Jean-Marie Dufour

March 11, 2015

McGill University ECON 763
 Financial econometrics
 Mid-term exam

No documentation allowed
Time allowed: 1.5 hour

20 points 1. Consider a process that follows the following model:

$$
X_{t}=\sum_{j=1}^{m}\left[A_{j} \cos \left(v_{j} t\right)+B_{j} \sin \left(v_{j} t\right)\right], t \in \mathbb{Z}
$$

where v_{1}, \ldots, v_{m} are distinct constants on the interval $[0,2 \pi)$ and $A_{j}, B_{j}, j=1, \ldots$, m, are random variables in L_{2}, such that

$$
\begin{aligned}
E\left(A_{j}\right) & =E\left(B_{j}\right)=0, E\left(A_{j}^{2}\right)=E\left(B_{j}^{2}\right)=\sigma_{j}^{2}, j=1, \ldots, n \\
E\left(A_{j} A_{k}\right) & =E\left(B_{j} B_{k}\right)=0, \text { for } j \neq k \\
E\left(A_{j} B_{k}\right) & =0, \forall j, k
\end{aligned}
$$

(a) Show that this process is second-order stationary.
(b) For the case where $m=1$, show that this process is deterministic
[Hint: consider the regression of X_{t} on $\cos \left(v_{1} t\right)$ and $\sin \left(v_{1} t\right)$ based two observations.]

50 points 2. Consider the following models:

$$
\begin{equation*}
X_{t}=0.5 X_{t-1}+u_{t}-0.25 u_{t-1} \tag{1}
\end{equation*}
$$

where $\left\{u_{t}: t \in \mathbb{Z}\right\}$ is an i.i.d. $N(0,1)$ sequence. For each one of these models, answer the following questions.
(a) Is this model stationary? Why?
(b) Is this model invertible? Why?
(c) Compute:
i. $E\left(X_{t}\right)$;
ii. $\gamma(k), k=1, \ldots, 8$;
iii. $\rho(k), k=1,2, \ldots, 8$.
(d) Graph $\rho(k), k=1,2, \ldots, 8$.
(e) Find the coefficients of $u_{t}, u_{t-1}, u_{t-2}, u_{t-3}$ and u_{t-4} in the moving average representation of X_{t}.
(f) Find the autocovariance generating function of X_{t}.
(g) Find and graph the spectral density of X_{t}.
(h) Compute the first two partial autocorrelations of X_{t}.

30 points
3. Let $X_{1}, X_{2}, \ldots, X_{T}$ be a time series.
(a) Define:
i. the sample autocorrelations for this series;
ii. the partial autocorrelations for this series.
(b) Discuss the asymptotic distributions of these two sets of autocorrelations in the following cases:
i. under the hypothesis that $X_{1}, X_{2}, \ldots, X_{T}$ are independent and identically distributed (i.i.d.);
ii. under the hypothesis that the process follows a moving average of finite order.
(c) Describe how you would identify the process described in equation (1) in question 2.
(d) Propose a method for testing the hypothesis that $X_{1}, X_{2}, \ldots, X_{T}$ are independent and identically distributed (i.i.d.) wothout any assumption on the existence of moments for $X_{1}, X_{2}, \ldots, X_{T}$.

