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1. Vector spaces and subspaces
Definition 1.1 SCALAR SET. A scalar set is a field I on which operations of addition, subtraction,
multiplication, and division are defined.

The rational numbers Z, the real numbers R, and the complex numbers C are fields. A field has a zero

element O and a unity element 1.

Definition 1.2 VECTOR SPACE. A vector space (or linear space) on a field | is a set V which satisfies the
following axioms.

(1) Any two elements x, y € V determine a unique third element x+y €'V, called the sum of x and y, such
that, forall x, y, z€ 'V,

(@) x+y=y+ux; (Commutativity of addition)
(b) (x+y)+z=x+O+2); (Associativity of addition)
(¢) there exists 0 € V such that x+0 = x; (Identity element of addition)
(d) there exists —x € V such that x+ (—x) = 0. (Existence of additive inverse)

(2) Anytwo elements x € V and o € | determine a unique element ox € V, called the product of @ and x,
such that, forall x € V and o, B € T,

(a) o(Bx) = (af)x; (Associativity of scalar multiplication)
(b) lx =x. (Identity element of scalar multiplication)



(3) The operations of addition and multiplication satisfy two distributive properties: for all x, y € V, and
a, B e,

(a) (aa+ B)x = oax+ PBx; (Distributivity of scalar addition on scalar multiplication)
(b) oa(x+y)=ox+ay. (Distributivity of scalar multiplication on vector addition)

Notation 1.1 7o indicate that V is vector space over the field |, we can denote V by V (IF).

Definition 1.3 SUM OF SUBSETS. LetV be a vector space on a scalar set F, and Sy, S, two subsets of V,

xeV,and o € F. Then
S1+S5, = {y:y:X1—|—X2, X1€Sl,X2€Sz}, (1.1)

x+S ={xt+S1={y:y=x+x, x1 €51}, (1.2)
aS;:={y:y=ox, x; €S1}. (1.3)



2. Inner-product spaces

For any complex number z = x| + ix, € C (where x1, x; € R), we denote:

Re(z) :=x1, Im(z) :=xp, Z:=x1 —ix, |z :=\/x]+ 3. (2.1)
7 = X1 — ixp i the complex conjugate of z. If z1, 7, € C,
Re(z; +22) = Re(z1) +Re(z2), Im(z;+2z2) =Im(z;) +Im(zs). (2.2)

Definition 2.1 INNER PRODUCT SPACE. Let H be a vector space on a scalar set . An inner product on

H is an application which associates to each pair of elements x and y in H a scalar (x,y) € F such that, for
allx, y, z€ H,

a) (x,y) = ()

(X t+y,2) =X 2)+(2);
(ax,y)=a(x,y), forall a € F;
(x,x) >0;

(x, x) =0 if and only if x =0.

)

If (-, -) is an inner product on H, the pair (H, (-, -)) is called an inner product space, and the elements of
H are also called elements of the inner-product space (H,(-,-)). If F =R, we say that (H, (-, -)) is a real
inner-product space, and if F = C, we say that (H, (-, -)) is a complex inner-product space. When there is no



ambiguity on the definition of the inner product, the inner-product space (H, (-, -)) may simply be denoted
H. Unless stated otherwise, we assume that | = C.

Remark 2.1 An inner-product space is also called a pre-Hilbert space [Luenberger (1969, Chapter 3)].

Proposition 2.1 ELEMENTARY PROPERTIES OF INNER PRODUCT. Let H be an inner-product space, and
x,y, z€ H. Then

(@) (xy) (3 x) = (6 0) () = [ ) =10 )

(b) (x,oy)y=0a(x,y), forall o € F;

(¢) (ax,By)=aB(x,y), foralla,B cF;

(d) (ax,ay)=|al’(x,y), forall o € F;

(e) (ax+By,z)=0(x,2)+B(y,2), forall a,p €F; (Linearity)
) (z, ox+By)=a(z,x)+B(z,y), forall a,B € F;

() Re((ax,y)) =Re(a)Re((x,y)) —Im(o) Im((x, y)), forall x € I';

(h)  Im({ax,y)) =Re(a)Im((x,y)) —Im(at)Re((x, y)), forall x € I

(i) Re((x,ay)) =Re(a)Re((x,y)) +Im(a)Im((x,y)), forall o0 € F;

() Im((x, ay)) =Re(a) Im((x, y)) +Im(er) Re((x, ), forall a € F.

Proposition 2.2 ELEMENTARY PROPERTIES OF REAL INNER-PRODUCT VECTOR SPACES. Let H be an
inner-product space with scalar setF =R, and x, y, z € H. Then
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(@) () =0%; (Symmetry)
() (o) (0 x) = (6 3) = (10"

(c) (ax,By) =aBx,y), forall o, B cF;

(d) (ox,ay) =a*{x,y), foralla € [;

(e) (ox+PBy,z)=0(x,2)+B(y,2), forall a,p €F; (Linearity)

(f) <Z7 OCX—I—ﬁy>:OC<Z,X>—|—[3<Z,y>,fOI’allOC,ﬁE[l'_;

Definition 2.2 NORM ASSOCIATED WITH AN INNER PRODUCT. The norm of an element x of an inner-
product space (H, (-, -)) is defined by
Il = v/ {x, x) (2.3)

Example 2.1 EUCLIDEAN SPACE. R" with the usual scalar product

= in)’i (2.4)
i=1

/

where x = (xq, ...,x,;) and y = (y1, ..., V)
whose norm 1is the usual Euclidean norm

, where x; € R and y; € Rfor all i and j, is an inner-product space

. 1/2
x| = (Zx?) - (2.5)



Example 2.2 COMPLEX EUCLIDEAN SPACE. C" with the scalar product
(x,y) = Y} x; (2.6)
i=1

where x = (x1, ...,x,)" y = (b1, -..,yn)’, Where x; € C and y; € C for all i and j, is an inner-product space.

The associated norm is: 1/2
x]| = (Z’xi2> , (2.7)

i=1

Example 2.3 REAL-VALUED SQUARE INTEGRABLE RANDOM VARIABLES. The set [? = Lz(.Q, </, P)
of all the random variables X : Q — R such that E(X?) < oo with

(X,Y)=E(XY), forX,Y € L%, (2.8)
is an inner-product space. The associated norm is:
X1l = [EG)2. (2.9)

Example 2.4 COMPLEX-VALUED SQUARE INTEGRABLE RANDOM VARIABLES. The set L%(.Q, o/, P) of
all the random variables X : Q — C such that E(|X|*) < « with

(X,Y)=E(XY) (2.10)



1s an inner-product space. The associated norm is:

X1 = [E(x])]2. 2.11)
For many purposes, it is useful to scale (x, y) by the norms of x and y. By convention, we set:
)0 and <":”2:0 if [lx|| =0, (2.12)
(4l x|
)0 and <"”’2:0 if ||y =0, (2.13)
byl Iy
W) it el = 0 or [y]] =0 (2.14)
(Al

Definition 2.3 H-CORRELATION AND H-REGRESSION. The H-correlation between y and x associated
with the inner-product space (H, (-, -)) is

(x, )
Py(x,y) = , X, y€EH, (2.15)
" [[] ]|
and the H-regression coefficient of y on x is
Xy Y
BH@JOZ%ﬂga x,yc€H. (2.16)

py(x,y) and B,(x,y) may be a complex numbers. In general, we can have p,(y,x) # py(x,y) and



By (3, %) # B (x, y). More explicitly,

Py x) =py(x,y), 2.17)
oG Tl el
Bulrx) =20 =00 = DI P 2.18)

Definition 2.4 ANGLE AND ORTHOGONALITY. Let x and y be two elements of a real inner product space
(H, (-, -)). The angle between the vectors x and y is defined by

6 =cos ™" [(x, y) /([Ix[l Iy - (2.19)
We say that x and y are orthogonal (denoted x | y) if and only if
(x,y)=0. (2.20)

Definition 2.5 ORTHOGONAL SUBSETS. Let (H, (-, -)) be an inner-product space, and Sy, S, two subsets
of H. Then we say that Sy and S, are orthogonal [denoted S| | S| if and only if

xe Siandy e S, = (x,y)=0] forallx,yc H. (2.21)



Proposition 2.3 BASIC PROPERTIES OF THE NORM. Let (H, (-, )) be an inner-product space with the
norm ||x|| = \/{x, x) . Then the following properties hold for all x,y € H :

(a) |lox||=|al|lx]|, forall a € T

(b) |lx|| > 0;

(¢) ||x|| =0if and only if x =0;

(@) N1 = P+ 1P+ G )+ s x) = (x> + Iy IIP +2Re[(x, ¥)];

(e) [lx—=yI" = llxlI*+ IylI* = [{x, ») + (v, x)] = [|x[|* + [[y]]> — 2Re[{x, y)];

A if (6, 3) =0, x+y|I° = I+ 1yl (Pythagorean law)
(g Hx+yH2 = HxH2 + ||yH2 < Re[(x, y)] =0; (Generalized Pythagorean law)

(h

)

)l yl7 > (el + [yl = Re[(x, y)] > 0;
)l yI® < Jlxdl* + IVIF & Re(x, )] < 0;
)

)

~/

. 2 2 2 2
G) I +ylI7+ e =ylI" =21x[|" + 2 [|y[}*;
(k) if lIxll = llyll = L then |lx+y|* + |x—y|* = 4. (Rhombus identity)

(Parallelogram law)



Corollary 2.4 NORM EXPANSIONS OF INNER PRODUCTS. Let (H, (-, -)) be an inner-product space with
the norm ||x|| = \/(x, x) . Then the following properties hold for all x,y € H:

(a) Re[<x ] =506 9) + (X)) ;
(b)  Im[(x,y)] = 5({yx) — (x,¥)) = Re[(x, iy)] = 5({x, ly>+<iy,X>)'
(€)  (x,y)+ ) = I+ yl> = Il + Iyll* = [+ [Iyl]* -
(d)  Re[(x, »)] = 5([lx+yl” = x> = IylI*) = S(lxl* + Iy]1° —Hx—yH )
(e) ifF=R

g’:dw = 3(lx+y11° = x> = Iyl1*) = 3+ Iyl* = = 11%)

2 2 2
e+ y[17 = llx[I"+ lIylI” < (x¥) =0.

PROOF. Write (x, y) = z; +izz € C where z;, 22 € R. Then

)+ 0x) = @y + 0,0 = (x )+ (xy)
= (21 +1iz2) + (z1 —izn) =271 = 2Re|{x, y)], (2.22)

which yields (a). Similarly,

yx) = (6, y) = (x,3) = (x,y) = (21 —iz2) — (21 +i22)
= —i(2z2) = —i(2Im[(x, y)]) (2.23)

10



so that _
i

Im[{x, y)] = S ({, ) = (x, )3 (2.24)
further,
(x,iy) = —i{x,y) = —i(z1+in) =22 —in (2.25)
so that {
Im[{x, y)] = 22 = Re[(x, )] = 5 ((x, iy) + (iy, x)) (2.26)

This establishes (b). By Proposition 2.3 (d), we have:
e 311 = [ell 4+ Y17+ e ) + () (2.27)

x=y[I> = x> 4 (=2 + G, =)+ (=, x) = [|x]|> 4 Y]]+ (=, x) + (=, x)
2 2 7\ 2 2
=[xl +Iy[I” = &%) = ) = ||x||” 4+ |Iy]|” = (x, ) = (3, x) (2.28)

Solving for (x, y) + (y, x), these yield (c). (d) is entailed by (a) and (c). (e) follows from (c) on observing
that (x, y) = (y, x) and (x, y) = Re[(x, y)] when F = R. O

11



Proposition 2.5 BEST APPROXIMATION OF A VECTOR BY A LINE. Let H be an inner-product space, Xx,

vy e H, and

. <y’x>__ X X - <X,y>
AO -— quz _ﬁH( 7y)7 pH( ,}’) . HyHHxH

Then,
(x,y—Apx) = (y — Aox, x) =0,

ly=20xl* = IyvI” (1= lps(x, »)I°)
_ { (llell® 1117 =[x w2 2) / 11xl1 if Jlxl] # 0
Iyl ifllxl =0
Iy = Aox[} = 0 = [{x, )| = [lx]l i1l
Iy = Aox|| = 0 = {{[[y[| = 0] or [Ilyl| # 0 and [{x, y)| = [|lx[| Iy [l]},

and, for any A € T,
(Ax,y—Aox) = (y—Aox, Ax) =0,

Iy = 2x* = lly = Aox||* + 2 — Ao [1x]|* = [ly — Aox[|”

with
ly—2Ax]1* > [y — Aox||* < [A # Ao and ||x|| # 0].

12
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PROOF OF PROPOSITION 2.5 We have

(e y—Aod) = (r3) — (6 Aox) = (1, 3) — Ao () = (x,5) — 222 (2, 2

x|
= (x,y)— ﬁcxuyf (o, x) = (x,y) — (x,y) =0, (2.37)
(y — Aox, x) = (x,y — Aox) =0, (2.38)

hence

ly=20xl* = (= Aox, y = Aox)
— <y7y_)t‘0x> _A'O <x,y—).0x> — <y7y_)t()x>

(L (y, x)

2
1]

= (,y) = Aoy, x) = |Iy[I” =

2 2
- -1 e (1 9L
= [yI* (1= lpp (v, ) (2.39)

where we use the conventions |(y, x)|* / ||x||* = 0 and p, (v, x) = 0 when ||x|| = 0 and/or ||y|| = 0. If ||x|| = 0,

13



we thus have ||y — Aox||* = ||y||*, while for ||x|| # 0,

2 2 2 2
y, X XY — 1D X

2 2
1] 1]

This establishes (2.31).

Now, suppose that ||y — A¢x|| = 0. This can hold with either ||x|| = 0 or ||x|| # 0. If ||x]| = O we have
(¥, x) =0 and A9 = 0, hence ||y —Aox|| = ||ly[| = 0, [[y|| = 0 and |(y, x)| = ||x[| [[y]|. If ||x[| # O, then (2.31)
implies again that |(y, x)| = ||x|| ||y||. This shows (2.32).

To get the equivalence (2.33), we first note that

[ ) [ =[xl Iyl = {lllyll = 0and [y, x)| = [lx[} [ly[[] or [y # @ -and [{y, x)| = [lx[| [ly[|]}

= {lllyll =0J or [[lyll # 0and |(y, ) = [lx]| fI¥l[]}- (2.41)
Conversely, each one the two conditions [|ly|| = 0] and [||y|| # Oand |{y,x)| = ||x]| ||y||]] implies
[{vs ¥} = [lx[| [|y[l, hence
{llyll=0J or [[lyll # 0 -and [(y, ) = [lx[| Iyll]} = [{v, ¥} = [}l [[¥]] - (2.42)
This establishes (2.33).
From (2.37), we get:

(Ax,y—Aox) = A (x,y—Apx) =0= A (y— Aox, x) = (y — Agx, Ax) (2.43)

14



for any A € [, and thus (2.34). Further, we can write
y—Ax=(y—Aox)+ (A —Ag)x, foriAerl, (2.44)
and, since (y — Aox, (A — Ag)x) =0,

ly=2x]* = lly—2ox]” + (A — o)
= [ly—Aox]” + 4 — Ao|* [x]I* = Iy — Aox|” (2.45)

where the inequality is strict when |A — Ao|* ||x||* > 0, i.e. when |x|| > 0 and A # A,. This completes the
proof. []

15



Proposition 2.6 CAUCHY-SCHWARZ INEQUALITY. Let (H, (-, -)) be an inner-product space. Then, for
all x,y € H,

[ e, < [l vl (2.46)

and

[, ) [ = [l 0) or (y = Ax for some A € F)]

s [(x=
& [(x#0) = (y= Ax for some AL € )] (2.47)
& [(x = Ay for some A € F) or (y = Ax for some A € [)] '
S [(x#Ayforall A € F) or (y= Axfor some A € )].
If I =R, then, forall x,y € H,
(x, vy =|lx|| ly]]| < [(x=0)or (y= Ax for some nonnegative A € R)]
& [(x # 0) = (y = Ax for some nonnegative A € [F)] (2.48)
& [(x = Ay for some A € F) or (y = Ax for some A € )] '
|

Proposition 2.7 TRIANGLE INEQUALITY. Let (H, (-, -)) be an inner-product space with the norm ||x|| =
\/ (x, x) . Then the following properties hold for all x,y € H :

(@) [P+l < llxll -+ [yl (Triangle inequality)
(B) [l = [I¥IIT < lx+

(c)  [lx+yll = [lxl[+[[y]] = Re[{x, y)] = [|x]] [y
(d)

9

b

eyl < el [y [ = Re[ e, y)] 7 [lx[} Iyl - (Strict triangle inequality)

16



3. Special inner-product identities and inequalities

Proposition 3.1 POLARIZATION IDENTITIES. Let (H, -, ")) be an inner-product space with the norm
|x|| = /{x, x) . Then the following properties hold for all x,y € H :

(@) (x,y)+(,x) = %(Hx—ksz —lx=y|I*); (General polarization identity)
(b) Re[(x, y)] = L(|lx+y[I> =[x —yI1*); (Real polarization identity)
(¢) Im[{x,y)] = %(H)chin2 —[lx—iy||); (Imaginary polarization identity)
(d) (5, y) = 3 [ 4+y17 = e =yl + il llx+iy]l* = = iyl|*)] (Complex polarization identity)
() ifF=R

(o, y) = 2(|lx+ yIF=llx=y|?). (Polarization identity for real vector spaces)

PROOF. By Corollary 2.4, we have:

e+ 3112 = 1l + 1+ G y) + (3 %) (3.1)
e —y[I* = [l + Iy11* =[x, ) + (3 0] (3.2)
hence
H'x—l_yHZ _ Hx_yHZ — 2[<X, y> + <y7 )C>] — 2[<x7 y> + <.X, y>] — 4R€[<x, y>] (33)
and

1
(e, 3) + O 0y = (eI = =51, (3.4)

17



Rel(r, )] = 3 e +3[* ~ [~

(3.5)

This yields both the general polarization identity and the real polarization identity. Using (3.3), we also get:

Ix+iy]|* = lx—ivll* = 2[(x, iy)+ (iy, x)] = 2[(iy, x) +i {y, x)]
= 2[(1) (y,x) +i{y, x)] =2
= 2i[(x, y) — (y, x)] = =2i[(x, y) — (x, y)]

= —2i{(Re[{x, y)] +ilm[(x, y)]) — (Re[{x, y)] — iIm[(x, y)]) }

= —2i{(2i)Im[(x,y)] = 4Im[(x, y)]

hence
1

1
.12 .12 . 12
Im[(x, y)] = = (e = yl|” = [lx +ayl]") = 2 (llx+ iy " =l =

4

[(—0) () i (3, 20)] = 2[=i {x, y) +i (3, x)]

(3.6)
(3.7)
(3.8)

(3.9)

which establishes the imaginary polarization identity. The complex polarization identity is a direct conse-
quence of the two previous ones. The polarization identity for real vector spaces follows from observing

that (x, y) = (y, x) when F = R,

18
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Proposition 3.2 APOLLONIUS’ IDENTITY. Let (H, (-, ")) be an inner-product space with the norm ||x|| =

\/ (x, x). Then, for all x|,x,,y € H :

1 2
Iy =il + lly —xall® = 2[ly = [(v1 +22) /21" + 5 [l —

1 1
2 2 2 2
ly = [Cer+x2) /2017 = Sy =2l + lly = 220]7) = 2 [l =221,

1
2 2 2
by = 1o +x2) 2011 < Sy =27+ Iy = x2]7)
et =2l < 2([ly = xll* + [ly = x21%).-
PROOF. Using the parallelogram law, we first observe that
2 2 1 2 2
ly=xl"+ly—x|” = S([=x) + =) [T+ =x) = (=)

1
= SUIo=x)+ =2 P+ [x — )
hence

2 2 2 2
[y —=x1)+ O —=x)||” =2y =x1||” + [y =x[]") = Ix1 = x|,

=[G4/ = 0 —x)+ )P

1 2 2 1 2
= Slly—all”+lly =2l =l = x|,
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(3.10)

(3.11)

(3.12)
(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)



and
1 1
Sy =xl*+lly =2l = ly = [(n +x2) /21 + 7 |1 = 2l (3.19)

1
ly =2l + lly =22l = 2 Iy = [(x1 +x2) /2] + 5 X —xll. (3.20)

This establishes the first identity. The other identity and inequalities are straightforward implications of the
latter. .
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Proposition 3.3 SUMS OF INNER PRODUCTS. Let (H, (-, ")) be an inner-product space with the norm
|lx|| = v/ {x, x) . Then, for all x{,y1, x2,y, € H,

(e, y2) + (2, 1) = (e, yn) + (02, y2) — 0 —x2, yi—y2) (3.21)
(1, X2) + (2, x1) = 2Re[(x1, x2)] = [l >+ [eal|* = ||ovs — 2| (3.22)

PROOF. The first identity follows on noting that
(1 = X2, y1 = y2) = (X1, 1) + (X2, y2) — (x1, 2) — (x2, 1) (3.23)

and then solving for (xi, y1) + (x2, y»). The second identity follows on taking y; = x; and y, = x; in (3.21),
and using the i1dentity [see Corollary 2.4 (a)]

(X1, y1) + (x2, y2) = 2Re[(x1, x2)] - (3.24)
]
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Proposition 3.4 PTOLEMAIC IDENTITIES AND INEQUALITIES. Let (H, (-, ")) be a real inner-product

space with the norm ||x|| = +/{(x, x) . Then for all x1,y1,x,,y, € H :

(a) (X1 —x2, y1 —¥2) = (X1 —y1, X2 —y2) + (X1 —y2, Y1 — X2) ;
(b) (01 —x2, y1 = y2)| < [{x1 =y, X2 = y2) |+ [{(x1 — 2, y1 —x2)|
< lxer =yl ]2 = w2l + [l = y2| [lx1 = y21] 5

(¢) if the sets {x1,y1} and {x2,y2} are orthogonal,
(X1 —x2, y1 = y2) = (X1 = y2, y1 —22) = (x1, y1) + (%2, 12)

9

(%1 — x2, y1 = y2)| = [(x1 —y2, y1 — x2) | < |(xr, yi)| + [ (x2, ¥2)
(d) if the sets {x1,y1} and {x3, 2} are orthogonal and ||x{|| = ||x2|| = ||y1]| = |Iy2]| = L,

1
Pr(x1—X2,y1 —y2) = E[pH(xla Y1) +Pg(x2, 2)].

PROOF. To show (3.25), we note that:
(X1 = y1, X2 —y2) = (x1, X2) — {x1,52) — (1, X2) + (1, y2)

(1 —y2, y1 —x2) = (x1, y1) — (x1, X2) — (2, y1) + (2, %2)
hence, taking the sum,

<X1 — V1, X2 —y2> + <x1 — Y2, N1 —X2> = <X1, }’1> + (yz, X2> — <X1,)’2> — <)’1, X2>
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(3.25)

(3.26)

(3.27)
(3.28)

(3.29)

(3.30)
(3.31)



= (¥ —x2, y1 = )2) - (3.32)
The following identities and inequalities are simple implications of (3.25). For the last one, we note that
et = x|l = [y =32 =2 (3.33)
when {x, y;} and {x;, y»} are orthogonal and ||x1|| = ||x2|| = ||v1]| = ||2]| = 1, hence

B (X1 —x2,y1 —¥2) . (X1 —x2, y1 —¥2)
pH<x1 X2, V1 y2) = HX1—X2H HM-)’zH - 2
1

= Sl v+, )] = %[pH(xlv 1) +py(x2, y2)]. (3.34)
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4. Normed and metric spaces

Definition 4.1 NORMED SPACE. Let B be a vector space on a scalar set F. A norm on H is an application
which associates to each element x of H a scalar ||x|| € R such that, for all x, y, z € H,

(@) |lxl =0;

(b) ||x|| = 0if and only if x =0;

(c) M+l < llxll+ 1yl (Triangle inequality)
(d) |lox|| = |a|||x]| forall @ € F.

If ||| is @ norm on B, the pair (B, ||-||) is called an normed space, and the elements of B are also called
elements of the normed space (B, ||-||). If F = R, we say that (B, ||-||) is a real normed space, and if F = C,
we say that (B, (-, -)) is a complex normed space. When there is no ambiguity on the definition of the inner
product, the normed space (B, ||-||) may simply be denoted B.

In inner-product spaces, it is easy to see that ||x|| := 1/ (x, x) satisfies all the properties listed in Definition
4.1.

Definition 4.2 METRIC SPACE. Let X be nonempty space of elements (called points). A metric d on X is
a real-valued function on X x X such that, for all x, y and z in X :

(@) d(x,y)>0;
(b) d(x,y)=0ifandonly ifx=1y;
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(¢)  d(x,y) =d(y,x);
(d) d(x,y) <d(x,z)+d(z,y).
The pair (X, d) is called a metric space.

In normed spaces, it is easy to see that d(x,y) := ||x — y|| satisfies all the properties listed in Definition
4.2. Thus, inner-product spaces are a subclass of normed spaces, which are themselves a subclass of metric
spaces. Properties established for metric spaces also hold for normed spaces, and properties established on

normed spaces apply in inner-product spaces.
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5. Interior, closure and boundary of a set
The notion of metric space allows one to define open and closed sets.

Definition 5.1 INTERIOR POINT. Let S be a subset of an inner-product space H. A point y € S is an
interior point of S if and only if there exists € > 0 such that {x : |x —y|| < €} C S. The set of all the interior
points of S is called the interior of S and is denoted int(S).

Definition 5.2 OPEN SET. Let S be a subset of an inner-product space H. S is an open set if and only if
S =int(S).

Definition 5.3 CLOSURE POINT. Let S be a subset of an inner-product space H. A point y € H is a closure
point of S if and only if for any € > 0, the set {x: ||x —y|| < €} contains at least one point in x € S. The set
of all the closure points of S is called the closure of S and is denoted cl1(S).

Definition 5.4 CLOSED SET. Let S be a subset of an inner-product space H. S is a closed set if and only if
S =cl(9).

Definition 5.5 BOUNDARY OF A SET. Let S be a subset of an inner-product space H. The boundary of S
is dS := cl(S)\int(S). Any element of dS is called a boundary points of S.

Definition 5.6 ISOLATED POINT. Let S be a subset of an inner-product space H. A pointy € S is an
isolated point of S if and only if there exists € > 0 such that the set {x : ||x —y|| < €} does not contain any
point of S except y.

Proposition 5.1 Let S be a subset of an inner-product space H. Then the following properties hold:
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a

b

int(S) CS Ccl(S);
dS Ccl(S)and ISNint(S) =0;

d) int(int(S)) = int(S) ;

(@)
()
(¢) ifyis an isolated point of S, then 'y € 9S;
(d)
(e) cl(cl(S)) =cl(S).

e

PROOF. The proposition follows directly from applying the definitions int(S), cI(S) and JS.

Proposition 5.2 Let H be a subset of an inner-product space. Then the following properties hold:
a) the complement of an open set is closed,;
) the complement of a closed set is open;
) the intersection of a finite number of open sets is open;
d) the union of an arbitrary collection of open sets is open;
) the union of a finite number of closed sets is closed;

(f) the intersection of an arbitrary collection of closed sets is closed.

PROOF. See Luenberger (1969, Section 2.7).
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Proposition 5.3 Let S be a convex subset of an inner-product space H. Then int(S) and cl(S) are convex.

PROOF. See Luenberger (1969, Section 2.7). [
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6. Convergence

Definition 6.1 CONVERGENCE IN NORM. Let {x,:n=1,2,...} be a sequence of elements of a normed
space (B, ||-]|). We say that x,, converges to x € B if and only if

s — x| — 0. (6.1)

. . : B .
Convergence in norm in B is denoted x, — x or, when the context is clear, x, — Xx.

n—oo n—oo

Definition 6.2 CLOSURE. Let S be a nonempty subset of an inner-product space H. Then the closure of S,
denoted S, is the smallest closed set which contains S.

Proposition 6.1 CONTINUITY OF THE NORM. Let {x,:n=1,2,...} be a sequence of elements of an
normed space (B, (-, -)) such that ||x, — x|| — O where x € B. Then

n—oo

Joall — [l (62)

Definition 6.3 CAUCHY SEQUENCE. Let S be a nonempty subset of an inner-product space (H, (-, -)), and
{x,:n=1,2,...} CSasequence of elements in S. Then x, is a Cauchy sequence in S if and only if

X —xm|] — O. (6.3)

m,n—oo

Proposition 6.2 RELATION BETWEEN CONVERGENCE TO A POINT AND CAUCHY CONVERGENCE. Let
: H
{x,:n=1,2,...} be a sequence of elements of an inner-product space (H, (-,-)) and x € H. If x, — x,
n—oo

then x, is a Cauchy sequence in S.
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Definition 6.4 COMPLETE SUBSET. Let (H, (-, -)) an inner-product space, and S a subset of H. The subset
S is complete if and only if every Cauchy sequence in S converges to a point in S: 1.e.,

{x,:n=1,2,..} CSand ||x,—xn|| — 0] = Ix € S such that ||x, —x|| — 0. (6.4)

7}’l—)oo

Proposition 6.3 CONVERGENCE CHARACTERIZATION OF CLOSED SUBSETS. Let (H, (-, -)) an inner-
product space, and S a subset of H. S is closed if and only if S contains all its limit points, 1.e.

X, €S, Vn, and ||x,—x|| — 0 = x€S. (6.5)

Proposition 6.4 RELATION BETWEEN COMPLETE AND CLOSED SUBSETS. Let (H,(-,-)) an inner-
product space, and S a subset of H. If S is complete, then S is closed. If H is complete, then

S is complete < S is closed. (6.6)

S is complete, then S is closed.

Proposition 6.5 CONTINUITY OF INNER PRODUCT. Let{x,:n=1,2,...} and {y,:n=1,2,...} be two
sequences of elements of an inner-product space (H, (-, -)) such that ||x, —x|| — 0 and ||y, —y|| — O,
n—oo n—oo

where x,y € H. Then
e | —{lx] (6.7)

and
(s Yn) —= (%, ) - (6.8)
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Example 6.1 MEAN SQUARE CONVERGENCE. Let{X,:n=1,2, ...} asequence of real random variables
in > = L*(Q, o/, P). If we define (X,Y) = E(XY), then the convergence in norm represents mean-square

convergence:
X, —X|| — 0 & E[(X,—X)?] — 0. (6.9)

n—oo n—oo
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7. Hilbert spaces

Definition 7.1 HILBERT SPACE. Let (H, (-, ")) an inner-product space. Then (H, (-, -)) is a Hilbert space
if and only if every Cauchy sequence of (H, (-, -)) converges in norm to an element of H ,

%, — Xm|| — O = Ix € H such that ||x,—x|| — 0. (7.1)

m,n—oo

Proposition 7.1 NORM CONVERGENCE AND CAUCHY CRITERION. Let {x,:n=1,2,...} be a sequence
of elements of a Hilbert space (H, (-, -)). Then x,, converges in norm if and only if x, is a Cauchy sequence.

Theorem 7.2 COMPLETENESS OF L*(Q, 7, P). The inner-product space L*(Q, <f, P) with (X,Y) =
E(XY) is complete and thus constitutes a Hilbert space.

PROOF. See Brockwell and Davis (1991, Section 2.10). []

Definition 7.2 CLOSED SUBSPACE. A subspace S of a Hilbert space H is a closed subspace of H if and
only if S contains all its limit points, 1.e.

x, €S, Vn, and ||x,—x|| — 0 = x€S. (7.2)
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8. Sources and additional references

For good reviews of vector space theory, see Halmos (1958), Herstein (1975), Kolmogorov and Fomin
(1975, Chapters 4-6). A good summary of Hilbert space theory aimed at applications in time series analysis
may be found in Brockwell and Davis (1991, Chapter 2). Other good reviews appear in: Debnath and
Mikusinski (1990) for general applications, Small and McLeish (1994) for applications in statistical theory,
Luenberger (1969), Deutsch (2001), Aubin (2007), Bauschke and Combettes (2011) for applications to
optimization problems, and Young (1988) for a more mathematically oriented presentation.
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