement

observation is actually an outlier?
We proceed as follows to answer the question whether an observation is an

outlier.
Dropping this observation altogether we get
ŷ = 2. 874 3x− 33. 617.
Standard error of the regression is σ̂ =

√
270. 24/4 = 8. 219.
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(On the graph the fat regression line for the sample that includes the "suspect
observation" shows that it moves towards the outlier and possibly misrepresents
the majority of observations. Removing this observation produces a regression
line that is fairly close to the other observations.) The residual from the
dropped observation to the regression line is e = 186− (2. 874 3 · 66− 33. 617) =
29. 913 if we standardize the residual by the standard error, σ̂, 29. 913

8. 219 = 3.
639 5. If this comes from the regression model the ratio should be distributed
as t4. A high value or correspondingly low prob-value indicates (with some
degree of confidence) that this is an outlier. Pr (t4 > 3.64) < .02.
A common way of dealing with outliers (once they were identified by this

procedure) is to remove them. The advantage is that the standard errors are
smaller, the disadvantage is that maybe the true variance is large and what we
thought was an outlier was simply an observation that resulted from the true
large variance.
Another way of dealing with outliers is to replace OLS estimation by a

method of estimation that is robust to outliers in the y direction. For example,
LAD (least absolute deviations estimator). This estimator minimizes the sum
of absolute deviations (not squared):

(β0, β1) = arg min Σ |yi − a− bxi| .

This is similar to median as opposed to sample average. The average is very
sensitive to even one outlying observation, but the median is not.
Outliers in the x direction.
Otliers in the x direction are more diffi cult to detect because generally OLS

benefits from the large spread of the X’s.
Example. How is brain weight in different species related to body weight?
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Animal Body weight, kg Brain weight, gr
Mountain beaver 1.35 465

Cow 465 423
Grey wolf 36.33 119.5
Goat 27.66 115

Dipliodocus 11700 50
Asian elephant 2547 4603

Donkey 187.1 419
Horse 521 665

Guinea pig 1.04 5.5
Potar monkey 10 115

Cat 3.3 25.6
Giraffe 529 680
Gorilla 207 406
Human 62 1320

African elephant 6654 5712
Triceratops 9400 70

Rhesus monkey 6.8 179
Kangaroo 35 56
Chimpanzee 52.16 440
Brachiosaurus 87000 154.5

Pig 192 180
Regression for a subsample (including some dinosaurs - very high body

weight):
x = .01 · body y = .01brain

4.65 4.23
117 .50
5.29 6.80
2.07 4.06
.62 13.20
94 .70
.5 4.40

66.54 57.12

ŷ = 4. 212 3× 10−2x+ 9. 845 7
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Because of the outliers (around X=100 and beyond which combine with very
low y’s - they correspond to the dinosaurs) the regression line does not pass close
to any observations and is a poor representation of the majority of the sample.
Do dinosaurs not fit the general pattern of the other animal species?
Regression for a subsample (no dinosaurs - observations replaced).

4.65 4.23
5.29 6.80
2.07 4.06
.62 13.20
.5 4.40
5.2 6.6
.4 1
1.9 4.2

66.54 57.12
New regression line ŷ = 0.799 69x+ 3. 544 6
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The regression line is close to the majority of observations. The outlier now
possibly is humans (outlier in the y direction) with high brain weight relative
to body. Note that the elephant with high body weight fits on quite well.
An alternative to removing outliers is to apply estimation methods that are

robust to outliers. LAD is not robust to outliers in the X direction, but there
are other methods.
Analysis of the model and extensions
We relax some of the assumptions of the model.
Here we consider the properties of the estimators conditionally on X.
Generally to have appropriate properties we need the X ′s to satisfy some

assumptions, for example we may assume that E
(

1

Σ(Xi−X̄)
2

)
exists for any n.

It is the behavior of the random 1

Σ(Xi−X̄)
2 that is important.

1. Random regressors.

yi = β0 + β1Xi + εi.

Consider models where the random (Xi, εi) are all distributed independently
and identically for i = 1, ..., n.
Assumptions and results.
(a) the joint distribution {(Xi, εi)} is such that

E(εi|X) = 0, E(εiεj |X) = σ2 if i = j, 0 otherwise.

Consider β̂1 =
Σ(Xi−X̄)(yi−ȳ)

Σ(Xi−X̄)
2 = β1 +

Σ(Xi−X̄)εi
Σ(Xi−X̄)

2 .
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Then E
(
β̂1

)
= β1, since E

(
Σ(Xi−X̄)εi
Σ(Xi−X̄)

2

)
= E

(
Σ(Xi−X̄)E(εi|X)

Σ(Xi−X̄)
2

)
= 0 (as-

suming the X ′s are such that expectation exists).
So the estimator is still unbiased.
Variance.

varβ̂1 = E
(
β̂1 − β1

)2

= E

(
Σ(Xi−X̄)εi
Σ(Xi−X̄)

2

)2

= E

(
Σ(Xi−X̄)

2
E(ε2i |X)(

Σ(Xi−X̄)
2
)2

)
=

σ2E

(
1

Σ(Xi−X̄)
2

)
(assuming expectation exists).

Conditionally onX the variance var(β̂1|X) is the same as before:σ2 1

Σ(Xi−X̄)
2

(b) Conditional distribution εi|X is N
(
0, σ2

)
.

Conditionally on X the estimator β̂1 is normally distributed since it is
than a linear combination of normal variables, εi, i=1,...,n:

N

(
β1,

σ2

Σ(Xi−X̄)
2

)
.

All inference on the coeffi cients (confidence intervals, hypotheses tests) can
then proceed as before.
3. Weaker still: relaxing normality of errors: the joint distribution

{(Xi, εi)} is such that

E(εi|X) = 0, E(εiεj |X) = σ2 if i = j, 0 otherwise.

The unbiasedness result and the computation of variance for the coeffi cients
does not change.
However, even conditionally on X the distribution is no longer normal.
It can be shown (with appropriate assumptions for X that typically hold,

so we do not focus on them now), that the OLS estimator ia consistent and
asymptotically normal, in other words for large enough sample size, the OLS
estimator can be well approximated by the normal distribution, so that confi-
dence test statistics have distributions that are well approximated by the usual
distributions and confidence intervals can be constructed and hypotheses testing
can proceed as before.
To show this two important types of theorem are needed, Laws of Large

Numbers and Central Limit Theorem.
These theorems are about sample averages. For a sample {yi}ni=1 from

some distribution with mean µ, variance σ2 consider the sample average, ȳ =
1
nΣyi.
Law of large numbers will state that under some conditions:

ȳ − µ→p 0.

This means that for any ε the value Pr (|ȳ − µ| > ε)→ 0 as n→∞.
So ȳ converges to µ with high probability.
What is the rate of this convergence?
For example, 1

n → 0 and 1
n4 → 0, but 1

n >>
1
n4 so

1
n4 converges to zero at a

faster rate.
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If you multiply 1
n by n it will not converge to zero any more (but

1
n4 , even

multiplied by n still converges to zero, need to multiply by n4).
It turns out that ȳ − µ converges to zero at the rate 1√

n
. So multiplied by

√
n it no longer converges to zero, but has some distribution; central limit

theorem states that it converges to a normal distribution.
Central limit theorem will state that under some assumptions the dis-

tribution of
√
n
(
ȳ−µ
σ

)
is such that it converges to N (0, 1) - standard normal.

The σ in the denominator can be replaced by the estimated value, s, without
affecting convergence to normal.
Optional proofs.
1. Law of large numbers (LLN).
Denote yi − µ by zi.
Then zi, i = 1, ..., n is a random sample of independent, identically

distributed random variables from a distribution with mean 0 and
variance σ2. Under the condition on zi we prove LLN:

Pr (|z̄| > ε)→ 0 for any ε as n→∞.

By Chebyshev’s theorem

Pr (|z̄| > ε) ≤
E
(

1
nΣzi

)2
ε2

=
1
n2

[
Σni=1E

(
z2
i

)
+ Σi 6=jE(zizj)

]
ε2

=
1
nσ

2

ε2
→ 0 as n→∞.

�
2. Central limit theorem.
Define the Moment Generating Function for a random variable y: My(t) =

E (exp(ty)) . There is a one-to-one relation between the distribution and the
moment generating function.
An important theorem states: If for a sequence of random variables ȳn and

a random variable y the sequence of moment generating functions, Mȳn(t) con-
verges to My (t) as n→∞, then the distribution functions Fȳn(x)→ Fy(x).

We shall show that if yi is i.i.d. and E |y|3 exists, then the sequence of
averages ȳn = 1

nΣni=1yi is such that the distribution of
√
n ȳn−E(y)

(var(y))1/2
converges

to a standard normal distribution.
Let yi−E(y)

(var(y))1/2
= zi; z̄n = 1

nΣzi. Note that Ezi = 0; var(zi) = 1.

We want to prove that the distribution of
√
nz̄n converges to N (0, 1) . We

shall use the theorem about the moment generating function. In the first step
we shall derive the limit of M√nz̄n(t) as n → ∞. in the second step we shall
derive the moment generating function for the standard normal variable and
show that the limit forund in step 1 equals this function.
Step 1.
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M√nz̄n(t) = E
(
exp(t 1

nΣ
√
nzi)

)
= E

(
Π exp

(
tzi√
n

))
; expectation of a prod-

uct of independent variables is the product of expectations:

E

(
Π exp

(
tzi√
n

))
= ΠE

(
exp

(
tzi√
n

))
=

(
E

(
exp

(
tzi√
n

)))n
, (4)

where the last equality uses the fact that all the variables zi have identical
distributions.
Next, write an expansion for the exponent

E

(
exp

(
tzi√
n

))
= E

(
1 +

tzi√
n

+
1

2!

(
tzi√
n

)2

+
1

n
√
n
Rn

)
,

where by the remainder formula |Rn| < a |tzi|3 for some constant a > 0.
We get by substituting the expectations of zi

E

(
1 +

tzi√
n

+
1

2!

(
tzi√
n

)2

+Rn

)
=

(
1 +

t2

2

1

n
+

1

n
√
n
ERn

)
= 1 +

1

n
(
t2

2
+

1√
n
ERn).

We need to take this to the power n for (4)(
1 +

1

n
(
t2

2
+

1√
n
ERn)

)n

=

(1 +
1

n
(
t2

2
+

1√
n
ERn)

)n( t
2

2 + 1√
n
ERn)−1

( t
2

2 + 1√
n
ERn)

.

Now to take limits: as n → ∞ the expression w = 1
n ( t

2

2 + 1√
n
ERn) converges

to zero, w−1 →∞, then by the definition of the base of natural logarithms,(
1 +

1

n
(
t2

2
+

1√
n
ERn)

)n( t
2

2 + 1√
n
ERn)−1

= (1 + w)
1
w → e.

At the same time t2

2 + 1√
n
ERn → t2

2 since ERn is bounded and 1√
n
→ 0.

We get then that M√nz̄n(t)→ exp
(
t2

2

)
.

Step 2.
Now consider the moment generating function for the standard normal vari-

able, x :

E (exp(tx)) =

∫
1√
2π

exp(−1

2

(
−2tx+ x2

)
)dx

=
1√
2π

∫
exp(−1

2

(
−2tx+ x2 + t2

)
) exp

(
1

2
t2
)
dx

= exp

(
1

2
t2
)

1√
2π

∫
exp(−1

2
w2)dw = exp

(
1

2
t2
)
,
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by change of variable w = (x− t) and since 1√
2π

∫
exp(− 1

2w)dw = 1.

So for N (0, 1) the moment generating function is MN(0,1)(t) = exp
(
t2

2

)
.�

Why are the theorems about sample averages useful?
Take the OLS estimator, β̂1 = Σ(Xi−X̄)(yi−ȳ)

Σ(Xi−X̄)2
=

1
nΣ(Xi−X̄)(yi−ȳ)

1
nΣ(Xi−X̄)2

. This is a

ratio of two averages.

β̂1 = β1 +
1
nΣ(Xi − X̄)εi
1
nΣ(Xi − X̄)2

.

We know that {Xi, εi} are i.i.d.,E(Xi − X̄)εi = 0. Then by Law of Large Num-
bers the average 1

nΣ(Xi − X̄)εi converges in probability to zero.
The denominator 1

nΣ(Xi − X̄)2 by Law of Large Numbers converges to
variance of X (assuming it exists), that is varX > 0.

Then since the ratio
1
nΣ(Xi−X̄)εi
1
nΣ(Xi−X̄)2

converges on probability to zero, β̂1 con-

verges in probability to β1, it is a consistent estimator.
Suppose that the Central Limit Theorem applies to zi = (Xi−X̄)εi

var((Xi−X̄)εi)
.

Then it can be shown that the distribution of
√
n
(
β̂ − β

)
converges to a normal

distributionN
(

0, p lim σ2

1
nΣ(Xi−X̄)

2

)
. Here the asymptotic variance (variance of

the asymptotic normal distribution, p lim σ2

1
nΣ(Xi−X̄)

2 , as before can be estimated

by s2

1
nΣ(Xi−X̄)

2 .

In many other problems estimators and statistics are functions of some av-
erages and similar analysis applies.
Checking that assumptions hold.
Assumptions required that the variances of the errors exist and be the same,

σ2, and the all the error covariances be zero.
One could examine the plots of the residuals to see whether these assump-

tions are plausible. (There are also formal tests).
Normality of a distribution and boundedness of moments.
Why is normality important? If the data is generated by a normal, then the

distributions of the estimators, test statistics are known exactly in many cases
(e.g. the sample mean has a normal distribution, the t-ratio is exactly Student’s
t etc.); there is no need to worry about how good the asymptotic approximation
is.
Some economic models postulate normality for example latent utility model:

yi = β0 + β1Xi + εi, with εi normally distributed.
Violations of normality are common for financial variables; incorrectly as-

suming normality may lead to very misleading results.
Tests of normality can be applied to regression residuals.
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