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Preface

The present textbook was motivated by two principles drawn from our
teaching experience. First, the application of statistical methods to eco-
nomic modelling has led to the development of some concepts and tools
that are frequently ignored in traditional statistical textbooks. Second,
it is possible to introduce these various tools, including the most sophis-
ticated ones, without having recourse to mathematical or probabilistic
concepts that are too advanced. Thus the main goal of this book is to
introduce these statistical methods by taking into account the specificity
of economic modelling and by avoiding a too abstract presentation.

Our first principle has various consequences. Though we discuss
problems, concepts, and methods of mathematical statistics in detail,
we rely on examples that essentially come from economic situations.
Moreover, we analyse the characteristics and contributions of economic
methods from a statistical point of view. This leads to some develop-
ments in model building but also in concepts and methods. With respect
to model building, we address issues such as modelling disequilibrium,
agents’ expectations, dynamic phenomena, etc. On conceptual grounds,
we consider issued such as identification, coherency, exogeneity, causality,
simultaneity, latent models, structural forms, reduced forms, residuals,
generalized residuals, mixed hypotheses, etc. It is, however, in the field
of methods that the economic specificity brings the most important con-
sequences. For instance, this leads to focus on predictions problems,
maximum likelihood or pseudo conditional maximum likelihood type
estimation methods, M-estimators, moment type estimators, bayesian
and recursive methods, specification tests, nonnested tests, model
selection criteria, etc.

Our second principle concerns our presentation. In general, we have
tried to avoid proofs that are too technical. Instead, we have attempted
to emphasize the intuition behind the results, which is a condition neces-
sary to a real understanding. In particular, we have not introduced the
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concept of o-algebra and we have systematically left aside issues concern-
ing measurability and negligible sets. We have also tried to strengthen
the intuitive understanding of the results by multiplying examples. For
the reader interested in technical problems, however, a special chapter
(Chapter 24, Volume II) collects rigorous proofs of various asymptotic
results. This allows us to lower significantly the mathematical level re-
quired for the reading of our book. Lastly, we have included two appen-
dices reviewing basic elements of linear algebra and probability theory.
These appendices (A and B, found in Volume II) should provide the
reader with a self-contained textbook.

Our textbook can be used in various ways according to the topics
covered and levels of difficulty desired. Below, we suggest a three-course
sequence. For each course we have defined three sections called “Ba-
sic Concepts and Tools,” “Estimation and Prediction,” and “Tests and
Confidence Regions.”

Course I

Sections Chapters

Basic Concepts and Tools 1, 2, 3, and Appendices A, B

Estimation and Prediction 5, 6, 7.1-7.3, 11.1-11.2

Tests and Confidence Regions 14, 15, 16, 20.1-20.5
Course IT
Sections Chapters
Basic Concepts and Tools 4,13.1-13.3

Estimation and Prediction | 7.4-7.5, 8.1-8.4, 9, 10, 11.3, 12

Tests and Confidence Regions 17, 18, 20.6-20.8
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Course 111
Sections Chapters
Basic Concepts and Tools 13.4-13.6, 22.1, 24
Estimation and Prediction 8.5, 21.1-21.2, 23.1, 23.3
Tests and Confidence Regions | 19, 21.3-21.4, 22.2-22.3, 23.2

The first course corresponds to a first-year graduate course in statis-
tical methods for econometrics. The topics covered are indeed the basic
ones in statistics. An econometric aspect, however, is provided through
the weighting of various topics, the introduction of specific notions, and
the choice of examples.

The second course completes the first course by covering asymptotic
results. The first two courses should constitute the basic background for
a statistician/econometrician wishing to apply the most recent econo-
metric tools.

The third course is the most difficult one on technical grounds. It is
also a collection of more advanced topics. A good understanding of the
contents of the third level should allow the reading of specialized litera-
ture and the beginning of methodological research in good conditions.

We owe a special debt to Martine Germond and Beatrice Lejeune
who typed respectively the French and English versions of this book.
They both performed promptly and accurately a difficult task. We are
also grateful to Quang Vuong for his painstaking translation of our work.
Financial support for the publication and translation of this book was
provided by the French Ministére de la Recherche et de la Technologie
and by the French Ministére de la Culture.

C. Gourieroux
A. Monfort

xvii






CHAPTER 1

Models

1.1 Modelling
1.1.1 Principles

The problem of modelling arises as soon as one wants to describe and
analyze a real phenomenon. Because reality is often complex, the human
mind is unable to comprehend it in its entirety. Thus it is necessary to
construct a simplification of reality (or model) allowing one to study it
partially. This simplification cannot take into account all the character-
istics of reality, but only those that seem related to the object of study
and that are of sufficient importance. A model suited to a particular pur-
pose often becomes inadequate when the object of study changes (even
if the study concerns the same phenomenon) or when there is a need for
greater accuracy. '

Example 1.1: To predict the result of an election when there are two

candidates A and B, one draws with equal probability and replacement

a sample of n voters and observes the number Y of individuals in this

sample intending to vote for A. The variable Y can be thought of as

a random variable distributed as a binomial B(n,p4), where p4 is the

unknown proportion of individuals voting for A on the day of the election.
In this example, the model is given by the family

{B(nypA)a pa € [O, 1]}

Even if this model seems quite natural here, it is only an approximation
of reality for it makes several simplifications:
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a) For instance, the sample is drawn with a computer using a program
to generate random numbers. Since these programs are based on
a deterministic algorithm, one only has an approximation of sarn-
pling from a uniform distribution.

b) The proportion of individuals voting for A may change between
the date of the survey and the date of the election.

¢) Some sampled individuals may not divulge their true voting inten-
tioms, ete.

Example 1.2: To evaluate the effect on consumption of a change in
income, one may propose a model to describe the relationship between’
these two variables. For instance, one may suppose that they are related
through an equality of the form

logC = alog R+ b, a,be R

The parameter a, called the consumption elasticity with respect to in-
come, is equal to the logarithmic derivative dlog C/dlog R. If income
changes by 1 percent, consumption changes approximately by a percent.
The parameter a provides a natural measure of the effect on consump-
tion of a change in income and the model seems appropriate to the study
of this effect. The model is clearly an approximation of reality. Indeed
time series data (Cy, R:), t =1,...,T on consumption and income will
not in general be related by an exact equality such as the one proposed.

Example 1.3: A model frequently used to analyze the date of an event
is based on the theory of Poisson processes. See Section B.5 in Appendix
B, Volume II. The model is more or less-suited to the study of unem-
ployment spells (here the event is to find and accept a job). It can be
improved and made more realistic by:

a) no longer assuming independence of the past from the present since
~ the probability of an unemployed person finding a job may depend
on the length of the unemployment spell,

b) introducing various factors affecting an individual’s chances of find-
ing a job. These include. general factors such as current economic
conditions, and individual factors such as the amount of unemploy-
ment benefits received by the individual, whether their spouse is
employed, etc.
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1.1.2 Stochastic Models

Some of the previous examples have a stochastic character (see Examples
1.1 and 1.3). On the other hand, the model of consumption behavior
(1.2) is purely deterministic, which makes it incompatible with the data.
One way to solve this difficulty consists in making the model stochastic.
Hence the approximate deterministic relation

log C; = alog R; + b, t=1,...,T,
is replaced by
log C; = alog Ry + b+ uy, t=1,...,T,

where u,t = 1,...,T, are random variables with zero means called
disturbances or error terms.

A disturbance measures the discrepancy between the observation
log C' and the approximate mean alog R + b proposed by the model.
The disturbance may be due to:

(i) the fact that the relation between log R and log C is not linear,
(i) the fact that the coefficients a and b vary over time,
(iii) the omission (voluntary or not) of secondary variables,
(iv) measurement errors on the variables C and R ...

The disturbance is therefore interpreted as a summary of various
kinds of ignorance. In fact, the interpretation of the disturbance is im-
portant only when hypotheses are made about its distribution. The form
- of this distribution depends on the kind of ignorance that the disturbance
is supposed to represent.

Apart from its interpretation, the introduction of a disturbance has
another purpose. As seen later, in a stochastic model it will be pos-
siblé to construct measures of the error associated with the use of the
model. Indeed an evaluation of the accuracy of the results becomes quite
essential.

1.1.3 Formulation of a Model

In general, a model has a deterministic component and a random com-
ponent. How can one obtain an appropriate specification for each of the .
components? Specifications can rely on observations of the variables or
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can result from theoretical reasoning based on economic theory or prob-
ability theory. Nonetheless, no matter how the model is formulated, the
model is ultimately postulated. Its validity only arises from its ability
to dominate other models.

Example 1.4: A descriptive analysis of the data may show the pres-
ence or absence of correlations among the variables and, hence, may give
some ideas about which variables are likely to influence others. Similarly,
the study of the empirical distributions of the variables may also sug-
gest suitable families for the probability distributions. For instance, one
often uses the families of Pareto distributions or log-normal distributions
to describe income distributions. In general, these two families provide
good approximations to the observed empirical distributions.

Example 1.5: To explain household. consumption expenditures as a
function of income and prices, one-may rely on the theory of consumption
to derive suitable models:

Example 1.6: Some theoretical models can also be derived from prob-
abilistic reasoning. A classical example is the determination of the dis-
tribution of the number of events occuring before a certain date under
the assumptions of a Poisson process. See Section B.5 in Appendix B.

1.1.4 Descriptive Models and Explanatory Models

A goal of some studies is to know how some variables affect others,
i.e., to determine if such effects exist and, if they do, to measure their
importance. Models corresponding to such problems are ezplanatory. In
contrast, other models are said to be descriptive.

Explanatory models are often used to study behavior. They implic-
itly make a distinction between the variables that are explained and the
variables likely to affect the former.

For instance, a study of a firm’s production behavior can be based
on the Cobb—Douglas function relating the level of production @Q to the
level of capital K and the quantity of labor L

Q = AK°LP,

where A€ R*,a € R*,f e R*.

This relation is not-only a mathematical equality. In addition to the
functional relationship among the variables, it embodies a distinction
between the explanatory variables K and L and the explained variable
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Q. This distinction intuitively corresponds to a temporal lag where the
values for the variables K and L are chosen before the value for Q.

Causal relations among variables disappear in descriptive problems.
Examples of descriptive problems are the prediction of the outcome of
an election from survey data, the determination of the average income of
a population and the study of independence between two characteristics.

When many variables are involved in descriptive problems, they are
treated symmetrically.

Example 1.7: Psychological tests are used to measure 1.Q. level. Each
of these tests leads to different measures of 1.Q. level. A symmetric
and descriptive problem is to study whether two different measures are
compatible, i.e., lead to the same ranking, and, if so, to establish a
formula linking the two measures.

1.1.5 Sampling Designs

A real phenomenon is frequently studied from data already collected. In
some cases, however, it is possible to design a specific sampling. One has
so-called controlled experiments. In particular, one can devise a simpler,
less expensive, and more precise sampling method. Clearly, controlled
experiments have important effects on the choice of models.

Example 1.8: Consider again the election Example 1.1. The sample is
frequently drawn from a stratified population. The voting population is
partitioned into various subpopulations and a sample is randomly drawn
from each subpopulation. The whole sample is obtained by pooling the
subsamples. The statistician has various options: he can choose the
partition, the size of the whole sample, and the distribution of the whole
sample over the various subsamples.

Example 1.9: The study of the effects of some variables on others is
easier if one can choose the values of the explanatory variables a priori.
Such designs are frequent in physics. For instance, to study the dilatation
of a liquid, one can choose appropriate levels of temperature and record
the corresponding values for the volume. Such designs also exist in
economics. They can be set during an experiment. For instance, the
effect of the price of electricity on consumption was analyzed by imposing
different prices in different areas.

More generally, sampling designs arise when the sample is drawn. A
sampling of households, stratified according to their incomes, allows one
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to fix the income variable. How can one choose the values for the con-
trolled variables? In principle, they should be chosen optimally for the
desired study. The optimal design is, however, frequently difficult to im-
plement, and simpler procedures are used. For instance, one can choose
some values zy,...,zx for the explanatory variables, and, for each of
these values, sample independently n observations on the variables to be
explained. In this case, one has repeated observations.

1.2 Statistical Models
1.2.1- Definitions

Definition 1.1: A statistical model is a pair ()}, P), where Y is the set .
of possible observations and P is a family of probability distributions on

Y.

As we saw in the examples of the previous section, the observations
generally indicate the values taken for some random variables Y3, ..., }5,.
The probability distributions P of the family P are viewed as possible
distributions for the vector Y = (¥1,...,Y,)’ with values in ). Different
simplifying assumptions can be made about the family P.

a) One can often assume that the support of the distributions is
known a priori. In this case, the distributions of the family P have
the same support. Such a condition corresponds to the homogeneity
condition that follows.

Definition 1.2:

(i) A model (¥, P) is dominated if all the distributions in the family
P have densities with respect to the same dominating measure p.

(i) A model (Y, P) is homogeneous if it is dominated and if the
measure p can be chosen so that all the densities are strictly positive.

In both cases, the model can be defined through the family £ of
densities associated with P = {P = ({(y) - ), £ € L}.

b) Questions concerning real phenomena can frequently be translated
into functions of real parameters. For instance, in the election example,
the proportion p4 of voters in favor of the first candidate arises naturally.
When the distributions of the family can be naturally parameterized so
that

P={Fy, 6 € © C R},
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the problem is said to be parametric. It is nonparametric otherwise.

Example 1.10: The election problem is parametric. If p4 denotes the
proportion of voters for candidate A, the model is

(y = {0,17-- -7’"’}7 P= {B(n,PA)’ pPAE [07 1]}) .

Parameterization is clearly not unique. Another parameter that can
be readily interpreted is the proportion of voters for candidate B: pp =
1 — pa. With this new parameterization the model can be written as

(y={071a'-"n}a P= {B(nvl—"pB)a PB € [011]})'

Example 1.11: In some surveys firms are asked about their forecasts
on some economic variables. Such data allow the study of individual
expectations by comparing the forecasts 2] to the observed values z;
of the variables. In particular, one can determine whether there is a
relationship between these two types of observations or whether these
can be viewed as independent. No parameters seem to arise naturally in
this problem which is nonparametric in nature.

The distinction often made between parametric and nonparametric
problems is not justified mathematically. For, as soon as the observations
are real valued, it is always possible to parameterize the family P with a
real parameter § € IR. See Exercise 1.2. The difficulty, however, is that
such a parameter often cannot be interpreted.

In addition, there are situations where parameters arise naturally
(for instance, the consumption elasticity with respect to income in a
study of consumption behavior) but where knowledge of the values for
these parameters is insufficient to characterize the probability law of the
" observations. Such problems are called semiparametric.

Remark 1.1: A dominated parametric model can be defined by the
family of its densities £(y; ) such that Py = (¢(y; ) - p). The mapping
from 8 to £(y; @) is called the likelihood function.

c) Sometimes the observed variables can be assumed to be indepen-
dent with the same probability law P. In this case, ¥1,...,¥, is a
random sample from P.IfP is known to belong to the family of distri-
butions P defined on the set V of possible values for V;, then the model
is a sampling model and can be written as

(y=9", P={P=9%, Peh}),
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where P®" denotes the product of the n marginal distributions of the
variables Y;,i=1,...,n.

When the family P is dominated by a measure [i, the family P is
dominated by p = i®", and the density £ of P is equal to

£y) =[] r@w),

i==1
where f is the density of P with respect to fi.

The hypotheses for P just described can be interpreted easily. Other
conditions can be imposed on the family P to simplify the mathematical
derivations associated with the model or the interpretations that can
be obtained from it. The importance of linear models and ezponential
models is indeed explained by their relative simplicity.

LINEAR MODELS

These models are defined by assuming that the mean m of the vector
Y of observations belongs to a given linear subspace of R". Various
formulations are possible if one wants to emphasize different parameters.
A coordinate free formulation is

Y=m+u, Bu=0, melL,

where L denotes a linear subspace of R™.

Parameters can be readily introduced by defining generating systems
for the subspace L. If Xi,..., Xy is such a system, where K > dim L,
the mean m can be decomposed as

Y = Xiby+ -+ Xgbg +u, Bu=0, (11)

where (b1,...,bxk) are the coordinates of m with respect to Xi,...,Xk.
The decomposition is unique only if the system is a basis for L.

Generating systems arise naturally during the modelling process. For
instance, the consumption model studied in Example 1.2 can be written
as

log Cy log Ry 1 U3
: : a+| o+

log Ry 1 ur

log Cp
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The subspace L is generated by the vectors

log Ry 1
log Ry 1
Note that model (1.1) can be described in a more condensed form
using the parameter vector b = (by,...,bx)’ and a matrix X of size n x K
of which the column vectors are X3,..., Xg. Then we have
Y = Xb + u, Eu=0. (1.2)

EXPONENTIAL MODELS

Definition 1.3: A statistical model (Y, P = {Py,0 € ©}) is ezponential,
if the distributions Py have densities with respect to the same measure u
of the form

£(y; 0) = C(0)h(y) exp (Z Qj(B)Tj(y)) ;

=1

where the functions Q; and T; are real valued. The family P is an
ezponential family and the random vector T = (T1(y), ..., Tr(y))' is the
canonical statistic of the model.

Example 1.12: Let (Y3,...,Y,) be a random sample from a Poisson
distribution with parameter A € R™. The distribution of (¥,...,Y,)
has a density

iy = [Jew-n5
. i=1 i
= (H ?—J-l—') exp(—n) exp ((log A) Ey;)
i=1 7% =1

with respect to the counting measure on IN*. The family is exponential
withr =1, T(Y) =31, Y, Qi(A) =log A

Example 1.13: Consider the linear model (1.2) where the vector u of
disturbances is assumed to follow a normal distribution N (0, 0%I). Thus,
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the vector Y is distributed as N(Xb, c*I) and its density is

£(y;b,0%)

]

0"(2]7-1')”/2 €xp ("’5‘33 (y —Xb) (y— Xb))

1 F HX'Xb vy y'Xb
-———-—-————O_n(zﬂ)n/z_exp (——————-—202 )e ( + .

252 g2
The model is exponential with » = K + 1. A canonical statistic for the
model is

T (V) =YY =||Y|?, Tu(Y) =YXy, k=1,...,K.

1.2.2 A Priori Information

When a priori information on a model is available, it can be introduced
through deterministic constraints on the family of distributions P or
through stochastic constraints within a Bayesian framework.

a) Constraints on the Parameters

A study of firm production behavior can lead to a linear model derived
from the Cobb-Douglas production function

logQ: = log A+ alog K + Blog Ly + uy,

with Fu; = 0, ¢t =1,...,T. This model corresponds to a family P
of distributions on JRT of which the means belong to a subspace L of
dimension three generated by

1 log K3
Xi=| ], Xo= : ,  Xa= :
1 logKr logLy

log L1

If one believes that the production function exhibits constant returns
to scale, one needs to impose the constraint

a+f=1.
The model becomes

log Q; =log A + alog K; + (1 — &) log Ly + uy.

10
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The model corresponds to a family Py of distributions on RT of which
the means belong to the affine subspace Ly of dimension two containing
the element (log L1, ...,log L)’ and generated by the vectors (1,...,1)
and (log Ky —logLy,...,log Kp — log Lt)'. Since Ly is included in L,
the family Py is included in the family P.

Thus imposing constraints on the parameters is equivalent to spec-
ifying a family Py that is included in P. In what follows, we shall use
the following terminology:

Definition 1.4: Two models (Y, Py) and (Y, P) are nested if Py C P.
Then (Y, Po) is a submodel of (¥,P) and (¥,P) is a nesting model for
(Y, Po)-

b) Bayesian Approach

Consider a dominated parametric model
P ={Py=(l(y;0) - p), 6 € ©C R}

It may be very restrictive to impose some equality constraints on the
parameters, as was done for the Cobb—Douglas model. The Bayesian
approach allows a less stringent modelling of available a priori informa-
tion by assuming that the parameters are random with some probability
distribution II called the prior distribution. Instead of specifying with
certainty the subspace where the parameters lie (such as o+ = 1) one
simply defines the probability that the parameters lie in various regions.

From a mathematical point of view, this approach has the advantage
of treating symmetrically the parameters and the observations. Indeed,
defining the family P, i.e., the family of conditional distributions of YV’
given 0, and defining the marginal distribution II of 6 is equivalent to
defining a joint distribution for the pair (¥,6). This joint distribution
is (£(y;0) - p @ II). The observations on Y add information on the pa-
rameter # that can be used to modify the a priori information one has
on this parameter. Once the observations are drawn, it is natural to
consider the conditional distribution of @ given Y = y. This conditional
distribution denoted II°Y is equal to

_ £(y; )
T = T o) (13)

The distribution Il is called the posterior distribution since it incor-
porates information from the observed data into the distribution of 6.

11
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c) Empirical Bayesian Approach

A method of modelling that is more flexible than the Bayesian approach
consists in introducing more than one possible prior distribution for the
parameters. The model is then defined by (Y, P = {Pe, 0 € ©}) and the .
family of possible prior distributions on © denoted II,

When the family IT of prior distributions is parametric so that
II = {Il,, a € A}, the parameter « is called an hyperparameter.

This-approach is the most general. For if IT is reduced to a single
distribution, one obtains the Bayesian approach. If IT consists of
degenerate distributions with point mass at 6, i.e. , IT = {es, 6 € O},
one recovers the initial model (Y, P = {Ps, 6 € ©}). Such a two-step
approach is useful for formulating models. The following two examples
are illustrative.

Example 1.14: Consider an individual consumption model. If one
allows households to exhibit différent behaviors, one may be naturally
led to propose a model of the form

log C; = a;logR; + b; + u, i1=1,...,n,

where ¢ indicates the ith household and where a; and b; vary across
households.. Problems arise, however, from the fact that the number of
parameters of the model is 2n and hence greater than the number of
observed households.

A possible solution consists in assuming that the parameters are in-
dependent and, for instance, such that a; ~ N(a,02), b; ~ N(b,0%).
The hyperparameter a represents the “average elasticity” of consump-
tion with respect to income. The hyperparameter o> measures the dis-
persion of the individual elasticities. Such a modelis said to have random
coefficients.

Example 1.15: Consider the problem of estimating the mean income
of households from a sample of observations on income. The parameter
vector is @ = (6;, i =1,...,N), where 6; is the income of household i.
The function of the parameter ¢ that is of interest is 6 = % Zfil 0;.
To simplify, one may assume that the empirical distribution of incomes
can be approximated by a log-normal distribution. For instance, one
may assume that the parameters 6; are independent and such that
log8; ~ N(m,o?) or equivalently, §; ~ LN(m,o?). The family IT is
II = {LN(m,0?)®Y, m € R*}. Such a model is sometimes called a
superpopulation model.

12
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1.2.3 Specification Errors

To study the properties of a model given a set of observations, one can
view a model as a good or bad approximation to the “érue”’ but unknown
distribution Py of the observations. In the first case, one assumes that
the distribution P, generating the observations belongs to the family of
distributions associated with the model, i.e., one assumes that Py € P.
When the family is parametric so that P = { P, 6 € O}, the distribution
P, can be defined through a value 6y of the parameter, and one has
Py = Py,. This value is called the true value of the parameter. The
distribution Py uniquely defines 8y if the mapping 8 — Fp is bijective,
i.e., if the model is identified (see Chapter 3).

When one believes a priori that the true distribution Py does not
belong to P, one says that there may be specification errors. Then it
is interesting to find the element P§ in P that is closest to Py in order
to assess the type of specification errors by comparing Py to Fy. To do
this, one must have a measure of the proximity or discrepancy between
the probability distributions.

In this section, we assume that distributions have strictly positive
densities with respect to a common dominating measure u.

Definition 1.5: Given two distributions P = (f(y) - ) and P* =
(f*(y) - p), the quantity

I(P|P*)=E*log -%(y%) = /y log 7(%) f*(y)u(dy)

is called the Kullback discrepancy between P and P*. This quantity is
also called the Kullback discriminating information criterion.

 The qﬁantity I'is a measure of the discrepancy between the distri- -
butions P and P* because of Property 1.1 below. It is, however, easy
to see that the measure I is not a distance in the classical sense since it
does not satisfies the symmetry condition and the triangular inequality.
Property 1.1:

(@) I(P| P*) 20,

(ii) I(P | P*) =0 if and only if P = P*.

13
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PRrooF:
(i) Applying Jensen's Inequality to the convex function —logz we
have
() ( F¥) )
I(P{P*) = E"log = E*| —log
(1) Sl S5 )
f(Y)
> —logE" it = —logl = 0.
rm T

(ii) Since the function — logz is strictly convex, equality in part (i)
holds only if f(Y)/f*(Y) is equal to a constant. Since E‘(f ™)/ ()
== 1, this constant must be equal to one. O

Definition 1.6:
(i) An element P§ in P is sazd to be a pseudo true distribution if it

satisfies
I(Fy | Po) =§Dn§7n>I(P‘PO).

(i) The discrepancy between the true distribution and the model is
I(P| R)=1I(F | R).

(iii) When the model is parametric so that P = {Ps, § € 6}, a
pseudo true distribution Py is associated with some parameter values
0%. These are called pseudo true values for the parameters.

Clearly, the definition of a pseudo true value has meaning only if the
minimum is attained for an element of P. This was implicitly assumed.
If the model is identified, there is a unique 6 corresponding to each Fy
(see Chapter 3).

Discrepancy measures other than the Kullback criterion can be intro-
duced. These lead to other pseudo true distributions. See for instance
the chi-square discrepancy (Exercise 1.12). The Kullback measure is,
however, preferred for it has. interesting interpretations, and leads to
some natural distances in important special cases as illustrated by the
following two examples.

Example 1.16:

(i) Consider two multivariate normal distributions of dimension n
with scalar variance covariance matrices, i.e., P = N(m,;0?I) and P* =
N(m*,0*%I). We have

1 1. - *{|2
log : ) log (@ V3 ( 2z ¥ -l )
fY) 1 Ly - ml2

(G'\/i;:l.f—)n exp 20.2 n m”

14
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g 1 *]|2 1 2
= nlog— — oY —m| + 53 1Y = m|*

Thus
1Y)
I(P|P*) = E*logt-t
(P| P L
_ o n, no*?+|m*—ml?
= nlel -5+ 202
o n no? |m*—m|?
= e gttt T

In particular, I(P|P*) involves the distance between the means
lm* — m|| and a measure of discrepancy between the variances

log 2 + a? 1
o T2 T Y
(if) Now suppose that the true distribution is Py = N(mq,02I) and
that the model is linear

P ={P = N (m,0%I) with m € L,0? € R**}.

To find the pseudo true values my and o}2 one must minimize the
following expression with respect to (m,0?) in L x R**

2 2
_ o n nog  |mo—m|
I(P|PR)=nlog w3 + 552 Yo R

The minimization with respect to m reduces to the problem of finding
the element of the subspace L that is closest to mg. Thus the solution
mg is equal to the orthogonal projection of mq on L

m§ = Pymp. (1.4)
Then the first-order condition with respect to the variance gives

lmo = Prmgl|®

oy =08+ o

(1.5)

Example 1.17:
(1) When the vector of observations is discrete valued, the densi-
ties are given by the probability mass functions Py = (po(y), y € V),

15
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Py = (pe(y), y €Y), where § € ©. Then finding the pseudo true values
reduces to solving the problem

Po(y)
paly)’

min ; po(y) log

or equivalently
rgleag‘g;po(y) log ps ()- (1.6)

(ii) Now suppose that the observations are on two qualitative vari-
ables Yi,Ys, each of which can take the values 0 or 1., The true distri-
bution is characterized by the four probabilities ’

g = po(Y1i=0,Y2=0),
9 = p(¥i=0Y2=1),
Pl po(Yi=1,Y2=0),
P = p(i=1Yz=1).

Consider a model postulating the independence between the two
variables. The corresponding distributions are parameterized by a =
P (Y; =0) and 8 = P (Y2 = 0). Under the assumption of independence,
we have

poo = &3, por = a(l — ), pio = (1 —@)B, pu=(1-a)(1-B).
The pseudo true values for o and f are obtained by maximizing

Qo log (o) + gy log (a1 ~ B))
+plolog (1 — )B) + P log ((1—0)(1 - B))
= (p3o +p3;) log o + (g + p31) log(1 — @)
+(p30 + p%0) log B+ (00, + p?1) log(1 - B).

One obtains

o = plo -+ pl; and B = pdo + Plo-
Thus (af,1 — o) and (85,1 — B5) are the true marginal distributions
of ¥; and Y: respectively, and the pseudo true distribution, i.e., the

distribution satisfying the independence assumption that is closest to
Py, is obtained from the product of the two marginal distributions.

16
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1.3 Intermediate Forms

1.3.1 A Principle for Formulating Explanatory
Models

A model can be derived from economic or statistical theoretical reason-
ing. Frequently one is led to formulate some intermediate forms. In this
section we discuss a principle for formulating models in the case where,
for each observation ¢, ¢ = 1,...,n, one’s goal is to explain the values
taken by a vector Y; of observed or endogenous variables as functions of
a vector of explanatory variables X; and a vector of disturbances u;.

It is sometimes the case that the components of Y; are functions of a
vector of other variables Y;*, called latent variables, which are easier to
explain. Each component of ¥;* is then explained as a function of some
other components of ¥;* and some variables X;

gV Xius) =0, i=1,...,n, (1.7)

where ¢ is a known function.

This system, written in implicit form, is called the structural form
of the latent model. To be useful, such a form must be able to generate
the values of Y;*. Thus equation (1.7) must have a unique solution in
Y for every (X;,u;). This invertibility condition in Y}* is called the
coherency condition. When this condition is satisfied, one can derive
from the structural form an equation for Y;* where Y;* is expressed as a
unique function of X; and u;

Y,;* = h(Xi,’U.i). ‘ (18)

Equation (1.8) is called the reduced form of the latent model.
It remains to specify the relationship between the latent variables Y*
and the observable variables Y. Let

Yi=h(), (1.9)

where k is a function that is known or partially known.

The global structural form consists of (1.7) and (1.9). The observable
reduced form is obtained by replacing Y;* in (1.9) by its expression given
in (1.8)

Y =k (h(Xi,ui)). (1.10)

When the functions g and k depend on unknown parameters, we say
that:

17
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o the structural parameters are those that naturally appear in 1n
and (1.9),

o the latent parameters are those that appear in 17, .

e the reduced form parameters are those functions.of the structural
parameters appearing in the observable reduced form (1.10).

In practice, some of the previous forms (structural form, reduced form
of the latent model, and observable reduced form) can be identical. To
illustrate these various concepts, we now consider some examples where
this principle for formulating models is used. :

1.3.2 Examples

Example 1.18: In business surveys, firms are asked about the expected
directions of changes for some economic variables but not on the magni-
tudes of those changes. It is interesting to model the qualitative obser-
vations with intermediate quantitative latent variables.

Suppose that a question bears on the change in the price of a par-
ticular product for the next period. Let the magnitude of this change
be Ap. The latter quantity is clearly unknown to the firms. A firm
asked about this quantity will provide an answer Y;* that is in general
different from Ap. For a first step, however, it seems reasonable to as-
sume. that firms on average do not make mistakes and that their predic-
tions are independent. Then we can formulate a model of the following
type

Y = Ap + ui, i=1,...,n,

where the disturbances u; are independent and identically distributed
(iid) N(0,0?).

The parameter o is interpreted as the firms average error in predicting
Ap. The model defined above is a latent model of which the structural
and reduced forms are identical.

The model associated with the observed variables can be derived
readily. Assume that the questions on the survey allow ounly two types
of answers, such as a “decrease in prices” or an “increase in prices.”
Then
decrease if ¥ <0,
increase if Y;* > 0.

Y=k ={

18
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In the final model, the observable variables Y; are iid with common
distribution characterized by

P (Y; = decrease) = PYr<0) =@ (__%2) ,

where @ denotes the cumulative distribution function of the standard
normal distribution.

We have here a parametric model where the parameters with a natu-
ral interpretation are those of the latent model, namely Ap and o. The
reduced form parameter is Ap/o.

Example 1.19: Consider two time series, i.e., two sets of data in-
dexed by time, on half-yearly production of some agricultural products.
Suppose that in every odd period observations are available on the two
series, but that in even periods only the sum of them is observed.

Suppose that the model is defined at the level of the disaggregated
time series Y33, Y5, t = 1,...,27. Then the observed variables are
obtained from

Ylt21'+1
Y:rz Y2t21'+1 ,T=0,...,T“'1.

* *
Yiorta + Yoorie

Example 1.20: Description of a Market

Models explaining the quantity () exchanged at time ¢ in a given
market and the price p; for this exchange are formulated by specifying )
an equation summarizing the behavior of the demand side (the demand
schedule), (ii) an equation summarizing the behavior of the supply side
(the supply schedule), and (iii) by describing how the two types of agents
interact in the market. '

Suppose that the demand at time ¢ is

Dy = a1ps + Xiby + uyy, t=1,...,T,
where X;; denotes the row vector of observations at time t on some
macroeconomic variables affecting demand, and where u;; is a random

disturbance. Similarly, the supply at time ¢ is given by

St = agps + Xosha + ugy, t=1,...,T.

19
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(i) An Equilibrium Model

This model is obtained by assuming that prices adjust sufficiently fast to
clear the market so that an observation corresponds to the point where
demand equals supply.

The observed price is assumed to be equal to the price corresponding
to this point (the equilibrium price), while the quantity exchanged is
equal to the value common to the demand and the supply (the equlhb-
rium quantity). Thus the model is written as

D, = aip;+ Xuhy +uss,
S: = agpt + Xashy + uay,
Dt = St. ' *

Quantity

A

oY) IR

Price

Figure 1.1: Equilibrium Model

From this structural form, one derives the reduced form

Xi1tby — Xobo 4 U T U

t =
P ag — a1 as —ay
asXy:by — a1 Xothy | aguys — aunt
Qi = D=5 = + .
ag — @y Gz — a3

In this example there are no latent variables.
(i) A Disequilibrium or Fixed Price Model

This model contrasts with the previous one. Prices are now fixed. Given
fixed prices, demand and supply now differ, and the quantity exchanged

20
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cannot be larger than the minimum of demand and supply. In general,
one assumes that the quantity exchanged is equal to this minimum value.
From the latent model

D; = aip;+ Xiby + uis,
Sy = aops + Xothy + ug,

one derives a model for the observed variables using the relationship

Q: = min(D, S).

Although both models are related to the problem of modelling the
same market, they are quite different. In the equilibrium model, the
important step is to obtain the reduced form from the structural form.
In the disequilibrium model, it is the derivation of the observable model
from the latent model that is essential.

Quantity
A

Demand

v

Price

|
|
|
I4

Figure 1.2: Disequilibrium Model

Example 1.21: A Simple Keynesian Model
This model can be used to study the effects of a change in investments
on aggregated consumption and production. In its simpler form, the
model has four variables which are consumption (C), national income
(R), national product (Y), and investment (I). The model has three
equations
C: = aBRy + b+ uy,

which is the consumption function expressing the dependence of aggre-
gated consumption on national income

Y;::Ct—"-[ty
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which is_an identity describing how the national product is distributed
over consumption and investment. This identity is analogous to the
equilibrium condition in the previous example. Finally

R, =Y

results from the necessary accounting equality between national product
and national income.

This is the structural form of the model where the variables to be
explained C, Y, and R &re expressed as functions of themselves, the
variable I, and the disturbance u

c, 00a\/C b us -
Y, |=(1 00w |+[L |+ 0] @i
R, 010/ \R 0 0

The structural form, however, is not well ada:pted_to the evaluation
of the effects.of a change in"investments I on C' and Y. To assess these
effects, it is convenient to use the reduced form

Cy 0 0 a -t b+ u
Y: ={I- 1 0 0 I .
R; 010 0

This leads to
G = 1-a—aIt+1—lia+lz—L—ta’
Y, = liafﬁlﬁa-r-lzfa, (1.12)
B = liaIt+1f~a+l’L—L-ta'

Thus, if investments at time ¢ are modified by Al, consumption changes
by AC = %-AI and national product by AY = —1—_171AI .

Example 1.22: One may ask whether a given time series is growing lin-
early or exponentially with time. It may be useful to formulate a model
containing both cases. A frequent model is obtained from the Boz-Coz
transformation Ty : y — (y* —1)/), which is a bijective mapping. When
A =-1 the transformation coincides with a linear affine transformation,
and when ) approaches 0 the transformation approaches the logarithmic

transformation. The model is
A
X’t"‘}\'—l == qat + b+ uz.
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Since the mapping T can always be inverted, the reduced form is
Y; = Ty'at+b+u)
= (L4 aXt +bA + dug) /.

1.3.3 Coherency Conditions

Given a latent structural form g(Y™* X, u) = 0, the reduced form exists
if and only if the equation g(Y™* X,u) = 0 has a unique solution in Y*.
Frequently, the structural form is of the type

90(Y") + 1(X,u) =0

In this case, the condition is equivalent to the global invertibility of gq.
A simple necessary condition for the invertibility of gg is that there are
as many independent equations as variables to explain.

This condition is not sufficient. Necessary and sufficient conditions
for global invertibility are known only in few cases.

Example 1.23: Suppose that each observation on a vector of latent
variables is defined by the linear relation

Al,i* =gl(Xi7ui)1 i= 1,...,TL,

where A is a square matrix.
The coherency condition is

det A # 0. (1.13)

For instance, the reduced form of the Keynesian model of Example 1.21
can be obtained only if @ # 1. For the equilibrium model of Example
1.20, the condition is a; # ay. This latter condition holds in general
since demand is decreasmg in prices (a; < 0). while supply is increasing
in prices (a2 > 0).

Example 1.24: When the mapping gg is piecewise linear and contin-
uous, i.e., of the form

Go(Y*) = AY*, fY*eC,

where the Cy'’s are cones defined by some linear inequality constraints,
and when the cones define a partition of the space for Y*, one can show
that the coherency condition is

The determinants of the mappings A have the same sign (1.14)
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(see Gourieroux, Laffont, and Monfort (1980)). An illustration of this
result is given in Exercise 1.11.

1.4 Conditional Models

1.4.1 Conditioning

Two types of variables appear in the various examples of Section 1.3.2
(consumption or production model, equilibrium-or disequilibrium model,
Keynesian model). On the one hand, there are variables Y; or ¥;* that
one seeks to explain, and, on the other hand, there are variables X;
that contribute to the explanation of the former. In addition, it was
assumed that the X;’s are deterministic while the disturbances u;’s
are stochastic. This implies that the ¥;’s and Y;*’s are also stochas-
tic. The family of possible distributions for ¥ = (Y1,...,Ys) is then
deterniined by a relation of the type (1.10) and the chosen family of
distributions for v = (ui,...,us). Equivalently, one can suppose that
the X;’s are random and that this family of distributions is the family
of possible conditional distributions for (u1,...,%s) given (X1,...,Xx).
Then relation (1.10) determines the family of conditional distributions
for Y = (¥i,...,Yy) given X = (X1,...,X5). Therefore hypotheses
on u are actually hypotheses on the conditional distribution of }” given
X =z

Definition 1.7: A conditional model is a pair (Y, Pz) where Y is the
set of possible values for a random variable Y, said to be the conditioned
variable, and, for any given z € X, Py is a family of conditional dis-
tributions for Y given X = z, X being the conditioning variables. If
Pz = {Po.z, 0 € O}, the conditional model is said to be parametric and,
if in addition, Py s = £(y | z;0) - u, the parametric model is said to be
dominated by the measure p.

Thus a family of distributions in a parametric conditional model is
doubly indexed by z and €. One should not, however, confuse these two
indices. In particular, z is observed while 6 is not.

Example 1.25: Consider the consumption model
log Cy log Ry 1 Uy
: S EE IR LR O
log Cp, log R, 1 Up
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where, conditional upon (Rj,...,R,), the vector of disturbances u =
(u1,...,up)" follows a normal distribution N(0,02 I). The family Pp
is the family of normal distributions with mean

log R, 1
: a+ | : |b
log R, 1

and with variance covariance matrix ¢2I. Note that this model implies
two important hypotheses:

e the conditional expectation E(logC; | Ry, ..., R,) depends on R;
only;

e the conditional expectation is affine in log R; with coefficients a
and b independent of i.

The previous example shows that equation (1.10), which is logC; =
alog R; + b+ u; in this example, is asymmetric. Hence, for this exam-
ple, equation (1.10) defines the conditional distribution of log C; given
(log Ry,...,log R,). This equation does not, however, determine the
conditional distribution of log R; given (log C4,...,logC,). In particu-
lar, the conditional expectation of log R; given (log C4,...,log Cy) is not
in general equal to (1/a)log C; — b/a as one might have thought by just
solving the equation log C; = alog R; + b + u;.

1.4.2 Exogeneity

Consider the parametric statistical model (Y x X,{Ps,0 € ©}). The
variables Y € Y and X € X are observed. It is assumed that the
distribution of the pair (Y, X) belongs to the family {P;,0 € ©}. It is
always possible to “condition” the model upon X, i.e., to consider the
parametric conditional model (¥, P, = {Ps ;,0 € ©}) where P, is the
family of conditional distributions for Y given X = z.

It is, however, intuitively clear that consideration of the conditional
model leads to a loss of information about 6 if the marginal distribution
of X, which is ignored in the conditional model, depends on §. This will
be made more precise in Chapter 3.

More generally, if © = A x B, § = (o, 8)', a € A, B € B, and if one
is interested in o, the parameter of interest, but not in 3, the nuisance
parameter, one does not loose information about o when conditioning
on X if X is exogenous in the following sense.
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Definition 1.8: Consider the model
(yxX,{Pg,9€9=AxB}).

Then X is ezogenous for « € A if the marginal distribution of X does
not depend on o and if the conditional distribution of Y given X = &
depends only on o and-hence not on B € B.

In the dominated case where (Y, X) has a density £(y,x;6) with re-
spect to a measure u, the exogeneity condition on X for o becomes

Uy, z50,8) = £(y | z; @) £(z; B),

where £(y, z; c) denotes the conditional density of Y given X =z and
£(z; B) denotes the marginal density of X.

Remark 1.2: Definition 1.8 can be readily generalized to a concept of
exogeneity of X for o = g(f). It suffices that there exists a function
B = h(f) such that 6 and (e, B) are in a bijective relationship and such
that Definition 1.8 is satisfied for the parameterization §* = (o, f5) €
©*=AxB.

Moreover, as illustrated by the next example, the exogeneity condi-
tion depends on the chosen parameter of interest.

Example 1.26: Consider the simplified equilibrium model

D; = a+2P +uyn,
S; = c- us, t=1,...,T,
Qt = D‘l‘.=St3

where the T' vectors (uyz,ug;) are iid N(0,TI). The reduced form of the
model is
_ t—a o uy —Up
Bo= —t+—5
Q: = c+uy, t=1,...,T.

The conditional distribution of P = (Py,...,Pr) given Q@ = (Q1,...,
Qr) is the product of the normal distributions N((Q: — a)/2,1 /4), t=
1,...,T. The marginal distribution of @ = (Q1,.. ., Q) is the product
of the normal distributions N(c,1). It follows that Q) is exogenous for a.

The conditional distribution of @ = (Q1,...,Qr) given P = (F,...,
Pr) is the product of the normal distributions N(P; + (c + a)/2;1/2).
The marginal distribution of P is the product of the normal distributions
N((c — a)/2,1/2). These two distributions depend on a and c. Thus P
is exogenous neither for a nor for ¢. In contrast, ffom Remark 1.2, P is
exogenous for ¢+ a.
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1.5 Dynamic Models
1.5.1 Definitions

In the previous example, variables were indexed by time %, ¢ being a
date or period index. This particular interpretation of the time index,
however, did not affect the development of the proposed models. In
contrast, in the models that are considered in this section, the natural
ordering of the “time” variable plays an essential role.

Definition 1.9: A dynamic model is a statistical model (¥, P) in which
the observations Y = (Y1,...,Y;,...,Yr) are indezed by time and are
not independent. If the observations are independent, the model is said
‘to be static.

The nonindependence assumption implies a temporal or dynamic link
between the observed variables. When the dynamic model is parametric
and dominated by a measure p = ®;r=1 Wt, a distribution Py in the
family P = {Py,0 € O} is characterized by its density

T
£(y;0) = [ (v | o1, .-, 113 0),
t==l

where £(y: | yt—1,..-,91;0) denotes the conditional density of Y; given
Yi-1 = ¥Yt—1,-.., Y1 = 41, and where the term corresponding to t = 1 is,
by convention, the marginal density of Y;.

Now suppose that the vector Y; is partitioned into two subvectors

Yt(l) and Yt(z). The conditional density £(v; | yi—1,--.,%1;6) can always
be written as

0 |91, 9130) = €@ 14 yeer, - 0036)
xZ(yéz) | ¥e—1,.--,91;0).

If yéz) does not appear in the first term of the right-hand side, then Yt(l)
and Y;(z) are conditionally independent given the past Y;_1,...,Y1. See

Property B.30. Otherwise, Yt(l) and Yt(z) are simultaneously determined,
and we say that there is simultaneity.

Definition 1.10: Given a value for the parameter 9, Y;(l) and Yt(z) are

simultaneous if Yt(l) and Yt(z) are not conditionally independent given
Yooy, 1.
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Remark 1.3: Definition 1.10 is symmetric in Yi(l‘) and th) because the
concept of independence is. This simultaneity is also called instentaneous
causality between Y,V and Y%,

Example 1.27: Consider again the equilibrium model

Qt == a+th+"un,
Q: = c+uy, t=1,....T.

If the random vectors (uys, ug:),t = 1,...,T, are independent across
time, the model is static. Otherwise, it is dynamic.

The variables Q; and P; are simultaneous since the conditional dis-
tribution of P; given @, Pi—1, @¢-1,- .., P1, Q1 depends on @;. For in-
stance, if (uif,ug:) is iid N(0,I), this conditional distribution is the
normal distribution N((Q; — a)/b, 1/b%).

Example 1.28: Now consider the model

Q: = a+bPi1+u,
.Pt = C+dPt_1+U2t, t=1,...,T,

where (u14,ug:) are iid N(0,X) and where P, is fixed. The model is
dynamic. There is simultaneity if and only if ¥ is not diagonal.

1.5.2 Exogeneity and Causality

In a way analogous to what was done in Section 1.4.2, we now consider
a dynamic model of the form

(y X X’{Pﬁv 0 E@})7
where

Y = (H)“‘)YT)eya
X (le-'wXT)EX7

and
©@=AxB, 6=(a.f), a€ 4, BeB.

~ Suppose that the parameter of interest is . Assume that the general
Definition 1.8 of exogeneity is satisfied so that

Ly, z; o, B) =Ly |z a) £z B).
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One can readily see that this equality can also be written as

T
Ly, z0,0) = [[ewelve-r,...,vn,27,...,7150)
t=1 :

T

X Hf(zt | Z4—1,..-,21; B). (1.15)

t=1

Note that all the z variables appear in each term of the first product on
the right-hand side.

a) Sequential Exogeneity

There is another definition of exogeneity that is intrinsic to dynamic
models.

Definition 1.11: The variable X is sequentially exzogenous for a if for
every t

e(yhxtlyt—hmt—l,-'-7y17z1;a’:6) = Z(yt |-’Ehyt-—l,z't-ly--'7y17ml;a)

Xe(zt l Yt-1,Tt—15- .-, Y1, T1; ,B)

This definition implies that the joint density of (z,y) is

T
Ly, z0,8) = [[ewelove1,31,. ., 01,215 0)
t=] :

T
x 4@ | ye1, 301, y1 215 8). (1.16)
t=1 ’

As in (1.15), equation (1.16) provides a factorization of £(y, z; o, 8)
into two terms of which one depends on « only and the other on 3 only.
Unlike (1.15), however, the two products in (1.16) cannot, in general,
be interpreted as densities. In the next examples, we shall also see that
exogeneity does not imply sequential exogeneity and vice versa. In fact,
it is for such a reason that we have not called sequential exogeneity weak
ezogeneity as is sometimes done.

29



Models

b) Granger Causality

To relate the previous two notions of exogeneity, it is useful to introduce
the following notion of causality due to Granger.

Definition 1.12: Given a value for the parameter 8, Y does not cause
X in the Granger sense if, for every t X; is conditionally independent
of (Yi—1,.... Y1) given (Xi—1,...,X1).

This definition implies that the past of Y does not contain additional
information on the current value of X given the past of X. In terms of
densities, this definition becomes

Vit, f(ﬂvt | Yt1 Tty oo ,yl,-$1;9) = Z(Et l $t—1,---,m1;9)-

Another definition equivalent to the previous one is given by:

Property 1.2: The variable Y does not cause the variable X in the
Granger sense if and only if Y; is conditionally independent of (Xyy1,
.o, X7) given (X3, Y1, Xi—1,.... Y1, X1). This latter condition defines
an equivalent concept of noncausality due to Sims.

PRrOOF: The density {(y, z; ) can always be written in the following two
ways

T
e(y,.’L‘,g) H‘C(yt Iyt-—la-“vylvas-'-axl;e)
t=1

T
X HZ((Et I Ttpmly-ooy L1y 0)
t=1 .

T K
= [lew: | z0ve1,3-1,... 91,213 0)
t=1

T
x [Te(@: | 91,201, - 91,315 6).
t=1

If Y does not cause X in the Granger sense, the second term in each
of the products are identical. It follows that their first products are
equal. Then, by induction, it follows that these products are also equal
term by term. Hence Y; is conditionally independent of (Xt41,...,X7)
given (Xi, Y31, Xi-1,...,Y1,X1). The converse is proved similarly. O

These two equivalent definitions of causality can be used to establish
the following result.
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Property 1.3: IfY does not cause X, then X is sequentially exogenous
for o if and only if X is exogenous for a.

ProoF:
(i) Necessity: Equation (1.16) becomes

T
Z(y,%avﬁ) = Hz(ytIxtyyt—laxt—lv'-':yl,ml;a)
t=1
T
x [Tt | zees, ..., z1; ).
t=1

Since the second product is the conditional density of X, the first product
is the conditional density of Y given X. Hence X is exogenous for .

(ii) Sufficiency: Using Property 1.2, equation (1.15) can be written
as

T
e(yax;aaﬂ) = Hg(yt!yt-—la-'-yylvxt"'wxl;a)
t==]

T

x [[ £z ] ze-r, ..., z13 ).

t=1
This implies (by induction) that for every ¢
&y, Tt | Ye-1,Tt—1, .-, Y1, T15 @, B)

= Ly | Tty Y1, Tt—1 ..., Y1, T1; @)
x‘e($t [ Y1, Tpe1y oo vy yl,ml;ﬂ)7

which is sequential exogeneity. O

c) Strong Exogeneity
Property 1.3 naturally introduces a third definition of exogeneity.

Definition 1.13: The variable X is strongly exogenous for o if X is
sequentially exogenous for a and if Y does not cause X.

On the one hand, Property 1.3 shows that X is a fortiori exogenous
for a if it is strongly exogenous for . On the other hand, this property
shows that an equivalent definition of strong exogeneity for o is the
conjunction of exogeneity for o with the noncausality of ¥ on X.
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Example 1.29: Consider the equilibrium model

Q: = a-+bP+ui,
P = ¢4+ dP_1 + uos, Poﬁxed,t=1,...,T,

where (uyy,uz:) is iid N(0,I).

Then P = (P,...,Pr) is sequentially exogenous for (a,b) because
the conditional distribution of Q; given (Py, Qt=1,Pe—1,....Q1, P1) is
N(a + bP;,1) while the conditional distribution of P; given (@i-1,
Pt-—-l: s :Ql,PI) is N(C+ d-Pt-h 1)

This latter distribution is also the conditional distribution of P; given
(Pi—1,...,P1). Thus Q does not cause P. It follows that P is strongly
exogenous for (a,b) and hence exogenous for (a, ).

Example 1.30: Now substitute P, for P, in the first equation of the
previous example to obtain

Q: = a+bPuyy +u,
Pt == C+dPt..1 -+ U, Pg ﬁxed,t:l,...,T,

where (ugs,u2:) is iid N(0,I).

The conditional distribution of Q@ = (Q1,...,Qr) given P = (P, ...,
Pr.;) is the distribution ®f=1 N(a + bPi41,1), while the distribution
of P is normal with density equal to the product of the densities of
N(c+ dP;-1,1). Hence P is exogenous for (a,b).

The conditional distribution of Q; given P and (Q¢-1,...,Q1) is
N(a + bP;y1,1). Hence, from Property 1.2, Q causes P and strong
exogeneity does not hold. In addition, the conditional distribution of Q:
given P;, Q:—1,Pi—1,...,Q1, Py is obtained from

Q: = a + bc + bdP; + bug s41 + u1s.

Thus this distribution is N(a + bc + bdP;, 1 + b2). It follows that P is
not sequentially exogenous for (a, b).

Example 1.31: Lastly, consider the model
Qt = - th -+ U1¢,
P, = c+dQi-1+uat, Qo .ﬁxeda t=1,...,T,

where (u1¢, ug:) is iid N(0,T).
The conditional distribution of Qy given (P, Q¢—1, Piw1,- .., Q1,P1)
is N(a+bP;, 1), while the conditional distribution of P; given (Qt-1,Pe-1,
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.y @Q1,P1) is N(c+ dQ;-1,1). Hence P is sequentially exogenous for
(a,b). However, Q causes P since the conditional distribution of P; given
Bi_1,...,P1 is N(c+da+dbP;_1,1+d?) and differs from the conditional
distribution of P; given (Q;~1, P;-1,- .., Q1, P1). Thus strong exogeneity
does not hold.

Finally, the distribution of P is normal with density equal to the
product of the conditional densities of N(c + da + dbP;—1,1 + d?),t =
2,...,T and the density of N(c+dQo,1). Since this density depends on
(a,b), then P is not exogenous for (a, b).

1.5.3 Formulation of Dynamic Models

In general, the formulation of a dynamic model begins with the choice
of variables that are exogenous for the set of parameters of interest 6.
For every t, let X; be the vector of exogenous variables, and let Y}
be the vector of variables to be explained. The variables Y; are said
to be endogenous. Then hypotheses on the conditional distribution of
Y = (1,...,Yp) given X = (X4,...,X1) = (z1,...,27)" are made,
i.e., a conditional model is defined where X is viewed as nonstochastic.
This conditional model is the basic model within which the concepts of a
static model, simultaneity, causality, and exogeneity for some parameters
are considered. In general, such a model is defined through a structural
form similar to (1.7)-(1.9). '

a) Structural Form

To simplify, assume that there are no latent variables. One formulates
the observable structural form

g(},ﬁ Yt—-h s 1n—p1Xt1 Xt-——-l') .. 7Xt——q1 ut) = O’ (117)
fort=1,...,T, given the initial conditions '
Yo,y Y1—p and Zoy---yT1—g-

The variables Y;_1,...,Y;—, appearing in (1.17) are called lagged
endogenous variables, and the disturbances u,’s are unobserved random
variables with zero means. Hypotheses on the distribution of u,t =
1,...,T, are made. A model is parametric if the family of possible
distributions for u = (u3,...,ur) and the family of functions g both de-
pend on a finite number of parameters only. Let # denote the parameter
vector.

33



Models

b) Reduced Form

The coherency condition ensures that (1.17) can be solved for ¥; uniquely
to obtain the reduced form

Yi=h(Yic1,o o Yeep Xen Xy oo Xy ), (1.18)

which defines ¥; as a function of the lagged endogenous variables, the
exogenous variables, and the disturbance at time ¢.

¢) Final Form

If one eliminates Y;_1,..., Y;—p recursively from (1.18), one can express
Y; as a function of ug, ug—1,...,u1, Xt, Xi—1,..., X1 and the initial con-
ditions as follows

Yt =ft(Xt,Xt_l,...,Xl,ut,...,ul). (1.19)

d) Multipliers

When g is a linear function, then h and f; are also linear functions. In
this case

h*(ytwla oy Yt—py Tty o - ,.'Bg-q) = h‘(yt-—-lv oo s Yt—py Tty ..o s Ttmg, 0)

is interpreted as the conditional expectation of Y; given Yi1 = y¢—1,
ey Yip = Ytp, and one can define short-term multipliers as partial
derivatives of h* with respect to the components of z;. Similarly

i@t ze-1,. . 2t) = fel®t, T4-1,...,21,0,...,0)

is interpreted as the mathematical expectation of Y;, and the partial
derivative of fi with respect to a component of z;—; measures the effect
of a unit change in that component of z;.; on this expectation. These
partial derivatives are called dynamic multipliers. Lastly, if one sets all
the z;’s to some given values z and, if all the u;'s are zero, then y; may
converge to some lmit y called long-run equilibrium that satisfies

9y Yy, 2,0) =0, (1.20)
or

y=h(y,...,p,z,...,2,0), (1.21)
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or
y=lim fi(z,...,2,0,...,0). (1.22)

The latter equation, also written y = F(z), is the long-run form of the
model, and the partial derivative of F' with respect to the components
of = are called long-term multipliers.

Given linearity of g, multipliers only depend on those parameters in §
that define g. In particular, hypotheses on multipliers imply constraints
on 6.

Example 1.32: Consider the equilibrium model
Dt - a+th+u1t,

Sy = c+dPiy+exi+ foi1 + ust,
Qt = Dt=St, t=1,...,T,

where z; is an exogenous variable, and Py and zg are fixed.
The model can also be written as
Q: = a+bP +uy,
Q: = c+dPi+exi+ foi+un, t=1,...,T.
This is the (observable) structural form where Q; and P; are the endoge-

nous variables.
The reduced form is

c—a d

e Ugt ~ U
P = T+5Pt-1+—b'$t+{—$t_1+"2}7}i,
Q: = c+dPiy+exi+ fri—1+ ug:.
Thus the short-term multipliers are
e/b for P,
e for Q.
The final form is
t—1 i
c—a e 1 d
B = ; ('—b—- + 7Tt + %mt——l—-i -+ '5(“2,1&-—12 - ul,t——i)) ('5)

. p ¢
-+Po (E) )
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a\t!
Q: = c+pod (5> +exy + o1 + ug

+dz ( -+ mt—-l—-z + {mt_z-z
=0

b 2t—1—i —~ Ul t—lmi b/ -

Hence the dynamic multipliers for F;, for example, are

eed f ()T (ed f)
B8 b\ b 2 )

If | d/b |< 1, there is a long-run equilibrium characterized by

Q = a+bP
Q@ = c+dP+(e+ f)z.

Thus the long-run form is

_ c—a e+f
Po=g=aty=d®
0 = bc — ad b(e+f)
T b—d b—d s

and the long-term multipliers are (e+ f)/(b—d) for P and b(e+f)/(b—d)
for Q.

One can readily check that the long-term multipliers are equal to
the infinite sums of dynamic multipliers. Thus each multiplier can-be
viewed as measuring the effect of a permanent change in one unit of an
exogenous variable on an endogenous variable.

1.6 Exercises

EXERCISE 1.1: Let (), P) be a homogenous model. Show that

VACY.VP,QEP:P(A) =0 Q(4) =
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EXERCISE 1.2:

a) Verify that the cumulative distribution function of a probability

distribution P on IR is right contimious when it is defined by
F(z) = P((—00, ).

b) Prove that a cumulative distribution function can be characterized
by its values at the rational numbers, and that the set of cumulative
distribution functions on IR has the cardinality of the continuum.
Conclude that any family of distributions on IR can be indexed by
a real parameter.

Exercrise 1.3: Let Y3,...,Y, be a random sample from the exponential
distribution of which the density is

(1yz0) exp(—(y - 9)),0 € RR.
a) Find the joint density of the n observations.

b) Forn =1 and n = 2, graph the density and the likelihood function.

EXERCISE 1.4: To explain the diffusion of a durable good among house-
holds one specifies the logistic model
" 1+exp(at+b)’

where y; is the percentage of households having the durable good at time
t and where @ and b are unknown parameters.

Yt 11"'1T’

a) Study how y changes with ¢ and discuss the expected sign of the
parameter a.

b) Show that log (y:/(1 — 1)) is a linear function in the parameters.
Conclude that the following model is linear

1

b= 1+ exp(at + b+ uz) t=1....T,
where u; is a disturbance with zero mean.
c¢) Consider the model
k
Y= ¥ explat+b+up)’

where k is a parameter between 0 and 1.
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(i) Interpret k.

(ii) Can this model be made linear in a, b, and k by a suitable
transformation of the variable y?

EXERCISE 1.5: Consider the linear model YV’ = X1b; + «++ + Xgby +
u, Eu = 0, where the parameters by,...,bx satisfy some linear con-
straints. Show that the model thus obtained is also linear.

EXERCISE 1.6: For each of the following deterministic models relating a
variable y to another variable z, indicate those that can be reduced to
linear models. Also indicate where disturbances should appear.

i) Yy =a(z:—2) a€ R
i) Y = ao + 617 + agz? ag,a1,as € IR.
i) Yy = apxf? ' ag,a1 € R.
) 1y = exp(ao + a1%; + az log z;) ap,a1,az € IR.

v) Y = (0% —a1)/(azzs —a3)  ag,a1,0a2,03 € R.
vi) y; = min(aoz; + a1, a2%: +az)  ag,a1,az,a3 € R.

EXERCISE 1.7: Consider an exponential model. The family of densities
with respect to a measure y is

£(y;0) = C(O)h(y)exp | > Q;(6)T5(y)

=1
Establish the following properties:

a) Since one can use another dominating measure, one can always
assume that h(y) = 1.

b) The distribution of T(Y) = (T1(Y), ..., T-(Y)) also belongs to an
exponential family.

c) The distribution of S(Y') belongs to an exponential family when §
is a bijective differentiable mapping from Y C R" into S()) C R"
‘with a differentiable inverse function.

d) Property c) is not necessarily satisfied if S is not bijective.

Exercise 1.8: Consider the sampling model

(Y=Y",P={P=FP%" PecP}),
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where the distributions in the family P have densities of the form

=1

F(y3;0) = C(8)h(y:) exp (i Qj(e)f}(yi)> .

Show that this sampling model is exponential and determine its canonical
statistics.

ExXERcIsE 1.9: Consider the dynamic consumption model
¢t = by + byci—1 + bary + bare—1,
where:
e ¢; denotes the logarithm of consumption at time ¢,
o 7 denotes the logarithm of income at time ¢,
e bo,b1, b0, and by are parameters.

Suppose that the long-run propensity to consume dc/dr is constant.
Show that this hypothesis can be formally written as the linear con-
straint 1 — by = by + b3.

ExEgRcisE 1.10: Given the two distributions P = f(y) - 4 and P* =
F*(y) - 4, one defines the quantity

2 o [ @)= L f)
VRIP)= | TRy MW =E (f*(Y) 1) :

- a) Show that X2(P | P*) > 0 and that X2(P | P*) = 0 if and only if
P = P*. .

b) Verify that

o _ [ PN
X3P|P=E (f*'“’(Y)) 1.

¢) Compute the value of this quantity when P and P* are normal
distributions. Compare it to the value of the Kullback-Leibler
information criterion obtained from Example 1.16. (In particular,
one could study the behavior of these two quantities when ¢* and
m* converge to ¢ and m, respectively.)
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ExErciseE 1.11: Consider the disequilibrium model

Dy = a1P;+ X1by + vy,
St = aoF;+ Xothy + ug,
Qt = I]lin(Dg, St),

in which prices can adjust instantaneously at positive rates A; and Ao
depending on which regime one is in

P, P, N /\1(Dt — St), if D > St,
¢ =1 )\Q(Dt - St), if D; < St.

The observable variables are X7, Xs, P, and Q.

a) Which are the endogenous latent variables? Which are the observ-
able endogenous variables?

b) Show that the reduced form exists if the following coherency con-
dition is satisfied: 1+ Aj(az — a;) and 1 + Az(ag — a1) have the
same sign. Under what conditions is this satisfied in practice?

¢) Determine the observable reduced form of the system.
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CHAPTER 2

Statistical Problems and
Decision Theory

2.1 Examples of Statistical Problems

In general, the study of a real phenomenon translates into a number of
particular questions to which a researcher wishes answer. For instance,
consider the diffusion of a durable good based on answers to surveys at
various dates {. A number of related questions can be raised:

~ What approximate value can one give to the proportion p; of house-
holds having the durable good at date £. Such a problem is called
a point estimation problem.

~ Instead of looking for a point approximation, it might be preferable
to find an interval of “likely”values for p;. The search for such
an interval is referred to as a problem of interval estimation or
estimation by confidence regions.

~ Another natural question is whether the quantity bought at time
t is larger than that bought at time ¢ — 1. This reduces to whether
Pt — pe—1 is larger than pi—1 — ps.a. Such a question, which has
two possible answers, is an example of a testing problem.

— Lastly, one might examine the buying behavior at time ¢ 4+ 1 of a
household not possessing the durable good at time . Because such
a behavior can be represented by a random variable indicating the
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occurrence of the event “buys at time ¢ + 1,” the problem is that
of approximating this random variable. Such a problem is called a
prediction problem.

In the following sections we formalize these problems and we review
the methods that have been proposed. The theoretical framework con-
stitutes what is called Decision Theory. It is assumed that answers to
various questions are based on observations Y generated from a statis-
tical model (), P).

. 2.2 Decision Rules

2.2.1 Space of Decisions

A statistical problem can be viewed as a problem of choices among
various possible responses. In what follows, we call a decision such a
response. A decision is denoted d and the set of possible decisions is
denoted D. Below, we define the spaces of decisions associated with the
various statistical problems introduced in the previous section.

a) Point Estimation of the True Value of a Parameter

Because the statistical model is not necessarily parametric, a parameter
is defined via a mapping g from P to G that associates a value in G to
every distribution in P. The true value-gp of the parameter corresponds
to the true distribution Py € P. In point estimation, the object is to
propose an approximate value to the true but unknown value go. The
possible decisions are the elements of D = G. Here the space of decisions
agrees with the parameter space G. '

In some cases, to simplify the theoretical analysis, decisions outside
G may be considered. For instance, in the case of an election (see Ex-
ample 1.1), the size N of the population of voters is finite. Hence the
possible values for the parameter p4 are 0/N,1/N,2/N,...,N/N = 1.
Nonetheless, one usually considers as valid any decision in D = [0, 1].

b) Interval Estimation of go

In this case, one proposes a set of approximate values for gg. A decision
is a subset of G and the space of decisions is the set of all subsets of G.
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2.2. DECISION RULES

c¢) Test of an Hypothesis about Fp

There are two possible decisions:
dp: “I think that the hypothesis is true,”
di: “I think that the hypothesis is false.”

The space of decisions has two elements only: D = {do,d1}.
Sometimes, the space of decisions can be extended to allow for a third
response:

dp: “I cannot decide,” or

dj: “I need additional observations to decide.”

d) Choice among Models

Sometimes one has to choose among many competing models (¥, Pr), k=
1,...,K, where P, NPy =0, V k # £. In this case, a possible response
is:

dg: “I think that the model (), Px) is the most adequate descrip-
tion of the observations.”

The space of decisions is D = {di,...,dk}.

With respect to the decision space, there are only small differences
between a testing problem, a problem of model choice, and an estimation
problem of a parameter with values in a finite space. In every case, the
space of decisions has a finite number of elements.

e) Prediction

Here one wants to approximate a random variable. The possible de-
cisions are the values that can be taken by the variable one wants to
predict.

2.2.2 Nonrandomized Decision Rules

Given a statistical problem, a researcher must provide an answer based
on the observations. Thus, the researcher must be able to associate a
response 6(y) € D to every possible y € V.

Definition 2.1: A nonrandomized decision rule is a mapping & from
the set of observations Y to the set of decisions D.
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A decision. rule § provides a decision for every set of observations.
Thus, it corresponds to an er ante notion, i.e., to a notion prior to
the observations. Once the observations are available, the decision that
is taken is 6(y). Thus 6(y), which is the value of the mapping é at
y, corresponds to an ez post notion. Usually some specific names are
given to decision rules associated with usual statistical problems. This
terminology is summarized in the Table 2.1.

Table 2.1
Problem ) 6(y)

Point estimation Estimator Estimate

Interval estimation | Confidence region

Test Test Test outcome
Model choice Criterion
Prediction Predictor Prediction

Example 2.1: Consider again the example of the diffusion of a durable
good. Suppose that one draws with equal probability and replacement
a sample of size n at time ¢, and that one observes the response of every
household sampled

1, if the ¢th household has the durable good,
Y, = -
0, otherwise.

The statistical model is (¥ = {0,1}*,P = {B(1,p:)®",p: € [0,1]}) .
Consider the problem of point estimating p;. The space of decisions

is D = [0,1]. A natural approximation for p; is the proportion of house-

holds having the durable good in the sample. The corresponding decision
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rule (or estimator) is the mapping § = p, defined by

, ot Y
5(?/17' I ,y'n) =Pt(y1’- . 1y'n.) = y'l'_'—;'i_"‘gﬁ = Yn-
This mapping takes its values in D = [0, 1].
If the size of the sample is n = 1000 and, if 700 households have the
durable good, then the corresponding estimate is $;(y) = 0.7.

Example 2.2: Consider now the problem of testing the hypothesis
that “more than half of the households have the durable good.” This
hypothesis can be translated in terms of the parameter p;. It is satisfied
if g = p, € Go = (0.5,1], i.e., if p; > 0.5. It is not satisfied otherwise.
A decision rule (or test) may be to consider that the hypothesis is true
if and only if p; > 0.5. Thus, with this rule, if p;(y) = 0.7, one is led to
accept the hypothesis.

Remark 2.1: The value taken by the decision rule must be known
as soon as y is. In particular, the decision rule § cannot depend on
the distribution Py (or on a parameter associated to it) since the true
distribution P, is unknown. '

The central problem of statistical decision theory consists in search-
ing for decision rules. The theory provides decision rules before the
observations are available. The only information ez ante that one has
about the observations is that they are generated by a distribution P,
in the family P. Ez ante, the observation Y is random, and the decision
6(Y), which is a function of Y, is also random. Its distribution, which is
the induced distribution of Py by the mapping 6, is unknown since P, is
known to belong to P only. At this stage, one can note that a decision
does not depend on the unknown distribution P, (see Remark 2.1), but
its distribution does. In contrast, ex post, the value §(y) taken by the
decision rule is deterministic. _

For a given statistical problem there is a large number of possible
decision rules (as many as measurable mappings from Y to D). Among
these, some are of little interest.

Example 2.3: In the example of the diffusion of a durable good one may
propose the estimator P, of p, which is defined by the constant mapping
Pe(y) = 0.7, V y € Y. This decision rule does not take into account the
observations, and is therefore not very interesting. Note, however, that
this decision rule may turn out (by chance) to be correct. For instance,
if the true value of the parameter p; happens to be equal to 0.7, this
estimator gives the correct answer for any set of observations.
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2.2.3 Randomized Decision Rules

Instead of taking a unique decision for each set y of observations, one
can extend the space of decision rules by associating a probablhty dis-
tribution defined on D to every y

Definition 2.2: A randomized decision rule is a mapping from Y to the
set of probability distributions-defined on D.

If m denotes a randomized decision rule, m, (D) is interpreted as the
probability of choosing a decision d in D when the observation is y. Thus
a randomized decision rule defines a distribution on D conditional upon
each value of Y.

Clearly, the set of possible randomized decision rules contains. the
set of possible nonrandomized decision rules. A nonrandomized decision
rule § can be viewed as a randomized decision rule m where m, is-the-
point mass distribution at §(y)

My = E§5(y)» A4 Yy e Y.

This generalization of the notion of decision rules is mainly for math-
ematical convenience. The set of randomized decision rules is convex,
and some optimization problems, such as those arising in the theory of
testing, are easier to solve when sets are convex. In practice, however, it
does not seem attractive to give a sponsor of a statistical study a random
answer such as “the proportion of households having the durable good
is 0.4 with probability 1/2 and 0.7 with probability 1/2.”

2.3 Ordering Decision Rules

The developments of decision theory, which are presented in this section,
are well suited to problems of estimation, testing, and model choice
(see Exercise 2.5). The search for a confidence region, however, can
be reduced to the search for a test (see Chapter 19, Volume II), and
the search for good predictors can be studied directly (see Chapter 20,
Volume II}.

2.3.1 Correct Decisions

When the true distribution P, is known and belongs to P, it is straight-
forward to take a correct decision (provided there is no identification
problem — see Chapter 3). Such a response is called a correct decision
and is denoted d(Fy).
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a) Point Estimation of g,
We have J(Po) = gp.

b) Test of an Hypothesis about P,
The correct decision is

d(Py) = dy, if the hypothesis is satisfied by Py,
cZ(Po) = dj, otherwise.

Let Py be the set of distributions of P for which the hypothesis is satis-
fied, and let P; be its complement in P. We have

d(Py) = dy 1pep, + dilpep, -

c) Model Choice

Let dj. denote the decision of asserting that the k** model is correct. We
have

d(Po) =dy, if By € Py, k=1,...,K.

From these examples we can see that the correct decisions depend
on the true but unknown distribution Py. Hence the correct decisions
are infeasible. In the next subsection, we shall retain only decision rules
that are “closest” to the correct decisions.

2.3.2 Loss Functions

To solve the problem of finding an appropriate decision rule, one must
introduce a measure of loss incurred when the decision taken is d while
the true distribution is Py and the correct decision is do = d(Po)

Definition 2.3: A loss function is o nonnegatwe real mapping L defined
on D x P. .

L(d, P) measures the loss incurred from taking the decision d when
the true distribution is equal to P. For a given statistical problem, there
may exist many loss functions. Loss functions, however, must satisfy
some natural conditions. For instance, the loss must be zero if and only
if d is a correct decision

VPeP:L(d,P)=0«d=dP).

For the statistical problems introduced earlier, we now present some
common loss functions satisfying such a condition.
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a) Point Estimation of a Scalar Parameter

To simplify, we consider a parametric model (¥, P = {Ps.0 € ©}) and
a scalar function g. The possible decisions are the elements of G =
g(©) C RR. The correct decision associated with the distribution Py is
d(Ps) = g(6). Thus it seems natural to consider the loss to be a measure
of the discrepancy between d and g(f). The loss function that is most
frequently used is given by the square of the euclidean norm. It is the
quadratic loss function or squared error loss function and is defined by

L(d,0) = (d - 9(8))*

In the parametric case, one uses the notation L(d, §) instead of L(d, Ps).
The loss. function is then defined on D x ©.

Other loss functions are possible. For instance, sometimes one uses
the loss function associated with the absolute norm

Li(d,0) =|d—g(6) | .
Also, one may use truncated versions of the preceding loss functions such

as
L¥(d. 0) = i if | d— g(6 < y
1( H ) { |d 9(6) l 1 } gggog { N Cc

b) Point Estimation of a Parameter Vector

Consider now the case where g(§) € G C IR?. The most natural general-
izations of the quadratic loss function introduced above for the scalar
case are the scalar quadratic loss function

L(d,0) = |ld—g|* = Z(d 7gg<e>) :

j=1

and the family of loss functions
Lu(d,0) = (W'd — u'g(9))*,

where u € IR?. The quantity L,(d,8) measures the loss incurred when
estimating the linear form u/g(f). Considering the losses Ly(d, 6) for all
vectors u allows us to assess the loss in all directions simultaneously.
Similarly, one can extend the loss function L; associated with the
absolute norm to
q
Li(d,0) = ld— g = _ | d; — g;(0) |,

j=1
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or
L1,u(d,0) =| w'd — u'g(8) |,
where u € IRY.

c) Test of an Hypothesis about ¢

We assume that the hypothesis is true if § € © and that the hypothesis
is false otherwise. A possible loss function is

0, if 8 € O,
ag(d) > 0, otherwise.

u%@:{

_f a(®) >0, iffe0,,
L(dy,0) = { 0, otherwise.

This loss function corresponds to the idea that there is no loss if the
decision is correct, and a strictly positive loss otherwise.

d) Model Choice

To simplify, we assume that each model P is defined by means of some
constraints on 8

PeP,e0cO.

The subsets O,k = 1,...,K constitute a partition of ©. The loss
function introduced for the testing problem can be readily generalized

to
_ 0, ifle O,
L(dkie) - { ak(e) > O, if 9 g 9"”

withk=1,...,K.

2.3.3 Ordering anrandomized Decision Rules

Given a nonrandomized decision rule §, the loss resulting from the use
of 6 is L (6(y), P) when the observation is ¥ and the true distribution is
P. Prior to the observations, the quantity L (6(Y), P) is random. Then
one considers the average loss or risk function.

Definition 2.4: The risk function associated with the nonrandomized
decision rule § is the mapping R(6,.) from P to R™ defined by

R(6,P) = EpL (§(Y), P) = /y L(5(y), P) dP(y).
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When the model is parametric, we use the notation R(6,6) instead of
R(6, Ps), and we consider R(8,.) as a mapping from © to R*.

Using the risk function, we can rank nonrandomized decision rules.
A decision rule dominates another one if its average loss is smaller for
every possible distribution P.

Definition 2.5: A decision rule 6, (weakly) dominates another decision
rule 8y, i.e., 8 = 8o, if R(61,P) < R(62,P),VP € P.

The relation > is a partial preordering. We shall see that two decision
rules may not be comparable. This is the case when there exist some
distributions P;, P, € P such that

R(‘SlaPl) < R(627 Pl) and R(alaP2) > R(621 P2)

We now examine the risk functidns associated with the usual loss
functions introduced earlier. To simplify, we consider the case where the
model is parametric (¥, = {Fs,0 € ©}).

a) Point Estimation of a Scalar Parameter

Consider a point estimator of g(6) € G C IR. The risk function assoc-
iated with the quadratic loss function is called the quadratic risk function
and is given by

R(8,6) = Eq (§(Y) ~ 9(6))*,

where Ey denotes the expectation with respect to the distribution Pp.

b) Point Estimation of a Parameter Vector

The scalar quadratic risk function is defined by

q .
R(5,6) = Eqll6(Y) — g(0)|I” = Ee (Z(5j(Y) - gj(9))2> :
i=1
c) Test of an Hypothesis about 0

Suppose that the hypothesis is true when 6 € ©g and is false when
0 € ©; = °Oy. If the loss function is given by

0, if 6 € O,
ax(6), otherwise,

L(dg, 8) = {
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with & = 0,1, then the corresponding risk function is obtained by
integration and is given by

_ [ a®P(6(¥)=dy), if0e Oy,
R(6(Y),0) = { Z;gg)pz g,sgyg = dcl,;, ifge @g.

This formula shows the dependence of the risk function on the prob-
abilities of taking incorrect decisions, namely on:

— the probabilities of stating that the hypothesis is false when it is
true

Py (6(Y) =dv),
where 6 € O,

— the probabilities of stating that the hypothesis is true when it is
false

Py (6(Y) = do),
where 0 € ©; = ©@,.

These probabilities are called probabilities of Type I error and Type IT
error, respectively. :
The problem of model choice is treated in a similar fashion.

2.3.4 Ordering Randomized Decision Rules

The ordering discussed in the preceding section can be extended to ran-
domized decision rules. Consider a randomized decision rule m. Given
the observation y, m,, defines a distribution on D. Thus, when the true
distribution is P, the average loss given y is

/ L(d, P)dm, (d).
D

Ez ante only the distribution of Y is given. Thus ez ante the average
loss or risk is

R(m, P) = /y ( fD L(d,P)dmy(d)) dP(y). (2.1)

Thus the risk is obtained by integrating the loss function successively
with respect to the distribution of d conditional upon ¥ = y and the
marginal distribution of Y.

53



Statistical Problems and Decision Theory

When the randomized decision rule m corresponds to the non-
randomized decision rule §, we have m, = g5, which is the distri-
bution with mass point at §(y). Thus

L(LL@PwmmwﬂP@

Lwafwﬂw
= R(5,P).

R(m, P)

i

il

Hence the two definitions agree, and the ordering of the randomized
decision rules extends that of the nonrandomjzed decision rules.

' Definition 2.6: The randomized decision rule my (weakly) dominates
the randomized decision rule mg, i.e., my = ma, if R(my,P) <
R(mo,P),V P€P.

2.3.5 Admissible Decision Rules

As the example in the next section illustrates, there does not exist in
general an optimal decision Tule, i.e., a rule that dominates any other
rule. The preceding preordering, however, can eliminate some decision
rules for which there exists a dominating rule.

Definition 2.7: A decision rule m* is admissible if there does not exist
a decision rule m that strictly dominates i, i.e., if there does not exist
a rule m such that R(m,P) < R(m*,P) for all P € P with at least a
strict inequality for some P. :

Clearly, one should retain only decision rules that are admissible. The
problem of selecting a decision rule, however, is not completely resolved
for there may exist a large number of admissible decision rules. As we
shall see; for the partial preordering to become a total preordering, either
additional criteria must be imposed or the partial preordering must be
modified appropriately.

2.4 An Example

With the help of an example, we now illustrate the definitions that have
been introduced.
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2.4.1 The Model

Let Y be one observation on a random variable following a Bernoulli
distribution B(1,9), i.e., f(y;0) = 6¥(1 — )'~Y, where the parameter ¢
can take only the two possible values 1/3 or 1/2. Thus the parameter
space is © = {1/3,1/2}.

2.4.2 The Estimation Problem

We are interested in point estimation of the parameter 8. Here the space
of decisions agrees with the parameter space: D = © = {1/3,1/2}. A
nonrandomized decision rule is a mapping from Y = {0,1} to D =
{1/3,1/2}. There are 22 = 4 nonrandomized decision rules, which are
given by :

Si(y)=1/3,  b3(y) =1/3y+1/2(1—y),
S(y) =1/2,  Saly) =1/3(1 —y) +1/2y.

Because the first two decision rules are constant, these rules do not
depend on the observation.

There is an infinity of randomized decision rules. Each one is charac-
terized by the probability assigned to the value 1/3 when y = 0 and by
the probability assigned to the value 1/3 when y = 1. We denote these
two probabilities by m(0) and m(1) respectively. We have 0 < m(0) <1
and 0 <m(1) < L

The nonrandomized decision rules correspond to the cases where
m(0) and m(1) are equal to 0 or 1.

2.4.3 Risks Associated with Nonrandomized
Decision Rules

For each decision rule, the risk function is characterized by its values
for all possible values of the parameter. Thus, in the present example,
it is completely defined by two values. If we consider the quadratic
loss function L(d,0) = (d — 6)?, the risk function associated with a
nonrandomized decision rule § is

R(67 9) = FEp (6(Y) e 6)2 3

ie.
o[ B (6(Y)—1/3)°, i 0=1/3,
R0 ={ o) v, wo- 12
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Table 2.2

Decision rules | Parameter values

9=1/3|0=1/2
61 0 1/36
b2 1/36 0
b3 1/54 | 1/72
64 1/108 | 1/72

Hence we obtain Table 2.2.

The estimator §, strictly dominates 63 since the two values of the risk
function 1/108 and 1/72 are smaller than 1/54 and 1/72, respectively.
The estimators 6;, 82,64 are not comparable. They are admissible non-
randomized decision rules.

In the present example, each estimator can be associated with a point
in IR? of which the coordinates are the values of the corresponding risk
function. An estimator is admissible if the negative orthant drawn from
the corresponding point does not contain any other point.

2.4.4 Risks Associated with Randomized Decision
Rules

A randomized decision rule m,, associates a distribution with probabili-
ties
{m(0), (1 -m(0))}, wheny=0,

and a distribution with probabilities

{m(1),(1 —=m(1))}, wheny=1
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Figure 2.1: Nonrandomized Decision Rules
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Figure 2.2: Inadmissible Decision Rules

The loss function is
Lmy,0) = [ (d-6)%dmy (@)
D

ie.

| 0)(1/3 = 6)2 + (1 — m(0)) (1/2 — 0)2, if y =0,
L(my, ) = { 282143 - 0%2 + él - 77321%% El§2 - 9;2, 1

More compactly, the loss function can be written as

L(my,6) = (1-y) [m(0)(1/3~6)+ (1 —m(0)) (1/2 - 06)*]
' +y [m(1)(1/3 - 6)* + (1 - m(1)) (1/2 - 6)] .

The risk function is obtained by integrating the loss function with re-
spect to the Bernoulli distribution B(1, 8), i.e., by taking the expectation
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of the loss. Since EgY = 8, we obtain
R(m,8) = (1-06)[m(0)(1/3-6)+(1-m(0))(1/2—6)?]
+6 [m(l)(1/3 —-8)2+ (1 -m(1)(1/2 - 9)2] .
Note that the risk associated with a nonrandomized decision rule is
obtained by considering the limit case where m(0) and m(1) are equal to

0 or 1. For instance, é3, which corresponds to m(0) = 0 and m(1) =1,
gives a risk function

R(63,0) = (1—-6)(1/2 - 6)> +6(1/3 - 8)*.

Similarly, 64, which corresponds to m(0) = 1 and m(1) = 0, gives a risk
function )
R(64,8) = (1 —6)(1/3—6)? +6(1/2 - 0)2.

When m(0) and m(1) vary between 0 and 1, the points in IR? assoc-
iated with the randomized decision rules generate a convex set. One can
verify that its vertices correspond to the limit cases where m(0) and m(1)
are equal to 0 or 1. Thus this convex set is also the convex hull based on
the four points associated with the four nonrandomized decision rules.

Rim 11 A

6|1

63

Py

Rlm, 4]

Figure 2.3: Randomized Decision Rules

In the class of randomized decision rules, the admissible rules are
those rules that are associated with the points on the lower left frontier
of the convex set, i.e., to ([61,64) U [64,82]). For the negative orthant
drawn from each of the points on this frontier (and only from those
points) contains no other point of the convex set. Hence the admissible
randomized decision rules are the convex combinations of 6; and 84 or
64 and ;. These rules correspond to m(0) =1 or m(1) = 0.
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2.5 Other Orderings of Decision Rules
2.5.1 Bayesian Approach

To simplify, we assume that the model is parametric. In the Bayesian
approach a prior distribution II on the parameter is available. Then the
risk function can be integrated with respect to II.

Definition 2.8: The Bayes risk denoted Ry is the ezpectation of the
risk function with respect to the prior distribution.

For a nonrandomized decision rule, the Bayes risk is given by
Rn(6) = EnR(6,0) = EnkE,L (6(Y),0)
= [ [ rew.oarwao.

For a randomized decision rule, the Bayes risk is given by

Fam)= [ [ [ 1@0)im,@apswane).  @2)

Thus, one needs to integrate the loss function with respect to the con-
ditional distribution of d given (Y, §) which is here independent of 8, then
with respect to the conditional distribution of Y given 6, and finally with
respect to the prior distribution of 6.

In the Bayesian approach, the decision rules are ranked according to
the Bayes risk Ry.

Definition 2.9: The decision rule my (weakly) dominates the decision
rule mq in the Bayesian sense, i.e., m1 =11 meo if and only if Rp(my) <
Rn(mz').

The Bayesian approach associates a real value Ry, which is the Bayes-
jan risk, to every decision rule. As a consequence one clearly obtains a
total preordering. Hence the choice of a prior distribution allows one to
solve. the problem of the nonexistence of an optimal decision rule men-
tioned in the previous sections.

There is a relationship between the Bayesian and the classical ap-
proaches.

Property 2.1: m; = mg = my =1 Ma.

PROOF: If my = mg, we have V 0, R(m1,0) < R(mag, ). Taking expec-
tation with respect to the prior distribution, we obtain

EnR(ml,G) < EnR(m2,9) &> Rn('m1) < Rn('mg).D
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Property 2.2: If © is discrete and if the prior distribution Il assigns a
strictly positive probability to every value of ©, then a decision rule m*
that is optimal in the Bayesian sense is admissible.

PROOF: Suppose that m* is not admissible. Then there would exist
another decision rule m such that R(m,6;) < R(m*,0;), V 6; € © with
at least one strict inequality. In this case we would have

Rp(m) = Zﬂ(oj)R(m,ﬁj),
< 3 n(8;)R(m,6;) = Ru(m*).

j

Hence m* would not be optimal in the Bayesian sense, which is a con-
tradiction. O

The preceding property can be generalized to a parameter space ©
that is not discrete, provided additional regularity conditions are im-
posed on the prior distribution and on the loss function (see Exercise
2.6). A natural question is whether the set of admissible rules is iden-
tical to the set of decision rules-that are optimal in the Bayesian sense
when II varies.

Example 2.4: The aforementioned result is true for the example of
Section 2.4. The Bayes risk is equal to

7(1/3)R(m,1/3) + (1 - 7(1/3)) R(m,1/2).

Given a prior distribution, i.e., given a value mg of 7r(1 /3), we can con-
sider the family of straight lmes

moR(.,1/3) + (1 — mo)R(.,1/2) =

The estimator that is optimal in the Bayesian sense is obtained by taking
the intersection of the convex set defined in Section 2.4 with the lowest
straight line in the preceding family.

Changing mg is equivalent to considering all possible negative slopes.
Therefore the set of decision rules that are optimal in the Bayesian sense
is identical to the set of decision rules that are admissible in the classical
sense.

60




2.5. OTHER ORDERINGS OF DECISION RULES

Rim, 41 A
N EquationmoR (., )+ (I — m) R .. 4]
~

Optimal decision rule ~

Rim, 4]

Figure 2.4: Optimal Decision Rules

2.5.2 Empirical Bayesian Approach

We now consider a family II of possible prior distributions. Then the
expectation of the risk function can be computed with respect to each
of the prior distributions

Rp(m) = EnR(m,0), VII € IL.

Definition 2.10: The empirical Bayesian ordering of decision rules is
defined by my =y mz < Ru(my) < Rp(mz), VII€IL

The total preordering in the Bayesian approach is obtained when I1
is reduced to one element.

The partial preordering in the classical approach is obtained when IT
has enough elements. This is illustrated by the following cases:

a) If I1 = {eq,0 € O} is the set of all point mass distributions, then
Reg(m) = R(m,6). Thus the empirical Bayesian and classical
preorders are clearly identical.

b) If II is the set of all possible distributions on ©, then these two

preorders are again identical as a consequence of a) and Property
2.1.

c¢) The empirical Bayesian and classical preorders are also identical if
the family II is sufficiently large to recover the point mass distri-
butions. This is the case when g can be written as
N
gg = lim ZanNHnN, with o,y > 0 and I,y € I1.
N—o0

n==1
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2.5.3 Conditional Approach

When one is interested in a conditional model, one can consider the
conditional risk or the unconditional risk depending on the case at hand.
These concepts are now discussed within a classical framework.

The model is defined via the conditional distribution of Y given X =.
z. A randomized decision rule m associates a probability distribution
Mg,y on D to every value of the observation (z,y).

The conditional risk given X = z is obtained by integrating the loss
function with respect to the conditional distribution of Y given X = z.
We obtain

Ry(m,0) = LL(mm,y, 6)Ps(dy | z).

As many values of the conditional risk are obtained as values for z.
The preorder is defined as

my = mg < Ry(my.0) < Ry(me,0),V0e€e@, Vel (2.3)

In some cases, a priori information about the marginal distribution
of X is available. For instance, we can assume that this distribution
belongs to a family € of distributions £. Given £, we can evaluate the
conditional risk as

Re(m, 6) = /X ( /y L(mx,y,o)Pg(dym)) de(z).

Then the decision rules are ranked according to

my >¢ ma < Re(my,0) < Re(ms,0),Y 0 €O,V E€E. (2.4)

2.6 Exercises

EXERCISE 2.1: A complete class of decision rules is a subset C of the
set of randomized decision rules such that

Vm' & C, 3Im e C, m strictly dominates m’.

Show that every admissible decision rule belorigs to C. Show that C
may contain some decision rules-that are not admissible.

EXERCISE 2.2: A minimal complete class is a complete class (as defined
in Exercise 2.1) such that no proper subset is a complete class. Show
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that a minimal complete class is necessarily equal to the set of admissible
decision rules.

EXERCISE 2.3: Consider a statistical model defined by Y = {0,1},P =
{Ps,6 € [0,1]} where P, is the Bernoulli distribution with parameter 9
satisfying Py(1) = 0, Ps(0) = 1—6, and D = {d;,d>}. The loss function
is defined by L(d;,6) = 6, and L(ds,0) =1 — 4.

a) Find the nonrandomized decision rules. Compute the risk func-
tions associated with these rules, and illustrate them on a diagram.

b) Find the nonrandomized decision rule that has the smallest Bayes
risk when the prior distribution is the uniform distribution on [0, 1].

ExERrcISE 2.4 Consider the statistical model of Exercise 2.3. We now
consider randomized decision rules.

a) Determine the risk function associated with a randomized decision
rule m. Show that the family of curves representing these functions
is a family of parabolas going through the point (1/2,1/2).

b) Find the admissible decision rules and the decision rule with min-
imal Bayes risk when the prior distribution is the uniform distri-
bution on [0, 1].

EXERCISE 2.5: Consider a parametric statistical model
(V,P={Py,0 € R}).

One wants to obtain an interval estimate of §. Specifically, one wants
to associate an interval I of IR to every outcome y € ). Let the loss
function be L(I,0) = 0if 0 € I and L(I,0) = 1if § ¢ I. Find the
optimal decision rule. Discuss your result. How would you modify the
loss function?

EXERCISE 2.6: Consider the statistical model and decision problem de-
fined by Y = R, Py = N(0,1),© = D = [0,1] and L(d,8) = (d — 6)°.
Show that the risk function R(m, ) associated with a randomized deci-
sion rule m is continuous in 6. Let II be a prior distribution on © with
strictly positive density with respect to Lebesgue measure. Show that
the optimal Bayes rule is admissible.
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EXERCISE 2.7: Consider the statistical decision problem defined by

(") = {91, 02}, 91 = 0.4, 02 = 06,
D= {dlf d?}:

L(dy,6:1) = L(dz,62) = 0,

L(d2,01) = 10, L(dl,()‘g) = 20.

Two independent and identically distributed observations Yi, Y5 are
available from the Bernoulli distribution with parameter § with P(Y =
1) =6 and P(Y =.0) = 1 — . Decision rules based on X =Y; + Y, are
considered.

a) Find the nonrandomized decision rules.

b) Mlustrate in IR? every nonrandomized decision rule § by a point
with coordinates (R(6,61), R(6,062)). ‘

¢) Find the optimal Bayes rule for at least one prior distribution.

EXERCISE 2.8: Within the framework of Exercise 2.7, consider the ran-
domized decision rules. Specifically, answer the next questions.

a) Identify the set of points with coordinates (R(m,61), R(m, 62))
associated with the randomized decision rules.

b) Find the admissible randomized decision rules. Find the optimal
Bayes rule for at least one prior distribution. ‘
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CHAPTER 3

Statistical Information:
Classical Approach

As discussed in the previous chapter, on the one hand, problems of es-
timation and testing are defined with respect to a function of the pa-
rameters. On the other hand, methods that answer these problems are
based on functions of the observations. In the present chapter, we shall
focus on the “information” on a given function of the parameters that is
contained in a function of the observations, i.e., in a statistic. We shall
study successively the following four issues:

a) Characterize the statistics that contain all the available informa-
tion regarding the parameter function of interest. These are called
sufficient statistics.

b) Characterize the statistics that contain no information regarding
the parameter function of interest. These are called ancillary
statistics. :

¢) Measure the loss of information associated with a given statistic
that is neither sufficient nor ancillary.

d) Characterize the functions or the values of the parameters for which
it is impossible to be completely informed. This is the so-called
identification problem.

In this chapter, we shall study these issues within a classical frame-
work, i.e., within a decision theoretical framework without a prior dis-
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tribution on the parameters. Similar results are established in Chapter
4 within the Bayesian and empirical Bayesian frameworks.

3.1 Sufficiency
3.1.1 Definition

Suppose that an entrepreneur receives an important shipment of indus-
trial parts. The shipment contains an unknown proportion § of defec-
tive parts. Because a systematic quality control is too expensive, the
entrepreneur only checks a sample of n parts. It is assumed that each
part is randomly drawn with equal probability and replacement. Let
Y;, i=1,...,n denote the variable defined as

Y; = 1, if the ith part is defective,
Y; = 0, otherwise.

The statistical model associated with this experiment is the sampling
model
({0,1}", B(1,6)®").

It is natural to expect that information on @ contained in the n-
tuple (Y3,...,Y,) is summarized in the number of defective parts in the
sample, i.e., in S(Y) = Y; + Yo +- -+ +Y,. We can formalize this idea by
considering the conditional distribution of Y given S(Y') = s. We have

Py (Y=y|5(Y)=5)

n
Po(Yi=y1,.. ., Ya=0n| D Yi=5)

iz=]

{ 0, if E?:l Yi 5

(=" 1 exm
(M (-0>—>_ (&) if S yi=s.

The density of the observations Y, which is £(y;6) = 6°(1 — 6)"%, can
be decomposed as

£(y;0) = Lg(s;0) £(y | S = s),

where
Ls(s;0) = (5)0°(1—0)"*

is the density of S and £(y | S = s) is the conditional density of ¥ given
S = s with s = S(y). ‘
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Note that ¢ does not appear in the conditional distribution. Thus
the information about # contained in Y is contained in the statistic S.
Another interpretation of the above decomposition is that the knowledge
of the realized value s of S is sufficient for simulating a realization of Y
even when the parameter 0 is unknown. Indeed, ¥ can be simulated by
drawing from the known conditional distribution of ¥ given § = s.

The preceding example leads to the following definition of a sufficient
statistic in the case of a parametric model.

Definition 3.1: Let (V,P = {Ps,0 € ©}) be a parametric model, and
S be a statistic with values in S. The statistic S is sufficient for 0 if the
conditional distribution of Y given S does not depend on 8 € ©.

In fact, the notion of sufficiency is independent of the chosen para-
meterization: if § = §(6), where § is bijective from © on to §(©), then a
statistic that is sufficient for € is also sufficient for 6.

Example 3.1: The identity statistic S(Y) =Y = (Y1,...,Y,) is suf-
ficient. The conditional distribution of ¥ given S(Y) = s is equal to
the distribution with mass point at s. Clearly, such a distribution is
independent of 6.

Example 3.2: Let Y3,...,Y, be a random sample from an absoclutely
continuous distribution on IR with density f(y;8). Consider the order
statistics obtained by ranking the observations in increasing order

8(Y) = Yy, > Yim)

with

Yoy = minye(y;,... Y.} ¥ = iznl:l%r_lnYi,
Yo = milye(y;,...Ya}~Ya Vs
Yo) = midyey;,..Yal~{¥Yuy¥Yinon} Y = e Y.

The conditional distribution of ¥ given S = s is the discrete distri-
bution with equal probability on the set of values (yi,...,yn) obtained
from s via the n! possible permutations (see Exercise 3.1). Such a dis-
tribution is independent of §. Thus the statistic S is sufficient, and the
ordering of the observations is irrelevant for the knowledge of 8.
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Example 8.3: Consider a randem sample Yi,...,Y, from the normal
distribution N(0,02). The population variance ¢ = EY? can be ap-
proximated by the quantity 1 37, 42. It is natural to ask whether the
statistic S(Y) = 3., Y7 is sufficient. Now S/o? follows .a chi-square
distribution with n degrees of freedom. Moreover, because the distribu-
tion of (Y3,...,Y,) is invariant to rotations, the conditional distribution
of Y given § = s is uniform on the sphere defined by the equation
Sr1¥% = s Such a distribution is independent of g2. Therefore S
is sufficient for ¢2. Note also that the distribution of S is absolutely
continuous with density

2.1

£5(s;0%) = exp (—-525) -(2—;%%-@]134-(5)-

3.1.2 Characterization of Sufficiency

Tt is frequently difficult to derive the conditional distribution of Y given
S and hence to determine whether S is sufficient. The criterion given
below is particularly useful.

Theorem 3.1: Factorization Criterion. Let (J,P = {P,0 € ©})
be a dominated parametric model. A necessary and sufficient condition
for a statistic S(Y") to be sufficient is that the density £(y;6) can be
decomposed as

£(y;0) = ¢ (S(¥);0) A(y)-

PrOOF: A general proof is complicated. Here we shall give a simple
proof in the case where the family P consists of discrete distributions.
(i) Necessity: Suppose that S is sufficient. We can write

Ly;0)=FPo(Y =y) =P (SY)=5@) P (Y =y | S¥) = 5(¥)).
Let
Y(S()0) =P (S(Y)=5®) and A(y) =P (Y =y | S(Y) = S(v)).

Then the quantity A(y) is independent of 8 because S is sufficient.
(ii) Sufficiency: Conversely, suppose that the distribution of ¥ can
be decomposed as

Py (Y =) = 9 (5();0) \y)-

70



3.1. SUFFICIENCY

‘We have

Pg(Y:ylS(Y)_—_s)._.___P9(Y=y75(Y)=s)

Py (S(Y) = g)
{0’ I if ) # 5,
= P(Y =y _ Ay) ] 3
Zy:S(y):a Py(Y = y) Zy:S(y)::s Ay)’ if S(y) = 5.

Hence the conditional distribution of Y given § is independent of §. [

The previous proof also provides an interpretation of the function A.
The restriction of this function to {y : S(y) = s} is proportional to the
conditional density of Y given S = s.

The decomposition appearing in the factorization criterion is not
unique. One changes from one decomposition to another by modifying
the proportionality factor. This means that, given two decompositions

(S(); )A() = $(S(v); O)A®w),
there exists a function h such that

A(w) = h(S®)) My) and % (S(y); 8) = h (5(y)) % (S(»); 6).

Example 3.4: Consider an exponential model of which the densities
are

£(y; 0) = C(6)h(y) exp (Z Qj(f))Tj(y)) :
i=1

Applying the factorization criterion shows immediately that the statistic
TY)=(Tu(Y),...,T.(Y)) is sufficient for 6 (take A(y) = h(y)).

Example 3.5: Consider a random sample from s translated exponential
distribution. The density for an observation is given by

F(i;0) = exp (—(yi — 0)) Ly;p-

We have
£Ly;0) = Hf(yi;H) = exp ('Z% + "9) H Iy;>g
i=1 i=1 i=1
n
= exp (—— Z yi> exp(nf) ¢ Yiso"
=1 -

The term involving both the parameter and the observations depend
on the latter only through the statistic S(Y") = inf;—; .. » Y;. Thus this
statistic is sufficient.
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3.1.3 Set of Sufficient Statistics

Property 3.1: Given a dominated parametric model with parameter 0,
let S; and Sy be two statistics such that S; = h(S52). If Sy is sufficient
for 8, then S is also sufficient for 6. '

The result is expected. When S; = h{S2), knowledge of Sy implies
knowledge of Sy. Thus, if S; contains all the information on 6, then So
also contains all the information on 6.

PROOF: If §; is sufficient, we have from the factorization criterion

£(y;8) = (S1(9); 0) A)-
Since Sy = h(Sz), it follows that

Uy:6) =" (S 0) @),

with 9* (S2(y);8) = % (h(S2(y)):6) . This implies that S is also suffi-
cient. O

Property 3.1 defines a preordering on the set of sufficient statistics
51%52 & 3h: Sl = h(Sz)

If S; and S, satisfy the preceding relation where the function h is not
bijective, S; is preferred since it retains all the relevant information on
0 in a more concise form. Then it is natural to ask whether all relevant
information can be summarized in an even more concise statistic.

Definition 3.2: A statistic S is minimal sufficient if it is sufficient and
if there exists a function h such that S = h(T) for any other sufficient
statistic T'.

In general, minimal sufficient statistics are found by applying the fac-
torization criterion. For instance, consider a random sample Y1,...,¥n
from a uniform distribution Ujg,g). The joint density is given by

1
£y, 0) = g?f]linf yi?_onsup Yi<o-

If T(Y) is another sufficient statistic, it follows from the factorization
criterion that

1
£(y;6) = g Linf ;5o Isupvico = AW (T():0) -
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The value supy; can be interpreted as the largest value of 8 for which
Y (T(y);0) = 0. Hence supY; is a function of T(Y). Since T is an
arbitrary sufficient statistic, then supY; is a minimal sufficient statistic.

Property 3.2: Two minimal sufficient statistics must be related by a
bijective function.

PROOF: Let, if they exist, S and S* be two minimal sufficient statistics.
Since they are sufficient, there exist functions h and h* such that

S = h(S9*) and S* = h*(9),
ie.
Yy, S(y) =h(5*(y)) and S*(y) = " (S(y))-
This implies that &, considered as a function from &* = $*()) to § =
S(I), is invertible with inverse function A~ = h*. O
Property 3.3: If S is a minimal sufficient statistic, any sufficient statis-
tic of the form S* = h*(S) is also minimal sufficient.

PRrOOF: Let T be a sufficient statistic. We have S = h(T"). Thus S* =
h* (h(T')), which shows that S* is minimal sufficient. O

From Property 3.2, note that the function h* is necessarily bijective.
Hence, if S is a minimal sufficient statistic, any other minimal sufficient

statistic can be obtained by transforming S wia an arbitrary bijective
function.

It remains to consider the problem of existence of minimal sufficient
statistics.

Property 3.4: Consider an exponential model
£(y;0) = C(6)h(y) exp Y _ Q;(0)T;(y).
=1

If the smallest affine subspace of IR™ that contains all the points with
coordinates Q(0) = (Q1(9),...,Q-(8)), 8 € ©, is IR" itself, then the
statistic T(Y) = (Ty(Y), ..., T+(Y)) is minimal sufficient.

Proor: First, note that if p denotes the dominating measure, then the
function C is given by

o) = /y h(y) exp (Z Qj(G)Tj(y)> du(y)-
i=1
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Thus this function depends on the parameter § through Q(8). Hereafter,
we let C(9) = C* (Q(F)). We know already that the statistic T'(Y') is
sufficient (see Example 3.4). Thus.it suffices to show that it is minimal.

Let S be a sufficient statistic. From the factorization criterion, we
obtain

Y(8@), ) My) = C(@h)exp ) :T5(y)

i=1

= C*(g)h(y)exp < g, T(y) >,

Yge Q(@) Where < -,- > denotes the usual scala.r product in R,
Let ¢%¢t,...,q" € Q(O©) such that ¢* —¢°,...,¢" — q° are hnea,rly
independent. It follows that '

¥ (S(w),¢?) o gC*(q )
¥ (S(v), 4% C*(¢%

Y j=1,...,r, or with obvious notations

log +<¢ —¢"T(y) >,

a(S(y)) = b+MT(y),

where the square matrix M is nonsingular. Hence T' can be expressed
as a function of §

T(y) =M~ (a(5(y)) -
Thus T is minimal. O

In particular, note that the condition of Property 3.4 is satisfied when
the interior of Q(©) is nonempty.

Example 3.6: Consider a random sample Y3,...,Y;, from the normal
distribution N(8y,60;),6; € R™,6, € R**. The joint density of the
observations is

1 nb%. (n?el pil }’..2)
£y;01,05) = ——— € e — izl )
(y ! 2) (27() Vi (02) 2 *P 204 P [ 264

The model is exponential with Ty(Y) = ¥, Ta(Y) = S0, Y72, Q1(8) =
n91/02, QQ(O) = —-1/(292)

The image of © = (IR**)? by the mapping Q is Q(©) = R™ x R~
Since this set has a nonempty interior, the statlstlc (Ty(Y), Ta(Y)) is
minimal sufficient.
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When the additional constraint §; = 8, is imposed, it can readily be
seen from the form of £(y; 61,6;) that T5(Y) is minimal sufficient for 6;.
On the other hand, because (T1(Y), T2(Y")) is not a bijective function of
T5(Y), this pair of statistics is no longer minimal. In addition, we note
that the sufficient condition given in Property 3.4 is no longer satisfied
since Q(O) is a half line in R

3.1.4 Some Properties of Sufficient Statistics
a) Improving Decision Rules

The concept of sufficiency is useful for it allows us to focus on decision
rules that are functions of sufficient statistics.

Theorem 3.2: Consider o statistical decision problem with a set of
decisions D and a loss function L. Given any sufficient statistic S and
any rendomized decision rule m, there exists a randomized decision rule
m* that is a function of S and that has the same risk as m.

Proor: Consider the decision rule m* defined by
my(D) = Eg (my(D) | S(Y) = 5(v)),
Yy, VD CD, where

o my(D) | 50) =) = [ ([ amy()) ar15=2()

Since S is sufficient, then the conditional distribution of ¥ given S(Y) =
S(y) is independent of #. Thus we have defined a randomized decision
rule that is clearly a function of S(y), and we can introduce the notation
Ms(y) = My-

The risk associated with m* is

R(m*,6) = /y ( fp L(d,e)dm;;(d)) dPs(y)

L : </D L, o)dms(d)) dP§(s)
/S ( fy ( /D L(d,B)dmy(d)) Py 'S'“'s(y)) dPy (s)
= /y ( /D L(d,&)dm,,(d)) dPy(y)

= R(m,0).

Hence the two decision rules have the same risk function. O
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b) Sufficiency and Nested Models

Property 3.5: If S is a sufficient statistic for 6 in the model (Y, P =
{Ps,0 € ©}), then S is a sufficient statistic for 0 in the 'n.ested model
(Y, P* = {Ps,0 € ©*}), where O™ C ©.

PROOF: The conditional distribution of ¥ given S(Y’) is independent of
0 when 6 € ©. Thus it is also independent of § when # € ©* C ©. [0

The converse of Property 3.5 is clearly false (see Exercise 3.2).

3.1.5 Conditioning
a) Conditional Models

The. definitions and results of the preceding sections can be easily gener-
alized to conditional models (see Section 1.4). Let Y be the conditioned
variables. and X be the conditioning variables. A conditional model is
of the form (¥, Py = {Py,z,0 € O}, z € X), where Py is interpreted as
one possible conditional distribution for ¥ given X = z.

Here a statistic S is a function of the observations (X,Y).

Definition 3.3: A statistic S(X,Y) is sufficient conditionally on X if
the conditional distribution of Y given X and S(X,Y) is independent of
feo.

To study the properties of conditionally sufficient statistics it suffices
to apply the previous arguments for fixed X = z, z € X. Thus, from the
factorization criterion 3.1, S is conditionally sufficient if the conditional
density of Y given X = z can be decomposed as

Ly | z;0) = v (S(z,y),7;0) \z,y), VT EX, y€ ), 6 €0O.

Example 3.7: Consider a linear conditional model where the condi-
tional distribution of Y is P, x = N(X0,T) and the dimensions of Y, X, 6
are n x 1,n x K, K x 1 respectively. The conditional density is

1

Ly | X;0) = ny &P -5(2/ — X6)'(y — X86)
- L exp —ly’y - lH'X' X0 +y'X6

@) YV 3 -

Let
¥ (S(z,y),;0) = exp (—1/2 #'X'X6 + ' X6).

76



3.1. SUFFICIENCY

It follows that S(X,Y) =X'Y is sufficient conditionally on X.

Results concerning minimal suﬁimency can be generalized similarly.
A minimal sufficient statistic conditional on X is a statistic S(X,Y’) that
is a function of every other conditionally sufficient statistic T'(X,Y")

S(z,9) = h(@T(z,y), ¥ (z9) €X xY. (31

For instance, such statistics exist for models that are exponential
conditionally on X, i.e., for which the conditional densities are of the
form

e(wv s 0) = C’(:E, O)h((B, ?j) €Xp z Qj (9)7_,7(:1": y)

=1
Provided the condition of Property 3.4 is satisfied, the statistic
T(X,Y) = ((X,Y),....,T-(X,Y)) (3.2)

is minimal sufficient conditionally on X.

Example 3.8: Consider again the linear exponential model of Example
3.7. The conditional model is exponential with conditional sufficient
statistic T(X,Y) = X'Y. The condition of Property 3.4 is satisfied
since 6 is unconstrained. Thus the statistic T(X,Y’) = X'V is minimal
sufficient conditionally on X. Any bijective function of T' (for a given X)
has the same property. If X is of full column rank K, then (X'X)~ X'y
is minimal sufficient.

b) Partial Sufficiency

Now consider the case where the parameter vector 0 is partitioned into
two subvectors o and B that can vary independently from each other.
Thus the parameter space © has the product form © = A x B. One
is interested in the value of «, called the parameters of interest, but
not in 8, called the nuisance parameters. In this case, it is useful to
have statistics that summarize all the information on a contained in the
observations Y. One may also want to construct statistics summarizing
all the information on §.

Definition 3.4: A dominated parametric model with a cut is a model
where the parameter 8 = (a, ) € © = A x B and where the densities
can be decomposed as

Uy; 0, B) = £y | S(Y) = S(y); @) £s(S(y); B)-
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That is, the marginal density of S(Y) depends on & through 8 only. On
the other hand, since the conditional density does not depend on f3, then
S(Y) is a sufficient statistic for B for every fized . We say that S(Y) is
partially sufficient for S.

Although the marginal distribution of S(Y) does not depend on a,
the conditional distribution of Y given S(}") depends on 6 through a.
Intuitively, the conditional distribution will be used for questions con-
cerning a. We say that S(Y) is ezogenous for a. Note that this definition
is compatible with Definition 1.8.

Example 3.9: In studies of consumption behavior, the parameters a of
interest are frequently those that charaterize the quantity Y consumed
conditionally on the values of other variables X, such as prices. When the
determination of price levels does not depend on consumption behavior,
one adopts frequently a decomposition of the form

Ly, z; 0. B) = Ly | z;0) L(z; B).

Thus it is natural to focus one’s attention on the conditional model when
answering questions about a. That is, one is led to consider conditional
models where X is exogenous for the parameter of interest.

Example 3.10: Consider the equilibrium model defined by

Qi =aP+Xib+u,, a<0,
Qt=aB+Z:ﬁ+’Ut, a>07

with t = 1,...,T, where u; and v; are independent of each other cond-
itionally on X and Z, and distributed as N(0,02) and N(0, 02) respec-
tively. This model, where each equation corresponds to some structural
behavior, is a model conditional on X =z and Z = 2.

Can we condition on either one of the two variables ¢ or P? The
density of the observations (@, P:), t =1,...,T, is given by

T
HE(Qt,Pt I Ty 234, b: x, ﬂa 0'124\ 03)

t==1
_ (e —a) 1 12
B Ij Mooy T —533((1‘ ~ ap: — &ih)

1
X exp ("55:5(% - apy — zzﬁ)2> .
Y]
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If a = 0, the likelihood function can be decormposed as

T 2
(—a) 1
—— (g — — T:b
E . \/2—7F €Xp 2012‘ (gt — aps — = )

T

1 1 2)
X exp | —=—=(q: — = .
t];g 0'1,\/57_?. P ( 20_% (Qt tﬁ)
The second term corresponds to the marginal density of @i,...,QT,
while the first term corresponds to the conditional density of P, ..., Pr

given Q1,...,Qr. Thus (Qy,...,Qr) is partially sufficient for (8,02),
and is exogenous for the other parameters (a, b,02), under a = 0.

3.2 Ancillarity

3.2.1 Ancillary Statistics

Definition 3.5: Let (V,P = {Ps,0 € ©}) be a statistical model. A
statistic S(Y') is ancillary if its distribution does not depend on the pa-
rameter §.

Thus, when a model is dominated and S(Y") is ancillary, there exists
a cut of the form '

£y;0) = £(y | S(Y) = 5(y):0) £5(5(¥))-

All the information on @ is contained in the conditional distribution of
Y given S(Y).

Remark 3.1: The previous definition applies to parametric models. It
can, however, be easily extended to an arbitrary model (¥,P) . Namely,
a statistic is ancillary if its distribution does not depend on P € P .

Example 3.11: Let Y3, ...,Y, be a random sample from N(m,1). The
statistic S(Y) = Y5, (¥; — ¥)? follows a x?(n — 1) distribution. Since
this distribution does not depend on m, S(Y) and the empirical vari-
ance -1 Y, (¥; — ¥)? are ancillary statistics for the mean m. Other
ancillary statistics are

V. -Y,Y-Y,(1-Y,...,Y, = 7), etc.
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3.2.2 Ancillarity and Sufficiency

Definition 3.6: A statistic S is complete if and only if
Esg(S(Y)) =0, VOO =g=0.

Remark 3.2: A statistic that is complete for a given model is also
complete for a nesting model.

Property 3.6: Let S and T be two statistics. If S is sufficient and
complete and if T is ancillary, then S and T' are independent Véeo.

PROOF: Let h(T) be a function of T. Since S is sufficient, therefore
Ep (R(T) | 8) is independent of 8, i.e., Eg (h(T)|S) = E(T)|S).
Since T is ancillary, Egh(T) is also independent of 6, i.e., Egh(T) =
Er(T). '

It now suffices to note that
Eg (E(MT)| S) - En(T)) = EgEs(W(T) | S) — E¢Egh(T)=0,V o€ 0.
Since S is complete, it follows that

E(R(T)|S) = EMT),Vh or
Eo(W(T)|S) = Esh(T),Vh, V 6€0.

This implies the independence of T' and S for every value of the para-
meter. [J

Property 3.7: Let S and T be two statistics defined on an homoge-
neous model (V,P = {Py,0 € ©}). If S is sufficient, and, if S and T
are independent, then T is ancillary.

SKETCH OF THE PROOF: Because S and T are independent
Eg (R(T) | S) = Eoh(T)-

Because S is sufficient, Eg (A(T") | §) does not depend on 6. Hence, for
any given h, Egh(T) does not depend on 6. This implies that T is
ancillary. O

Example 3.12: From Example 3.11 where ¥1,...,Yp is a random sam-
ple from N(m, 1), the statistic T(Y) = ¥_7_; (¥; — Y)? is ancillary. On
the other hand, we know that the empirical mean S(Y) = Y is sufficient.
Tt can be readily checked that ¥ is complete (see Exercise 3.3). Thus
the two statistics S(Y) and T(Y) are independent. As is well known,
this is Fisher’s theorem (see Theorem B.5 in Appendix B).
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3.3 Information Measures

In Sections 3.1 and 3.2, we saw that a sufficient statistic retains all the
relevant information, while an ancillary statistic loses all that informa-
tion. In general, a statistic is neither sufficient nor ancillary. In this
section, we consider measures of the information on a parameter that is
contained in a statistic.

To simplify, we consider the case of a parametric model ()7, P = {P,,
9 € ©}). The information on § contained in a statistic S is denoted
I5(6). As a measure of information, the function I must satisfy several
desirable properties. These are:

(i) I5(0) is either a nonnegative real number or a positive semidefinite
symmetric matrix for every 6 and S.

(i) S is a sufficient statistic if and only if I5(0) = I¥ (§) where I Y(9)
denotes the information contained in the identity statistic ¥ + Y.

(iii) I°(6) is minimal if and only if S is an ancillary statistic.
(iv) if S; and Sy are two independent statistics

I(Sl,Sz)(g) = IS1 (3) + I52(9), Y 8.

(v) if §* = Rh(S), then IS"(6) = I5(6).

It is possible to construct information measures that satisfy such
properties. Here, we adopt another approach. First, we present the
Pisher information measure, which is one of the most common infor-
mation measures, and we verify that it satisfies the preceding desired
properties. Then we study the relationship between Fisher information
and Kullback information measures.

'3.3.1  Fisher Information
a) Definition

We assume that the parametric model is dominated. Let y be a dominat-
ing measure. We also assume that the following conditions are satisfied:

H1l : © is open and convex,

H2: £(y;0) >0, Vye)Y, VOO,
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H3 : 04(y;0)/66 and 82£(y;0)/0006' exist VyeY, VO €O,
H4 : dlog ((y; 0)/08 is square integrable with respect to Fa, Véeo,

H5: V0 e O, VAC Y, onecan twice differentiate I} R 8)du(y) under
the integral with respect to the components of 6.

Definition 3.7: Fisher Information, which is denoted Z(6), is the vari-
ance covariance matriz of the score vector 8log£(Y';6)/86.

Since fy I(y;0)du(y) = 1, we obtain by differentiating with respect
to 0

0= ae(y, 9)d 1(y) / aloge(y DoeXy:9) 4y 0)auy);

ie.

Olog£(Y;0)

Be—5p

=0, Vo.
It follows that

0) = Vo (é?loglf(l’;@))

o0
_ Olog£(Y;6) 8log£(Y;0)
= Ey ( ET ET . (3.3)

Remark 3.3: If the dominating measure p is replaced by another mea-
sure fi such that p = h(y)fi, the new density is Uy;0) = £(y;0)h(y).
Thus 8log(y;0)/80 = dlog£(y;6)/06’. Hence Definition 3.7 does not
depend on the chosen dominating measure.

Example 3.13: Consider n random vanables Yi,...,Y, that are inde-
pendent and identically distributed B(1,p). The loganthm of the likeli-
hood function is

log #(y;p) = D #ilog 7 f’_p — nlog(1 - p).
i=1

Thus

dlog(y;p) _ ~ 1 n
D NIV DS . 4
op iz_:ly’p(l-p) 1-p’

Olog £(Y';p) d ’
)=V, (757 = s p)z"(;”) ]
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Computation of the variance of the score vector is not always as
simple. Then the next property may be useful.

() = Eo (_w> _

Property 3.8:

06 o0

PRrOOF: We saw that [, 9¢(y; 8)/00du(y) = 0, V 6 € ©. Differentiating
once more under the integral gives

0%¢(y; 6) 1 8%(Y;0
) 60(69’ duly) = Eo (e(Y; 9) ao( 567 )) =0, véeo.
Since
82 log £(y; 0) 8 1 04(y;6)
9006" o0 (Z@T) 96 )

1 0%(y;0) 1 9(y;6) 94(y; 0)
Ly;0) 0000"  f2(y;6) 06 0"’

the desired result follows by integrating with respect to the distribution
Py =£(y;0) - p. O

Example 3.14: Consider the linear model Y ~ N(X6,I). The log-
likelihood function is

log 4(y; 0) = —g— log 27 — -;-(y ~ X0 (y — X8).

Hence 52 log( 0)-
0g(y:0) _ <
0008 XX

Therefore Z() = Eg(X'X) = X'X, which is independent of §. Through-

out, distributions and expectations are conditional upon X.

Example 3.15: Consider the exponential model with likelihood func-

tion

D .
£(y;0) = h(y) exp (Z 0;T5(y) + Aw)) :
J=1

‘We have
d*log(y;0) _ 8%A(6)

8080’ 8686
8%A(6) 8%A(0)
(0) = Eq (" 9666 ) = T 5086
In particular, the matrix 0%A(0)/0006¢' is negative semidefinite.

Thus
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b) Fisher Information for a Nested Model

Given a parametric model (¥, P={Ps,0 € ©}), we can restrict the para-
meters 0 by considering that they are functions of another parameter
vector a of lower dimension, i.e., § = a(c¢), @ € A. Hence, we obtain a
model nested in the original model

()/‘,P* = {Pa(a), a e A}) .

For this new model, Fisher information for « is easily computed provided
a is differentiable. Namely, we have

_ Blog &(Y;a(e)) 8log £(Y; a(a))

'@ = B ( Oa oo’ )
_ & (égi@log!!(Y; a(e)) Alog £(Y; a(a)) _?_(_1_)
- da da 8a’ o )’

ie.
da’ fa
IT*(a) = %I(a(a))éa.
Remark 3.4: If a(a) = (a,0)’, ie., if the nested model is obtained by
restricting the last components of 8 to be zero, then Z* (@) is simply the
upper diagonal block Z, of the matrix Z() evaluated at 6 = (0, 0).

Remark 3.5: If the mapping a is bijective, the new model is ident-
ical to the original model with a new parameterization. Then the above
equation shows that the Fisher information matrix is not invariant to
reparameterization.

c) Fisher Information Associated with a Statistic

Given a statistic S, we can consider the model associated with it, namely,
(S,Ps = {P5,0 € ©}). This model is said to be the model induced by
S.

Definition 3.8: The Fisher information matriz, denoted 75(6), asso-
ciated with a statistic S is the Fisher information matriz for the model
induced by S.

When the induced model is dominated, we let £5(S;6) denote the
density of the distribution of S, and we assume that the conditions H1
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~ Hb5 are satisfied. Then
Olog£5(S;6) 8% log £5(S; 8)
S(0) = el = A Sk VA R - Rt A I
o) =V ( a6 Eo ( 8600"

This information measure is a symmetric matrix. It satisfies the
positive semidefinite property (i) mentioned earlier. The other desired
properties are also satisfied in view of the next property, which is estab-
lished by decomposing the density of Y as

£(y; 0) = £5(S(y);0) Ly | S(Y) = S(y); 9),
(see Property B.15 in Appendix B).
Property 3.9: Fisher information Z(6) can be decomposed as
Z(8) = I5(0) + EoZ¥15(0),

where

IYlS(H) _ Vg (alOge(YaLS(Y);e) IS(Y))

2 )
- E (_6 logegi;g;(Y),B) IS’(Y))

I~ (BloggéY;H) lS(Y)),

is the Fisher information matriz for the conditional model for Y given
S. Moreover :

15(6) = Vo By (9-‘—9%—’”—@ | S(Y)) -

PRroo¥: From the preceding decomposition of the density, it follows that
log4(Y;0) =1log€s(S(Y);0) +log£(Y | S(Y);6).
Hence : _ . '
C Ologé(Y;0)  9Plogls(S(Y);0) 8%logf(Y | S(Y);6)
000" 0606’ 0006’ '
Taking expectation, we obtain

7(6) = I5(6) + Es (-a”ogf(YlS(Y);o)>

9006’
= ZI5%(0) + EpEp (*62 logeg;al;(},);e) | S'(Y))
= I5(0) + E,Z¥5(9).
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Note also that

50) = (alogé(l"tsme) | S(y))

50

8log6(Y;0) Ologls(S(Y)0) | .
- W’( % Saa 'S(Y))
= v (2D sv)).

Hence

I5(6) = ZI(8) — EsZ¥'5(8)
I <810g£§Y;9)) _EV <Blog;§Y;9) 15(},))

VeEq (Q}-‘%&Qi S(Y)) ,

where the last equality follows from the well-known analysis of variance
formula. O

' The decomposition given by Property 3.9 is readily interpreted. The
first term Z5(6) corresponds to the information contained in S, ie., in
the distribution £5. The second term corresponds to the information.
contained in the conditional distribution of ¥ given S. Note also that
the expression for Z°(6) can be directly obtained from the property

0logls(S;60) Olog(Y;0)
o6 - e 5 |5)

which is established in the appendix to Chapter 11.
We can now establish the remaining desirable properties for Z°(8).

Corollary 3.1:

(i) I5(6) < Z(9), V 6.

(i) I5(0) =0, ¥ § & S is ancillary.
(iii) I5(8) = I(0), V¥ 6 < S is sufficient.

(i) If S and T' are two independent statistics, then Z(5D)(9) = I5(8)+
77(6), Vv 6.
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PrOOF:
(i) This follows from the positive semidefiniteness of

BV (BlogE(Yale‘S’(Y);G) !S(Y)).

(i) Z5(9) = 0, V 6 if and only if

" <610g25(5(y)§9)> =0, V8,

00

i.e., if and only if
9log £5(S(Y); 0)
o0

(We have used the fact that the latter vector has zero mean, as can
be readily seen by differentiating under the integral [ £s(s; 0)du>(s) =
1.) Thus log4s(S(Y);0) is independent of 6. Hence the statistic S is
ancillary.

(iif) The proof is similar to the proof of (ii). In this case, the second
term in the decomposition given by Property 3.9 is zero. This arises if
and only if

=0, V.

Blogl(Y | S(Y);0)
00
i.e., if and only if 4(Y | S(Y');6) is independent of 6.
(iv) The last property follows from

=0, V0,

log £5,7(S, T;0) = log £5(S;0) + log £x(T'; 6).
This completes the proof. O

Remark 3.6: Similar definitions can be given for a conditional model
(W, {Pz,z € X}) provided statistics of the form S(X,Y’) are used and
one argues conditionally on X.

3.3.2 Kullback Information

The Fisher information matrix introduced in the previous section is
related to the Kullback measure of discrepancy between distributions
discussed in Section 1.2.3. Given two densities f and f*, the Kullback
discrepancy is I(f | f*) = B, log[f*(Y)/f(Y)].

Consider a parametric model (V,P = {P, 6 € ©}). We may ask
whether the distribution associated with the value 8 of the parameter

87



Statistical Information: Classical Approach

can be distinguished easily from any other distribution in the model.
This leads naturally to the function

(Y: 8
é(Y-G oY;6,)
Then the question reduces to whether the Kullback measure of discrep-
ancy increases sufficiently fast as ¢: differs from #. Since 10, ] 9)is

minimized at 6; = 8, a second-order expansion of the preceding function
in the neighborhood of 8 gives

0,10)= 301~ 0) (5o T0: 19))  (G1=0)-+o(16s~01P)

01——#[(91]0) Eg]

The curvature of this function at # is given by the matrix
(aﬂi(o1 | a))
—_— .
86, 06, 6,28

8%1(6, | 6) -
(W =1Z(6), ¥ 0.
0129
PROOF: I(6; | 6) = Eplog£(Y;0) — Eglog £(Y;6:). Hence
8%1(6,16) _ £ 8% log£(Y;6;)
96, 00,  ° 06,08,

It suffices to compute this derivative at §; = @ to obtain the Fisher
information matrix. O

Property 3.10:

Property 3.10 shows that the comparison of Fisher information matri-
ces reduces to the comparison of the curvatures of Kullback discrepancy
measures in the neighborhood of a parameter value.

3.4 Identification

Sometimes parameters or parameter values cannot be determined or
known perfectly even in the most favorable sivuation where the maxi-
mum amount of information is available, i.e., when-the true distribution
Py is known. Such a difficuity, which is referred as the identification
problem, is studied in this section.
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3.4.1 Definitions
Definition 3.9:

(i) A parameter value 01 is said to be identified if there does not exist
another parameter value 02 of 0 such that Py, = P, .

(ii) A parameter value 6 is said to be locally identified if there ezists
a neighborhood V(61) of 01 such that

V 64 7é 0., 62 € V(Bl) : P02 £ Pgl.

If 9 is identified and if the true distribution is Py = Pj,, then the
true value of the parameter is ;. Hence the identification condition
allows us to interchange freely the true distribution and the true value
of the parameter.

Example 3.16: Consider the sampling model
(¥ = R*,P = {N(a® 1)®",a € R}).

The value zero of the parameter o is identified. The other parameter
values are not identified since the values a and —a give the same distri-
bution. These values are, however, locally identified.

Definition 3.10: A parametric model is said to be identified if every
value of the parameters are identified, i.e., if the mapping 6 — Py is
injective on ©.

In this case, one frequently says that the parameter 6 is identified.
The above definitions easily extend to functions of the parameters, and,
in particular, to subvectors of the parameter vector.

Definition 3.11: A function g(8) of the parameter is identified if and
only if : : .
YV 01,02 : g(61) # g(62) = Po, # Fp,, .

or equivalently if and only if
V 81,05 : Py, = Pg,, = g(61) = g(62).
Thus a function of the parameter is identified if and only if the value
g(6) can be recovered uniquely from the distribution Py. In other words,

g(0) is a function of Py. It follows that any function of an identified
parameter such as a mean, a variance, a covariance, etc. is also identified.
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3.4.2 Some Examples

Example 3.17: Consider a linear model Y ~ N (Xb,I),b € R¥. We
want to find the linear functions of b that are identified. Arguments are
made conditionally on X, i.e., as if X is a constant matrix. The normal
distribution depends on b through Xb. Thus the identification condition
for X'b where A € IRX becomes

v b]_,bz :Xb = Xbg = )\'b1 == )\'bz
< v b1,b2:X(bl-—bz):()#}\,(bl—bz):()
& V B:peKerX=MNpB=0
& e Ker X)t =ImX'.

In particular, all linear functions of the parameter are identified if
and only if Ker X = {0}, i.e., if X is of full column rank K . This is the
so-called rank condition. Hence a necessary condition for identification of
b is that n > K, i.e., that there are more observations than parameters.
This is the so-called order condition.

Example 3.18: Let Y7*,...,Y;’ be independent random variables from
N(m,o?). Suppose that only the signs of these observations are ob-
served. The sign of Y;* is a qualitative variable defined by

[+ i Y20,
Y;"{—, if Y <0.

Its distribution is given by

*

P(Y; = +) = P(Y; 20)=P(Yi —m 2-?1?) =@(ﬁ),
o o o

where @ denotes the cumulative standard normal distribution function.

It is easy to see that m and o are not identified, but that m/o is. The

nonidentification of the parameters of interest m and o arises from the

fact that these parameters pertain to the latent model and that the latent

variables are not observed.

Example 3.19: Consider the equilibrium model

D, = aP+b+u,a<0,
S = aPt+ﬁ+vt,a>O,
@ = D=5,
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where the errors ug,v; are assumed to be mutually independent with
respective distributions N(0,02) and N(0,02). The reduced form (see
Equation 1.10) is

b—f  ur—u
P = B
a—a a-—a
ab — Ba + QU — QU
a—a a—a

¥

Qe =

The functions (b — 8)/(a — a) and (ab — Ba)/(c — a), which are
the means of P; and Qy, are identified. Similarly, the variances and
covariance of P; and Q; are identified. They are given by

1

VP, = m(‘fﬁ +03),
VQt = -(-d———:—l—-d—)—é-(aza'ﬁ -+ 0.«20'.‘2)),
1
COV(P{;, Qt) m(adﬁ -+ 010'3 .

Because it is normal, the distribution of (P, Q;) depends on the struc-
tural parameters only through the five preceding functions. Since these
five functions depend on six parameters (a,b, o, G, aﬁ, 02), the mapping
that associates structural parameters to distributions is not injective.
Hence the structural parameters are not identified.

In this example the identification problem arises from simultaneity.
The parameters of interest are the structural parameters, while the dis-
tributions in the model are derived from the reduced form.

Any model nested in an identified model is also identified. But a

nested model can be identified without the nesting model being identi-

fied. Thus, imposing constraints on parameters can resolve some iden-

' tification problems. Such constraints are said to.be identifying. For
instance, in Example 3.18, the constraint o = 1 is identifying.

Example 3.20: Time series often present some regularities. A frequent
modelling method consists in assuming that the value Y; at date t of a
time series is the sum of a component Z; called the trend, a component Sy
representing the cyclical variations called the seasonal component, and
a random term or error. For instance, suppose that we have a quarterly
time series. We assume that the trend is linear, i.e., Z; = at+b, and that
the seasonality is of the form S; = 51 I;=1 +S2 L=z + S3 Ni—z + 51 Dy—s,
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where 1;; is the variable indicating that ¢ corresponds to the j** quarter
while S;,7 = 1,..., 4 are parameters.

The model can be written as ¥; = at + b+ 81 Li=1 + Sz L=z +
S5 Lymz + Sg Ly—g + us, where the errors u; are assumed to be indepen-
dently distributed’ N(0,0?). The model is linear with matrix X that
is not of full column rank since V t, Ti=y + Li=o + De=3 + Lt=g = 1.
The only identified functions are those that depend on the parameters
through a,b + S1,b + S2,b+ S3, and b+ S5. An identifying constraint
is obtained by assuming that the sum of the seasonal coefficients S; is
zero: Si + So + S3 + Sy = 0. That is, it is assumed that the seasonal
effect averaged over the whole year is null.

3.4.3 Application to Exponential Models

In this subsection, we consider an exponential model indexed by p
parameters 6 = (f1,...,6,)" belonging to an open subset © of IRP. The
family of densities is

€(y:6) = C(B)hy) exp (Z ij)'fj(y)) .

=1

Property 3.11: Suppose that the statistics T;(Y),j = 1,...,7 are lin-
early independent (in the affine sense), i.e.

r
ZajTj(Y) =ag=>a,j=0, Vji=01...,r
J=1

Then Py, = Py, if and only if
Q;(6) = Qj(fa), Vi=1,...,r.

PROOF: Py, = Py, if and only if

C@) e Qi(61)Ti(v) = C62) exp y_ Q; (02T W),

=1 =1

which implies that >-7_, (Q;(62) — Q;(61)) T;(y) is a function that is
constant in y. Hence, from the assumption of linear independence, it

follows- that
Q;(02) — Q;(61) =0, V.
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3.4. IDENTIFICATION
Conversely, if Q;(f2) — Q;(61) =0, V j, the condition

1= /y o(y;02)du(y) = /y £(y; 02)dp(w)

implies that C(6) = C(61). Equality between the distributions Fp, and
Py, follows. O

Remark 3.7: From Property 3.11, it follows that the parameter 6 is
identified if and only if the mapping 8 — Q(0) = (Q1(8),..-,@-(9))" is
injective. More generally, the function g(0) is identified if and only if

Q(81) = Q(82) = g(61) = g(62),

i.e., if and only if g depends on § through Q(9) only.

Suppose that the affine subspace generated by the points with coor-
dinates Q(8),8 € ©, is of dimension r. From Property 3.4, we know that
T(y) = (T1(¥),...,Tr(y)) is minimal sufficient. Analogously, Q(8) =
(Q1(6),-..,Q-(8)) can be viewed as the most condensed “summary” of
the parameter.

Two cases can be considered:

(i) If r < p, the mapping Q is, in general, not injective. The model is
said to be underidentified and the degree of underidentification is
p—T.

(i) If the mapping @ is injective, we have r > p in general. The model
is said to be just identified when r = p, and overidentified if r > p.
In the latter case, 7 — p measures the degree of overidentification.

Example 3.21: Consider the conditional model given (z, z) defined by

Y = Yzo+Tb+u,
Yoi = Timy+ 272 + Vi,
i =1,...,n, where y;; and yy; are random variables, 7, and 2] are

vectors of dimensions H and L that can be considered nonstochastic,
and a, b, T, s are parameters. The vectors (ui,v;)" are assumed to be
independently and identically distributed with the bivariate normal dis-

tribution L
N(o,("“ T ) )
’ Muw T
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Using the inverse of the variance covariance matrix allows a simple ex-
pression for the density '

£y 9)
1 2
= W("lu"?v — Tay) 2
1 n n
X GXP{‘E,:(Uu > (wi—yea- 2:0)® + Mo Z(yzi — zimy — zm2)?

i=1 i=1

n
+ 27y Z(yli — y2i @ — Z;b)(yo2s — Tim1L — 2im2))}-

ge=1

1t is easy to see that the model is exponential. The cross term is

> QiOT;)

i=1

1 L, = a?
= =3 Vht ) (— 2”" - —7-723 +anw>
g==]

i=1
n H k0
+ <Z yliy2i) (@ = o) + ), (Z ylimhi> (Mubh + MuvT11)
i=1 h=1 \i=1
L n
+ Z (Z yuzzi) Tuv T2l
1=1 \i=1
H n
+y. (Z yzﬂhi) (M1 — w1k = Tu@bh + Tuvbh)
h=1 \i=1
n
+y (Z y2izli) (w21 = NuwaTal)-
l=1 \i=1

The number of terms in this decomposition is 7 = 3 + 2H + 2L.
The number of initial. parameters is p = 3 + 1 + 2H + L. The affine
independence condition on the the statistics T;(Y) is satisfied provided
the variables z and z are linearly independent. Thus we can distinguish
the following cases:

(i) If L = 0, the model is underidentified and the degree of underident-
ification is one.

(ii) If L = 1, the model is just identified.
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(iii) If L > 1 the model is overidentified and the degree of overidentifi-
cation is equal to L — 1.

3.4.4 Identification and Information

Since the Kullback discrepancy is equal to zero if and only if two distribu-
tions are identical, i.e., I(61 | 82) = 0 & Py, = Pp,, we can characterize
identification by means of the function I.

Property 3.12: 8 is identified if and only if

V91,92:j(91 l 92) =0$91 =92.

From the expression for the Kullback information criterion and the
fact that I(6; | 62) reaches a minimum in 6; at 6, = 63, we obtain the
following equivalent characterization.

Property 3.13: 8, is identified if and only if for every 0, the function
0y — Eg, log£(Y';02) is mazimized uniquely at 0 = 01.

From a Taylor expansion of the function I, it is easy to obtain a
criterion for local identification.

Property 3.14: If the Fisher information matriz T (60) is nomsingular,
@ is locally identified at 6y.

ProoF: In a neighborhood of 6y, a Taylor expansion of the function
I(6| 6p) gives :

~ 1

I(0| 60) = '2‘(9 — 60)'Z(80)(8 — 6o) + 0(||6 — boll).

Since the matrix Z(6p) is symmetric positive definite, the function
~I(6 | 6p) is locally strictly convex, and therefore minimized uniquely
at 6p in this neighborhood. O '

In some models, nonsingularity of the Fisher information matrix at
any point implies global identification.

Property 3.15: An ezponential model with densities of the form

* £(y; 0) = h(y) exp (Z 0;T;(y) + A(G)) )

=1
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where 0 belongs to an open subset © of IRP, is globally identified if and
only if T() is. nonsingular, ¥V 6 € O.

PrOOF: The information matrix is equal to

I(0) = Vs (W) =V (T(Y) + Q—’é—éﬁ) = VyT(Y).

If the matrix Z(8) is nonsingular, then the variance covariance ma-
trix of the statistic 7'(Y) is nonsingular. Thus the components of T(Y)
are linearly independent in the affine sense. See B.27 in Appendix B.
The desired result follows from applying Property 3.11 to the function
Q(6) = 9.

Conversely, if Z(6) is nonsingular at 6o, then T belongs to an affine
subspace of dimension smaller than p. Thus the densities associated
with values 8 and @* such that 8 — §* are orthogonal to this subspace
are identical. Hence the model is not identified. O

Example 3.22: The linear model Y ~ N(X6,I)is an exponential model
with Q(8) = 6 and information matrix T (6) = X'X. Thus the model is
identified if and only if X'X is nonsingular, i.e., if and only if X is of full
column rank. Compare this result with that found in Example 3.16.

3.5 Exercises

EXERCISE 3.1: Let S be the map}')ing that associates the vector of order
statistics S(Y) = (Ya),--1¥(m)) to a vector of random variables Y =
(Y1,...,Yn) (see Example 3.2).

a) Verify that each value S(y) can be obtained from n! different y's
obtained by considering all the possible permutations of the com-
ponents of S(y).

b) When the variables Y; are absolutely continuous with density
f(y:6), use Property B.9 in Appendix B to show that the vector
S(Y) is absolutely continuous with density on IR™ given by

£5(530) = Lyy<oa,...<sn! [ | F(53:6)-
i1

c) Find the conditional distribution of ¥ given S(Y).
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EXERCISE 3.2: Let Yi,...,Y, be n random variables independently
and identically normally distributed N(m,c?). Show that the statis-
tic 13", ¥ is sufficient when m = 0, and that it is not sufficient
when the parameter m is unknown.

EXERCISE 3.3: Let Yi,...,Y, be a random sample from a normal dis-
tribution N(m,1),m € R.

a) Find the distribution of the sample mean Y.

b) Using Theorem B.1 in Appendix B of the Laplace transform, con-
clude that E,h(Y) = 0, V m implies that h = 0.

EXERCISE 3.4: Let g(6) be an identified function of the parameter .
Show that, for any function A, h(g(f)) is also identified.

EXERCISE 3.5: Let Y1,...,Y, be n random variables independently and
identically distributed from the Poisson distribution P()).

a) Find the distribution of S(Y) =Y 1, Y.

b) Show that the conditional distribution of Y3, ..., Y, given S(Y) = s
is the multinomial distribution M (s, %, ceey ;11-), and conclude that
S(Y) is sufficient.

c) Use some general properties of exponential models to show that
S(Y") is minimal sufficient.

EXERCISE 3.6: Let S and T be two statistics such that Z(57)(9) =
T5(8)+ZI7(6), ¥V 0. Show that S and T are not necessarily independent.
Hint: Show that if they were independent then any statistic would be
equal to a constant.

EXERCISE 3.7: Let Yi....,Y, be n random variables independently and
identically distributed Qg, where 8 is an unknown parameter belonging
" to a finite parameter space © = {61,...,0,}.

a) Show that the model is dominated.

b) Let fs denote the density of Qg with respect to a dominating mea-
sure. Show that the statistic with values in IRP of which the com-
ponents are [[;, fo;(¥:),7 =1,...,p, is sufficient.

EXERCISE 3.8: Consider the sampling model (]Rz,N (1, Q))®n, where

the parameter vector u’ = (u1,u2) is unknown and the matrix Q is
known. Let Y] = (Y1;,Y2:), i =1,...,n, denote the observations.
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a) Let ¥; = 1370, Yyi,j = 1,2. Show that (Y1, %2) is a minimal

N e

sufficient statistic.

b) Suppose that p; = 0. Is 13 suificient ? Find a linear combination
of ¥; and Y3 that is sufficient. Show that this sufficient statistic is
independent of Y.

EXERCISE 3.9:

a) Given the assumptions of Property 3.7, show that for every pair
6,62 one has

Eg, (h(T) | S) = Eo,(M(T)) Pa, a-s.

Eg, (R(T) | 8) = Eg,(M(T)) Fo, a-5-

Conclude that Eg, (h(T)) = Eg,(h(T)) if there does not exist A
and Ajp such that Py, (A1) =1, Pe, (A2) =1,and A;N Az = 0.

b) Show that the latter condition holds if the model is homogenous.

EXERCISE 3.10: Let S be a complete statistic. Show that any statistic
T that is a function of S is complete.

EXERCISE 3.11: Prove that the quantity E,T¥15(8) appearing in Prop-
erty 3.9 can be written as Vj (8log (Y | S; 6)/86).
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CHAPTER 4

Bayesian Interpretations
of Sufficiency, Ancillarity,
and Identification

Throughout this chapter, we consider a dominated parametric model
P ={Py=£(y;0) -, 6 € O})

with a prior distribution II defined on the parameter space ©. It is as-
sumed that the prior distribution II is absolutely continuous with respect
to a measure v with density 7(8). It follows that the joint distribution of
the pair (Y, 8) has a density with respect to the product measure p®v.
The joint density is £(y; 8)7(8). In addition, the posterior distribution,
which is the conditional distribution of § given Y, has a density with
respect to v given by

£(y; 0)m(6)
Jo £(y; 0)m(0)v(d6)

(0 |y) =

The posterior distribution is denoted o=y,

101



Bayesian Interpretations

4.1 Sufficiency

4.1.1 Definition

According to the classical Definition-3:1 of sufficiency, a statistic § with
values in & is sufficient if the conditional distribution of ¥ given S(Y)
does not depend on §. When 6 is a random variable, as in this case,
such a definition is equivalent to the conditional independence of 6 and
Y given S(Y") (see Property B.30 in Appendix B).

Definition 4.1: A statistic S is sufficient in the Bayesian sense if 6
and Y are conditionally independent given S(Y). We use the notation

9 LY |S(Y).

Note, however, that the preceding definition is equivalent to Definition
3.1 only if difficulties arising from the possible presence of negligible sets
are not taken into account. For instance, if © is an open subset of IRP
and if IT is the Dirac distribution with mass point at §* (say) in ©, then
9 and Y are conditionally independent given any statistic S(Y'). But the
statistic S is not necessarily sufficient in the classical sense (see Exercises
4.1 and 4.2). This counterexample, however, is of little practical interest
since the prior distribution assigns a positive probability only to the
subset © = {#*} of ©. Hence, in the Bayesian approach, the actual
parameter space is not © but ©.

The properties of conditional independence allow a third characteri-
zation of Bayesian sufficiency.

Property 4.1: A statistic S is sufficient in the Bayesian sense if and
only if the conditional distribution of 6 givenY, i.e., the posterior dis-
tribution, is identical to that of 6 given S(Y').

Property 4.1 is intuitive. It requires that S(Y") and ¥ contain the same
information about .

Example 4.1: Consider a random sample Yi,...,Y, drawn from a
normal distribution N(m,1). Suppose that the prior distribution for
m is the standard normal distribution. The joint distribution of the pair

(Y,m) is normal
0 Zyy Lym
o((0)- ()
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where

21 1
12 1

yy = V¥ = ’

’

11 2
1
1

Yym = Zpy=1| . |, and 8 =Vm=1
1

From Property B.44 in Appendix B, it follows that the conditional
distribution of m given Y is the normal distribution

N(ZmyZyy Y, Sm — Dy gy Sym).

The posterior distribution depends on Y only through the conditional
mean L,y X 'Y. The latter is equal to 1/(n + 1)T7;Y;. Hence the
sample mean Y = 1/ n¥T.,Y; is sufficient in the Bayesian sense.

4.1.2 Minimal Sufficiency

A statistic S* is said to be minimal sufficient in the Bayesian sense if it
is sufficient (in the Bayesian sense) and if it is a function of every other
sufficient statistic (in the Bayesian sense).

When a minimal sufficient statistic S* exists, then knowing S* be-
comes equivalent to knowing the posterior distribution II?IY=¥,y ¢ Y.
Indeed, since S* is sufficient, then II°IY=Y depends on y through S*.
Thus TI°IY=" is a function of S*. It remains to verify the converse, i.e.,
that S* is a function of He!y:..v To simplify, we consider the case where
Y is discrete. Suppose that S*(y) is not a function of II?/Y=¥, Then
there exist two values y; and yp such that IIPY=t1 = II0IY=v2 wijth
S*(y1) # S*(y2). Then, define the statistic

& = S*(y)7 ify?éyz,
5w {S*(yx), if y = y2.

It is easy to see that S is sufficient and that $* is not a function of

S. This contradicts the hypothesis that S* is minimal sufficient. The
preceding result is a special case of the following general property.
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Property 4.2: A statistic S(Y') that is minimal sufficient in the Bayes-

ian sense is in a bijective relationship with the posterior distribution
v,

Example 4.2: In Example 4.1, the posterior distribution was

“~yy

N (Emy‘“'l}’, o — ZmyE;Z}Eym) .
A minimal sufficient statistic in the Bayesian sense is

L 74
Emyzyy} = mY

Since Y is in a bijective relationship with this statistic, then Y is also
minimal sufficient.

Example 4.8: Consider a parameter space with two elements only, i.e.,
© = {61,0:}. The posterior probabilities are

i £(y; 6:1)7(61) 1
O 1) = F (e + fl by " 1Y)

Hence the statistic 7(6y | Y) is minimal sufficient in the Bayesian sense.

It is also clear that if £(y; 61) and £(y; 62) are strictly positive, then the
statistic £(Y;62)/£(Y;61) is well defined and is in a bijective relationship
with (6, | Y). Therefore this statistic is also minimal sufficient in the
Bayesian sense.

4.1.3 Improving Decision Rules

Theorem 3.1 states that if S is sufficient in the Bayesian sense and if m
is a randomized decision rule, then there exists a randomized decision
rule m* with a risk function equal to that of m : R(m*,6) = R(m,0).
From this result it follows immediately that m* has the same Bayesian
risk as m since

Rp(m*) = ER(m*6)
E.R(m,0)
Ry (m).

i
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4.1.4 Partial Sufficiency and Bayesian Cut

Defintion 4.1 can be generalized straightforwardly to functions g(6) of
the parameter.

Definition 4.2: A statistic S is partially sufficient in the Bayesian sense
for g(9) if
9(0) LY | S(Y).

In particular, from some general properties of conditional indepen-
dence, it follows that, if S is sufficient, then S is partially sufficient for
every function g(@).

Example 4.4: Consider the estimation of m? in Example 4.1. The
conditional distribution of m? given Y is, up to a known proportional
factor, a noncentral x? distribution with one degree of freedom and non-
centrality parameter proportional to Y2, Hence ¥? is partially sufficient
for m2. From Example 4.2, it is also clear that ¥? is not minimal.

A more precise concept that is related to partial sufficiency is the
concept of Bayesian cut.

Definition 4.3: Let S(Y) be a statistic and 8 = (a, B)’ be a partitioning
of the parameter vector. A Bayesian cut occurs if the following three
conditions are satisfied:

(i) o and B are independent, i.e., a LS.

(ii) 0 and S(Y') are conditionally independent given a, i.e., 6 L S(Y) |
a.

(iit) 6 and Y are condz'tz’onally.z'ndependent given B and S(Y), i.e.,
oLY |(B,5()).

To understand such a definition, it is useful to write the preceding
conditions in terms of densities. The joint density of the pair (Y,6) can
be decomposed as £(y; 8)m(0) where £(y; 0) is the conditional density of Y
given 0, and 7(#) is the marginal density of §. Moreover, by conditioning
on S(Y), the density £(y;#) can be decomposed as

£(y;0) = £5(S(y); 0)e(y | S(Y) = S(y);0).

Consider now the conditions of Definition 4.3. Condition (i) says that
() can be decomposed as

() = mi(e)m2(B)-
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Condition (ii) implies that the conditional distribution of S(Y) given 6
is equal to the conditional distribution of S(Y) given a , i.e.

£5(8(y); 6) = £s(S(v); @)-

Condition (iii) implies that the conditional distribution of Y given (S(Y),
0) is identical to the conditional distribution of ¥ given (S(Y), ). This
can be written as

£y | S(Y) = S(y):0) = £y | S(¥) = S@); B)-

From these conditions, it follows that the joint density of the pair
(Y,6) can be decomposed as

2s(S(y): @) £y | S(Y) = 5); Bymi(c)m2(B). (4.1)

Note first that such a decomposition implies that the conditional distri-
bution of (Y,8) given (S(Y), ) is

£y | S(Y) = S(y); B)ma(B)-
This density does not depend on c. Hence
(v,6) L a| S(Y),

which implies
Y Lal|SY).

The preceding argument shows that S is partially sufficient in the
Bayesian sense for a. In addition, the decomposition (4.1) is similar to
the one established in the classical framework (see Definition 3.4). The
only difference comes from condition (i). This condition implies that
the concept of partial sufficiency (of S (Y) for &) and the concept of
exogeneity (of S(Y') for 3) are relevant only when the parameters o and
f can vary independently from each other. Such a condition replaces the
condition © = A x B in the classical framework.

4.2 Ancillarity

From Definition 3.5, a statistic T is ancillary if its distribution does not
depend on 6. In the Bayesian framework where 6 is a random vari-
able, such a definition is equivalent-to the independence of 9 and T (see
Exercise 4.3).
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Definition 4.4: A statistic T' is ancillary in the Bayesian sense if 0
and T(Y) are mutually independent. This is denoted T(Y') L 6. More
generally, T is partially ancillary in the Bayesian sense for a function
g(0) of the parameter if T(Y) and g(6) are mutually independent, i.e.,
T(Y) L g(6).

Obviously, an ancillary statistic is partially ancillary in the Bayesian
sense for every function g(9).

Property 4.3: Any statistic T(Y) that is independent in the Bayesian
sense of a partially sufficient statistic S(Y') for g(0) is partially ancillary
for g(6).

PROOF: Mutual independence in the Bayesian sense of T'(Y) and S(Y)
means that the equality E[k(T(Y)) | S(Y)] = E[k(T(Y))] holds for
every function k. Here expectation is taken with respect to the marginal
distribution of Y. This contrasts with the classical case where expecta-
tion is taken with respect to the conditional distribution of Y given 8.

Consider two functions of g(6) and Y, denoted h(g(#)) and k(T'(Y")),
respectively. We have

E[r(g(8))k(T(Y))]
= EE[h(g(0))k(T(Y)) | S(Y)]
= E[E[k(g(0)) | S(V)]- E[R(T(Y)) | S(Y)]]
(from partial sufficiency)
= B[E[h(9(6)) | SOIEKT(Y))]]
(from Bayesian independence of S(Y') and T'(Y))
= E[h(g(9))] - E[K(T(Y))]-

Hence g(#) and T(Y) are independent. O

Example 4.5: (Examples 4.1 and 4.4 continued.) We have seen that
S(Y') = Y2 is partially sufficient in the Bayesian sense for m?2. Consider
the statistic T(Y) = sign ¥. Since the marginal distribution of ¥ is
normal with zero mean, the conditional distribution of T'(Y") given S(Y")
is the known distribution 1/2e(_y + 1/2¢(,). Hence T'(Y') and S(Y) are
independent. Therefore, from Property 4.3, T'(Y) is an ancillary statistic
for m?2.

Property 4.4: If there is a Bayesian cut, then S(Y') is partially suffi-
cient for B.
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PROOF:

]

Eh(B)k(S(Y))] EERBKSY)) | o]

E[E(h(B) | &) E{k(S(Y)) | o))

il

because of the conditional independence of § and S(Y') given c.. Then,
from the independence of & and [, we obtain

E[R(B)K(SEY))] = E(W(B)) - EE(K(S(Y)) | ).

Thus 8 and S(Y) are independent. O

4.3 Identification

In the Bayesian framework, there is a complete symmetry between the
observation Y and the parameter § from a mathematical point of view
(but not from a statistical point of view). Thus it is possible to define a
concept of sufficiency for functions of the parameter 0. We shall see that
such a concept is closely related to the concept of identification discussed
in Chapter 3.

Definition 4.5: A4 function g(8) of the parameter is said to be sufficient
in the Bayesian sense if the conditional distribution of Y given 8 is equal
to that of Y given g¢(6).

Note that independence of Y and 6 is conditional upon g(9)
Y 16| g(0). (4.2)

This means that the distribution P depends on 6 through the function
g(6) (up to a Il-negligible set. see Exercise 4.6).

Moreover, a function g(#) of the parameter is said to be minimal
sufficient if it is sufficient and if it is a function of any other sufficient
function. Provided there exists a minimal sufficient function, then from a
property analogous to Property 4.2, it follows that the function § — Py is
minimal sufficient and hence that 6 is minimal sufficient if and only if the
function § — Py is injective. Thus from Definition 3.10 of identification,
we obtain the following property.

Property 4.5: @ is identified if and only if 0 is minimal sufficient in
the Bayesian sense.
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Remark 4.1: In the Bayesian framework, the nonidentification of a
parameter does not prevent, in general, the computation of usual esti-
mators. These estimators, however, may have undesired properties. For
instance, consider a random sample Y3, ...,Y, drawn from the normal
distribution N(a+b, 1) where a and b are independent parameters, each
distributed as N(0,1). The posterior means of these parameters are

n -

E(a|¥)=E(|¥) = 757

Thus these estimators can be computed although a and b are not identi-
fied. If, however, we examine the consistency properties of such estima-
tors, we see that E(a | ¥) and E(b | ¥) both converge to (a +b)/2 and
not to the true values of the parameters. Consistency is satisfied only
for identified linear combinations of the parameters since

2n
14+ 2n

VA€ R, Ea+Db) | 7)=A 7,

which converges to A(a + b).

4.4 Exercises

EXERCISE 4.1: Show directly that a sufficient statistic S in the classical
sense (see Definition 3.1) is also sufficient in the Bayesian sense. Hint:
Consider the case where there are densities £(y; ), and show that the
~ posterior density (6 | y) depends on y through S (y). Then use Property
4.1.

EXERCISE 4.2: Let II and II* be two prior distributions on © that are
absolutely continuous with respect to each other. Show that sufficiency
properties using II and IT* are identical. Answer the same question for
ancillarity properties.

EXERCISE 4.3: Consider the limiting case where the prior distribution is
the distribution II with point mass at fp. Show that any statistic S(Y)
is simultaneously ancillary and sufficient in the Bayesian sense.

EXERCISE 4.4: Consider Example 4.1, and let the prior distribution for
m be N(my, 03) with mg and o known. Find the posterior distribution.
Conclude that the posterior mean of m is a minimal sufficient statistic.
Study how such a posterior mean depends on mg and og. What happens
if 0% increases to infinity or converges to zero ?
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EXERCISE 4.5: Let Y; = (Y}, Y?), i = 1,...,n, be n pairs of observa-
tions independently and identically distributed

w((8)-(5%));

Show that Y1 = (Y{,...,Y}) and Y2 = (Y?....,Y?2) are ancillary
in the Bayesian sense whenever the support of the-prior distribution is
(~1,1). Determine the prior distributions for which the statistic ¥ =
(Y{,...,YY is ancillary in the Bayesian sense.

EXERCISE 4.6: Let Y, ..., Y, be n vectors independently and identically
. distributed N((6:1,6:0:)';I). The prior distribution for the parameter
(61,02) is N((1,1),1). :

a) Is the parameter vector (61,62) minimal sufficient?
b) Is it identified?
EXERCISE 4.7: Let Y3,...,Y, be a random sample from the uniform

distribution on the interval {0, 6]. Suppose that the prior distribution for
the parameter 6 is the uniform distribution on [1,2].

a) Find the posterior distribution of 6 given Y.

b) Show that this distribution depends on Yi,...,Yn only through
max (maxY;, 1).

¢) Contrast minimal sufficiency in the classical sense to minimal suf-
ficiency in the Bayesian sense.
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CHAPTER 5

Elements of Estimation
Theory

5.1 Consequences.of Decision Theory

From Chapter 2 a nonrandomized estimator of a function g(8) of the pa-
rameters is a mapping §(Y") from Y to g(©), and a randomized estimator
of g(0) is a mapping my from Y to the set of probability distributions
on g(©). The comparison of these estimators is based on risk functions
associated with loss functions that are frequently convex (see Section
2.3.2).

5.1.1 Improving Nonrandomized Decision Rules

Because common loss functions are convex, estimation problems are
greatly simplified. Indeed, as the next property states, any randomized
estimator is (weakly) dominated by a nonrandomized estimator. Thus
it suffices to consider nonrandomized estimators. In fact, as seen later,
it suffices to consider nonrandomized estimators that are functions of a
sufficient statistic.

Property 5.1: Suppose that g(©) is convez and that the loss function
L(d,0) is conver in d € g(©). Then every randomized estimator is
(weakly) dominated by a nonrandomized estimator.

PROOF: Let m be a randomized estimator of g(#). Since g(©) is con-
vex, the mean [ 5(0) @ dmy(d) = 6(Y) is an element of g(©). Thus the
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mapping § can be interpreted as a nonrandomized estimator. Since L is
convex, it follows from B.46 that

L(d,0)dmy(d)y 2 L( [ d dmy(d).6) = L(8(Y),0)-
9(8) 9(©) :

Integrating with respect to the distribution Py gives R(m,0) = R(S, ),
V6. O

Property 5.2: Under the assumptions of Property 5.1, suppose that S
is a sufficient statistic. Then every nonrandomized or randomized esti-
mator is (weakly) dominated by o nonrandomized estimator that is a
function of S. '

PROOF: This follows immediately from Theorem 3.1 and Property 5.1.
O

In the case of a nonrandomized estimator &, the estimator in question
is 6*(S(Y)) = Ey(6(Y) | S{Y)), which is independent of 6 because S
is sufficient. Such an estimator is called the Rao-Blackwell improved
estimator of 6.

5.1.2 Quadratic Risk Functions

When estimating a scalar function of the parameter g(d), one frequently
uses the quadratic loss function

L(d,6) = (d - g(8))*.

When g(6) is a vector function, ie., g(f) € IR, a frequent general-
ization is the matriz quadratic loss function

L(d, ) = (d— g(0))(d - 9(6))".

It is important to note that such a loss function takes its values in the
set of symmetric matrices.

Definition 5.1: An estimator 6* weakly dominates another estimator &
in the matriz risk sense if and only if V0 € ©

R(8*,0) = E4(6"(Y) — g(0))(&(Y) - 9(6))'
X R(5,0) = Eg(6(Y) — g(8))(6(Y) — 9(6))"-

In fact, comparing estimators based on their matrix risk functions
is equivalent to comparing estimators based on the family of scalar risk
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functions associated with loss functions L,(d,8) = [«/(d — g(6))]? for
every u € IRY.

Property 5.3: An estimator 6* dominates another estimator 6 in the
matriz quadratic risk sense if and only if §* dominates & for every scalar
risk function associated with the loss function

Ly(d,0) = [v'(d - g(8))]%, u e R

PRrROOF: R(6*,6) = R(6,0) if and only if
Eg(6"(Y) — g(0)(6*(Y) — g(9))" = Eo(8(Y) — 9(6))(6(Y) — g(0)), V 6.

By the definition of the preordering for symmetric matrices, it follows
that the preceding statement is equivalent to
VO, Yue R, uEg(6"(Y)~g(6)(6"(Y)~9(6))u
S wEy(6(Y) — g(8))(6(Y) — 9(0))'w,
ie.
V0, Vue R, EgL,(6"(Y),0) < EgLu(5(Y),0),
ie.
V8, Vue R, R,(6%0) < R,(60),
where R, denotes the risk function associated with L,. O

Thus the estimator §* dominates § in the matrix risk sense if, for
every u, the linear form «'6*(Y) dominates 4/6(Y) when estimating
u'g(f). In other words, the matrix risk function takes into account
all possible directions. Note, however, that the condition R, (6*,6) <
R, (6,0), V 8, for the vectors u of a given basis of IR, is not sufficient to
ensure that 6* dominates § in the matrix sense (see Exercise 5.1).

Property 5.4:
R(6,0) = Vob(Y) + (Eeb(Y) — 9(9)) (Ee6(Y) — g(9))".
PrOOF: We have

R(6,0) = Ep(6(Y)—g(0))(6(Y) - g(6))
= Ep(8(Y) — Eeb(Y) + Ep6(Y') — g(9))
X(6(Y) — Eo8(Y) + Ep6(Y) — g(6))'
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= Eg(6(Y) — Eeb(Y))(6(Y) — Eo6(Y))
+Eg(Egd(Y) - 9(6))(Eeb(Y) — 9(6))’
+E(6(Y) — Ep6(Y))(Ee8(Y) — 9(8))
+Eg(Esb(Y) — 9(6))(6(Y) — Eeb(Y))'.
Because the cross terms are equal to zero, we obtain
R(8,0) = Vob(Y) + (Eeb(Y) — 9(6))(Eeb(Y) — 9(6))"-
]

Thus the risk can be written as the sum of the variance covariance
matrix Vé(Y") of the estimator and the squared bias

(Eeb(Y) — g(0))(Esb(Y) — 9(6))".

Hence the fact that §(}) does not coincide with g(#) results from the
variability of the estimator and the average discrepancy between the
estimator and the true value.

Example 5.1: Consider two estimators 6 and é of 8 € IR? such that
6* dominates § in the matrix risk sense. Partition the vectors §*, 6, and
@ into subvectors of dimensions p; and p —

. 6% _ b1 (6
5”(@)””(@)””<%>'

The risk functions can be partitioned similarly. For instance, we have

R(6,6) =

< Eg(61(Y) = 61)(61(Y) — 61)" Ep(61(Y) — 61)(82(Y) — 62)’ )
Eg(82(Y) — 02)(61(Y) — 61)" Ep(82(Y) — 62)(62(Y) = 62)" ]~

The condition R(6*,6) < R(6,6) implies an analogous-condition for
the quadratic form that is restricted to the subspace generated by the
p; first components. Thus we have

VO: Ep(67(Y) —61)(81(Y) — 61)' =2 Ep(81(Y) — 61)(6:(Y) — 61).

Hence 67 dominates §; in the matrix risk sense when estimating the
parameter function g(d) = 6;.
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Example 5.2: Sometimes, one considers the scalar quadratic risk func-
tion

Ri(5,0) = Eo(6(Y)~ g(8))(6(Y)~ 9(6))
q
> Eo(6;(Y) — g;(6))?

=1
= Tr R(5,6).

From Property A.8, it follows immediately that §* dominates § according
to the scalar risk function R; if §* dominates § in the matrix risk sense.

Example 5.3: Consider two independent observations Y; and Y3 from
the Poisson distribution P(A). The parameter ) is equal to the mean and
the variance of the Poisson distribution. Hence it is natural to consider
the following estimators for A:

— the sample mean
Yi+Y,

6(Y)= 5

— the sample variance

1 2 2
82(Y) m((}ﬁ_lﬁ;—ﬁ) +(Y2_Zl_:;;3’z)>

(1 -Ya)?
TR

]

i

It is easy to compute the risk associated with each estimator using
the next formulae, which give the moments up to the fourth order of the
Poisson distribution with parameter A

EY =) EY2=X+)2 E\Y3=X+3)2+)3,
EXY = X+722 463 + 24

(i) Risk for §,: We have
Ex6,(Y) = E (———-—-—

Vabi(Y)

Il
<
N

=
+
S
N
I
L= i ]
<
X
+
N
5
i
M'[ >
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Thus the risk for 6§, is R(61, A) = A/2. The risk function is a straight
line passing through the origin.
(ii) Risk for 8: We have
1 1 .
Ex6o(Y) = zEx(Ni-Y2)’=SWi(Y1-Y2)

1
= '2’(VAY1 +WYs) = A,

B&IY = (Bi-Y)
= BV - 8BYEY® + (6E,Y?))
= :21- (ExY* —4E,\Y E\Y® + 3(EAY2)2)
= %(,\ +TAZ 4623 + A% — 402 —12X3 —4)t
+3X% 4 301 +6)3)
= %(,\ +6X7).

Thus 1 N
W (Y) = S+ 6)%) = A = = +2)%.

The risk function is here equal to the variance R(6a, A) = A/2 +2)2.
It is a part of a parabola.

RA

by

K
Figure 5.1: Risk Functions

Since the risk function associated with §; is always below the one
associated with &, i.e., VA € R*, R(61,)) < R(b2, \), the sample mean
estimator dominates the sample variance estimator.
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A comparison based on quadratic risks defines a preordering. The
preordering is not total, for two estimators may not be comparable. We
may, however, ask whether there exists an estimator 6* of g(f) that
dominates every other estimator.

Example 5.4: Nonexistence of an Optimal Estimator
Suppose that an optimal estimator §* exists. This estimator must
dominate the estimator 6y, for g(f) that associates the constant value

9o ‘
V0e€0O, R(6%0) < R(6go,9).

In particular, this inequality must hold for the parameter values 6,
satisfying g(8,) = g,. But

R(65,,00) = Eo, (B, (¥) = 9(00y) (600 (¥) = 9(00))’
Eq, (go - go)(go - go)' = (.

i

Therefore
R(8%,00) = Eg,(6*(Y) — go)(6*(Y) — go)' = 0.

Since the matrix under the expectation sign is symmetric positive
definite, we have §*(Y") = g,. Since g, is arbitrary, the latter equality
must hold for every value g, € g(©). These equalities are compatible
only if the set g(©) is reduced to one element hence only if the estima-
tion problem can be solved perfectly without any observations — a case
without much interest.

5.2 Estimation Principles

Since an optimal estimator does not exist, except in the degenerate case,
one must consider some appropriate methods for selecting an estimator.
In particular, it is useful to examine some additional desirable properties
that could be imposed on estimators.

5.2.1 Invariance Principle

A natural idea consists in considering estimators that are tractable.
Often, one is led to consider:
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— estimators that are linear in the observations when estimating
parameters such as means

n
5(},19 s 7Y'n) = Zai}):’:’
i==1

- estimators that are quadratic in the observations when estimating
parameters such as variances

§(Vi,..., Vo) = ayViY;.
i,

Frequently, constraints imposed on estimators are interpreted as in-
variance properties with respect to a group of transformations. This
explains the name of invariance principle. For instance, linear estima-
tors can be viewed as estimators satisfying an invariance property with
respect to linear combinations since such estimators satisfy

6(aY +a*Y™*) = ab(Y) + a*6(Y™)
for every vector Y and Y* of R" and every scalars o and o*.

Example 5.5: Suppose that a researcher wishes to know the average
income of a given population. Suppose that n observations on house-
hold incomes are available. Let y1,..., ¥, denote the observed incomes
measured in dollars (say). The unknown average income m in the popu-
lation is estimated by 6(y1, . . . , ¥n). Now suppose the estimation problem
is considered in another unit such as cents. Then the average income is
100m, the observations are 100y, . . ., 100y, and the estimator becomes
6(100y, . . ., 100yy, ). It is desirable that the change of measurement units
does not modify the result, i.e., that

6(100yy, . .., 100y,) = 1006(y1, .. -, ¥n)y YV ¥1s--+ ) Yn.

In Example 5.5, requiring independence of measurement units is
equivalent to assuming that

VA>0, 6(AY;,...,\V,) = MY, ..., Ya).

That is, the estimator is invariant with respect to the set of positive
scalar transformations.

Similarly, when observations are dates of events, one may impose that
estimation results are not modified by a change of time origin. In this
case, one considers invariance properties with respect to translations

Vo, §(Vi+a,....Yn+a)=6M,...,Ys) + 0.
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5.2.2 Unbiasedness Principle

Definition 5.2: An estimator 6 is an unbiased estimator of g(6) if and
only if Egé(Y) = g(6), V6 € ©.

Thus an estimator is unbiased if, on average, the estimated value is
equal to the value of the parameter, for every value of this parameter.
In Example 5.3, the estimators §, and 6, are unbiased.

5.2.3 Asymptotic Criteria

When the number of observations is large, one frequently requires that
estimators satisfy some so-called asymptotic properties, i.e., properties
that are defined when the sample size n increases to infinity.

Then, it is necessary to alter the usual statistical framework. In
particular, we now consider a sequence of models indexed by the number
n of observations: (Vn, Pn = {Pnyg, 0 € ©}). These models depend on
n, but the parameter 4 is independent of n.

To estimate a function g(f) of the parameter, one considers a se-
quence of estimators {6,,n € N}, where 6, is a mapping from Y, to
g(©). Thus unbiasedness can be defined for the limiting case where n is
infinitely large.

Definition 5.3: The sequence of estimators {6,, n € N} is asymptoti-
cally unbiased if

nh)_{:gg Egb,(Y)=g(0), VO € 0.

The expectation Fy(-) is taken with respect to the distribution P
Hence, in principle, the expectation should also be indexed by n. We
shall say that an estimator 6, is asymptotically unbiased when the se-
quence of estimators &, is asymptotically unbiased.

Definition 5.4: A sequence of estimators {6,, n € N} is said to be:

(i) weakly consistent if, for every 8, 6,(Y) converges in probability to
g(8), i.e.

Ve>0, Pop([l6n(Y) —g(0)]| >¢) "= 0, VOO,

(ii) consz'stent in quadratic mean, which is denoted 6, ¥ g(0), if

Egll6n(Y) — 9> "=7 0, ¥ 6 € ©;
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(iii) strongly consistent if 6,(Y") converges Py almost surely to g(8) for
every 8 € ©.

Clearly some relations exist among these consistency concepts. Two
of them are:
¢ strong consistency implies weak consistency,

o consistency in quadratic mean implies weak consistency.

Weak and strong consistency properties are maintained when estima-
tors are transformed through continous mappings (see Property B.68).

Property 5.5: Let h be a continous mapping on g(©). If 6, is a weakly
(or strongly) consistent estimator of g(8) then h(6,) is a weakly (or
strongly) consistent estimator of h(g(6)).

In general, the property that is easiest to verify is consistency in
quadratic mean, which implies weak consistency. This follows from the.
next property.

Property 5.6: 6, I g(6) if and only if

Egba(Y) — g(8),
Vebn(Y) — 0,

Y 0 € ©, i.e, if and only if the estimator is asymptotically unbiased and
its variance converges to zero.

Proor: The result follows from
Eol|6n(Y) — g(O)* = Eo(6n(Y") — 9(8))'(6n(Y) — 9(6)),
which is equal to
1Eo6n(¥) = g(O)]I* + Tr Vaba(¥),

and the fact that each term of the latter decomposition is nonnegative.Ol

5.3 Search for Good Estimators

There are many methods for finding “good estimators.” Within the
classical framework, we can distinguish:
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e methods that consist in finding the best estimator in a restricted
class of estimators that satisfy some desirable properties,

e methods that consist in selecting the best estimator by maximiz-
ing or minimizing a criterion and then by examining whether the
estimator thus obtained satisfies some appropriate properties.

An alternative approach is to adopt the Bayesian framework, which
leads, in general, to a unique optimal estimator.

5.3.1 Search Within a Subclass

The most common method consists in searching for the best unbiased
estimator or the best linear unbiased estimator. In Chapter 6, we shall
see that optimal estimators exist within such classes for some problems.
In particular, these methods will be applied to exponential models and
linear models.

Another method consists in introducing a natural family of estima-
tors for g(#) and then in finding the best estimator in this family. This
approach leads to methods of moments and their generalizations. Exam-
ples are asymptotic least squares and generalized methods of moments,
which will be studied in Chapter 9.

5.3.2 Criterion Optimization

The most well-known method based on a criterion optimization is the
mazimum likelihood (ML) method. This method consists in maximizing
the likelihood function £(y;-) of the model with respect to § € ©. A
solution of maxgee £(y; ), if it exists, is retained as an estimator of .
This method will be studied in Chapter 7.

Other objective functions can be considered. These are studied in
Chapters 8 and 10. Examples are ordinary least squares and pseudo
mazimum likelihood methods.

5.3.3 Bayesian Methods

The methods described in Sections 5.3.1 and 5.3.2 belong to the class-
ical framework. As mentioned earlier, in the Bayesian approach, one
minimizes the Bayesian risk

Rp(8) = ExR(8, 6).
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While uniform minimization over classical risk functions does not have
a solution, minimization of the Bayesian risk produces, in general, a
solution. When the quadratic risk function is used, the solution can be
obtained explicitly. '

Property 5.7: The posterior ezpectation of g(f), i.e.

n=B(®)|¥) = [ g@)mio| ),
minimizes the quadratic Bayesian matriz risk function
En(6) = EnEe(5(Y) - 9(0))(6(Y) — 9(6))".
Proor: We have

Rn(6) = E(6(Y) - 9(0))(6(Y) - 9(6))',

where E denotes the expectation with respect to the joint distribution
of the pair (6,Y). An argument similar to that given in the proof of
Property 5.4 implies that

E[(8(Y) - 9(0))(6(Y) — 9(6))" | Y]
= V(g(0) | Y) + E[(8(Y) - E(g(6) | Y))(6(Y) - E(g(6) | V)" | Y] .
= V(g(6) | Y) = E[(6n(Y) - 9(8))(6n(Y) ~ 9(9))’ | Y.

Now it suffices to take the expectation with respect to Y of both
terms of the preceding inequality to obtain

Rn(é) = EV(9(6) | Y) = E(én(Y) ~ 9(8))(én(Y) — 9(6))',

ie.
R (6) = Ru(6m).
(]

The Bayesian approach to estimation problems will be studied in
Chapter 12.
5.4 Exercises
EXERCISE 5.1: Let Y1, Y5, and Y; be three observations jointly normally

distributed as N((a,b,a)’,I). Consider estimating the pair (a,b)’. De-
termine the matrix risk function associated with each of the following
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two estimators

_(&\_(1n e (6 _ Yi
“(52)“(16>”d6‘<6; “\%-%i+Y )
Verify that the two matrix risk functions are not comparable even though

V6 =V6y, V6 > Vé,.

EXERCISE 5.2: For the model described in Exercise 5.1, verify that

Tr R(6*,0) > Tr R(6,0), ¥V 6 = (a,b) € IR?.

EXERCISE 5.3: Prove that an estimator 6* of g(f) € IR? dominates
another estimator § in the matrix risk sense if and only if 6* dominates
6 for every scalar risk associated with a loss function of the form

La(d,0) = (d — g(8))'x(d - g(9)),
where §) is an arbitrary positive definite matrix. Does the result hold if
the matrix  is a function of the parameter 8 7

EXERCISE 5.4: Let Yi,...,Y, be n independent and identically dis-
tributed observations. Justify the use of estimators § that are symmet-
ric in Y3,...,Y,. Verify that such estimators are characterized by their
invariance property with respect to the set of permutations.

EXERCISE 5.5: Given the sequence of statistical models
(y‘n.:’Pn = {P'n.,97 fe @})?

let 6, be an estimator of g(d) which is consistent in quadratic mean.
Show that there exists an infinity of estimators that are consistent in
quadratic mean for g(@).

EXERCISE 5.6: Prove that consistency in quadratic mean of an estimator
is preserved by linear transformations.

EXERCISE 5.7: Let 6,(Y) be an estimator of g(§) € IR that is consistent
in quadratic mean.

a) Prove the inequality

Vobn(Y) + (Eebn(Y) — 9(0))*

Pai(16a(Y) = g(0)] > €) < %
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b) In addition, suppose that \/n(6,(Y) — g(6)) converges in distribu-
tion to the normal distribution N(0,0?(6)). Find an asymptotic
approximation to P, g(|0,(Y) — g(0)] > ¢).

¢) Compare the.approximation in b) to the upper bound obtained in
a). '
ExeRrcise 5.8: Consider the dynamic model
Yi=aot+tarXpa+ - +apXypt+u, t=1,...,T,

where the errors u; are independent identically distributed N(0,¢?) and
p is assumed unknown. Determine the set of possible values for the pa-
rameter vector 6 = (ap,a1,...,ap,p,02)’. Is such a set convex? Can the
Rao-Blackwell method be used to improve upon any given nonrandom-
ized estimator (see Section 5.1) ?

EXERCISE 5.9: Let § and 6* be two estimators of the parameter function
g(6). These estimators could be compared as follows: 6 is considered
to dominate § if and only if

det R(6*,0) < det R(6,0), V¥ 6 € O,
where R denotes the matrix risk function defined in Section 5.3.
a) Interpret the criterion function det R(,8).
b) Does such a criterion correspond to a scalar loss function?

¢) Compare the preceding ordering to the preordering associated with
the matrix risk.
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CHAPTER 6

Unbiased Estimation

6.1 Definitions
6.1.1 TUnbiased Estimators

In Chapter 5 unbiased estimation was introduced as one of the various
principles for reducing the class of estimators considered.

Definition 6.1: Given a parametric model (¥, {Ps,0 € ©}), an esti-
mator T'(Y') is unbiased for a function g(6) € IR? of the parameter 0
if

EyT(Y)=g(6), YO e O.

In particular, unbiased estimators of the parameter @ itself are frequently
considered.

Example 6.1: Let Y1,...,Y, be a random sample from the uniform
distribution Ujg 6. The mean of each random variable is §/2. Thus an
unbiased estimator of § is

T(Y) = -7-2; }n: Y;.
im=]

Example 6.2: If T(Y) is an unbiased estimator of g(f), then every
linear transformation AT(Y') +B where A and B are constant matrices
of dimension r x ¢ and 7 X 1 is an unbiased estimator for the function
Ag(6) + B. This follows from

Eg(AT(Y) +B) = AET(Y)+B = Ag(6) + B, V8 € O.
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Example 6.3: Let Y1,...,Y, be uncorrelated observations from pos-
sibly nonidentical distributions with the same mean m and the same
variance o2. Unbiased estimators of these two parameters are easily
obtained. For instance, ¥ is an unbiased estimator of m since

R R ,
Epo2Y = ;{ZE”WQK’ =m, Ym,oo

g==]1

To construct an unbiased estimator of o2, it is useful to consider
the statistic 37, (¥; — ¥)2. This statistic is the square length of the
orthogonal projection of Y = (Y3,...,Y,)’ on-to the subspace orthogo-
nal to the vector e of which all the components are equal to one. Let
I — P denote the corresponding orthogonal projection operator. From
Property A.1, Corollary A.4, and B.20 we have

B s '(Z(Y,- - ?)2> = Bposl@-P)YJ?
i=1 B o2 (Y1~ P)Y)
B o2(Tr Y'(I- P)Y)
B o2(Tr (I—P)YY")
Tr ((I-P)(c’1 + m?ee))
= o’Tr (I-P)
= (n-1)o%

I

2= L. 5% (V; —¥)? is an unbiased estimator of o2.

Hence & v

Remark 6.1: It is important to note that the unbiasedness condition
EoT(Y) = g().

must hold for every possible value of the parameter and not only for
some of these values. Thus, if 6 € ©, then T(Y) = 6y is an estimator
satisfying the condition EgT(Y) = 6 when 6 = 6. However, because the
unbiasedness condition is not satisfied for every other parameter value,
this estimator is not unbiased.

When an estimator is unbiased, its matrix quadratic risk function
reduces to its variance covariance matrix since

Ro(T(Y),9(6)) Eq [(T(Y") — 9(@)(T(Y) - 9(6))']
VoT(Y) + (EeT(Y) — 9(9)) (BT (Y) — 9(6))’
= V,T(Y).

il
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Thus comparing two unbiased estimators of g(f) becomes equivalent to
comparing their variance covariance matrices.

Property 6.1: If T} and T are two unbiased estimators, then Ty dom-
inates Ty if and only if
VeI (Y) = VoTu(Y), VO€®,

i.e., if and only if VoTo(Y) — VeT1(Y) is a positive semidefinite matriz
for every possible value of the parameter.

6.1.2 Existence of Unbiased Estimators

Property 6.2: If g(9) is a nonidentified parameter function, then there
does not exist an unbiased estimator of g(0).

PROOF: The proof is by contradiction. Suppose there exists an unbiased
estimator T of g(6). Consider two parameter values 6, and 2 such that
the corresponding distributions are identical, i.e., such that Py, = Py,.
Then we have

i

96) = ET(Y)= /y T(y) dPoy (v)

- /y T(y) dPy,(y) = B, T(Y) = g(6).

Thus the condition Py, = Py, implies that g(f1) = g(62). This means
that g(9) is identified.O]

Thus a necessary condition for the existence of an unbiased estimator
is the identification of the parameter function to be estimated. This
condition, however, is not sufficient as the following example illustrates.

Example 6.4: Suppose that there is only one _observatibn Y; from a
Bernoulli distribution B(1,p). An estimator is of the form T'(Y}), and
its mean is

i

E,T(Y1) TO)P(Y1=0)+T(1)P(Y1=1)
TO)1-p)+T(Q)p

T(0) +(T(1) - T(0))p.

Therefore, only linear functions of the parameter p can be estimated in
an unbiased fashion.
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6.1.3 Unbiased Estimation and Sufficiency

Property 6.3: If T(Y) is an unbiased estimator of g(6), and if S(Y")
is a sufficient statistic for 8, then the Rao-Blackwell improved estimator
E(T(Y) | S(Y)) is unbiased for g(6).

Proor: This is a direct consequence of the-property
EyE(T(Y) | S(Y)) = EgT(Y) =g(8), VO€®.
]

The Rao-Blackwell estimator has a smaller variance than the original
estimator (see Theorem 3.1 and Property 5.2). In fact, this property
follows directly from

VeT(Y) = VeE(T(Y)|S(Y)) + EeVa(T(Y) | S(Y))

= VE(T(Y)|S5(Y)).

Example 6.5: Consider the sampling model of Example 6.1. The un-
biased estimator T'(Y") = (2/n) Y ;- ¥; of 8 is not a function of the
sufficient statistic S(V) = sup;; . ,(¥3).
To determine the Rao-Blackwell improved estimator, we note that
EM| sup Yi=2)
i=1,...,m
= P(sup Yi=W)E(N1|Y1=2 sup Yi=V1)
t==1,...,70 i=1,...,72
+Y P(sup Vi=Y)E(Wi|Y;=2Y1<z Yi<z i#1,j)
=2 i=1,...,n

1 n—1
A -
n n

E(Y1 l Y, < Z)

= “(z+(n-1)

(n+1)z
2n

.

2 & 2(n+1)z n+1
E(a';”*‘ﬁi?,ﬁ”)—; 7~ n ”

Thus the Rao-Blackwell estimator is ((n + 1)/n)sup;—; . ,Yi. The
reader can verify directly that this estimator is unbiased as expected
(see Exercise 6.3).
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6.1.4 Conditional Models

When the model is conditional, i.e., when the probability distributions
in the model depend on the values taken by some exogenous variables,
it is frequent to use a definition of unbiasedness that is stronger than
Definition 6.1.

Definition 6.2: T(X,Y) is an estimator (conditionally) unbiased for
g(8) if and only if

Ey(TY,X)| X=2)=g(0), VOO,V eX.

It is equivalent to require that estimators are unbiased for every pos-
sible marginal distribution of the exogenous variables. For, if the marginal
distribution of X is v, we have

BT(Y,X) = A}MﬂKXHX=@d%ﬂ

=‘meww>
= g(0),Voeo,

which is nothing else than the unbiased condition relative to the joint
distribution of the pair (X,Y). Conversely, if the estimator is unbiased
for every marginal distribution v, it must be unbiased for every marginal
distribution with point mass &(z).

Estimators that are conditionally unbiased for g(f) are compared by
means of their variance covariance matrices conditional upon X.

6.2 Frechet—Darmois—Cramer—Rao

| Inequality

The Frechet-Darmois-Cramer—Rao (FDCR) inequality provides a lower
bound to the variance covariance matrices of unbiased estimators for
g(6). This inequality holds under suitable regularity conditions. In order

not to complicate the statement of the theorem, we begin by stating these
conditions.

Definition 6.3: A dominated parametric model with densities £(y;9),
# € ©, is said to be regular if:

(i) © is an open subset of IR,
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(i) £(y;0) is differentiable with respect to 6,
(i) [y, €(y;0)du(y) as a function of 0 is differentiable, and

o, (8, ;
50 ], w0 = [ 2 o))

(iv) The Fisher information matriz

dlog£(Y;0) 8log £(Y; 9))

(0) = Eo ( 30 56"

ezists and s nonsingular (i.e., positive definite) for every 6 € ©.

Models encountered in classical statistical problems are frequently
regular. Examples of nonregular models arise when models are not iden-
tified (condition (iv) is not satisfied) or are such that the support of their
distributions depends on the parameter. For instance, consider a random
sample Y3,...,Y, drawn from a uniform distribution U,9), 0 € R,
Then the likelihood function is

1
£(y; 0) = on Bsnpim ..... nYi<O:

Because the support depends on @ in this case, the likelihood is not
differentiable at § = sup;_, ., %:. Hence condition (ii) is not satisfied.

It is also necessary to impose some regularity conditions on unbiased
estimators. An estimator T'(Y) is said to be regular if it is square
integrable, i.e., if

Eo|T(YV)|? < +o0, VO €O,

and if fy T(y) £(y;0) du(y), as a function of 6, is differentiable with a
derivative satisfying

a [, 0
5 ], 70 ) duts) = [ 76) 2 6630) duto)

Theorem 6.1: Given a regular parametric model, every estimator T(Y)
that is regular and unbiased for g() € IR? has a variance covariance
matriz satisfying

99(0) 7 gy-199(0)’
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where 8g(8)/00' is the ¢ X p matriz of first partial derivatives of the
components of g with respect to the components of 6.

In particular, if g(d) = 0, then VgT(Y) > Z(6)~'. The quantity
(0g(6)/086")Z(6)~1(89(8)") /69), which is independent of the estimator
considered, is called the Frechet-Darmois-Cramer-Rao lower bound.

Proor: Differentiating the unbiasedness condition
ET(Y) = [ T() £0:0) duts) = @), V0 €O,

with respect to 8, we obtain

5 - e e

/ () 280 440y auiy)

Il

oy

Ee (T(Y) ——-——ual"g;(g,y 9)) .

From Section 3.3.1, we know that the score vector dlog(Y";6)/00 has
zero mean. Hence

é‘%gl = Covs (T(Y), Dlog UY';0) loggéY; 0)) .

In addition, from the multivariate version of Schwarz inequality (see
Property B.20), it follows that the matrix

Olog4(Y;0)
a0

dlog£(Y;0)\ 7' | dlog L(Y;6)
x Vo <———————-———69 ) Covg — 5 T},

VeT(Y) ~ Gove (T(Y),

is symmetric positive semidefinite. Since Vp (8log£(Y';6)/00) is nothing
else than Fisher information matrix, it follows that

69(9) 1—(9)—-1 ag(e)l .

VoT(Y) = 90’ Y]
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6.3 Best Unbiased Estimators

The unbiasedness condition allows us to restrict the class of estimators
under consideration. Thus the question of existence of a best estimator
can be reconsidered. ’

6.3.1 Efficient Estimators

Definition 6.4: Given a regular parametric model, o reqular unbiased
estimator of g(0) is efficient if its variance covariance matriz is equal to
the FDCR lower bound, i.e., if

89(6).... 1 8g(6)’
=5 Z(6) ,Voeo.

VaT(Y) = o

In particular, an efficient estimator of 4 is an estimator of which the vari-
ance covariance matrix is equal to the inverse of the Fisher information
matrix.

Property 6.4: An efficient estimator of g(6) is optimal in the class of
regular unbiased estimators.

PROOF: This is a straightforward consequence of the FDCR, inequality.
]

The next property characterizes the cases where there exists an effi-
cient estimator of g(@).

Property 6.5: Converse of FDCR. Inequality
Consider a regular parametric model and a function 9(8) of the
parameter 6 such that:

a) 04(y;6)/06 is continuous in 6 for every y,
b) 09(0)/86' is a nonsingular square matriz for every § € ©.

Then T(Y) is an efficient regular estimator of 9(0) if and-only if £(y;0)
can be written as

P
£y;9) = h(y) exp | 3 Q5(0)T3(w) + b(6)

J=1

where the functions @' = (Qy, ... ,Qp) and b are such that:
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(i) @ and b are differentiable,
(i1) 0Q(0)/08' is nonsingular,
(iii) g(6) = — (5Q'(0)/86)™" 8b(6)/06.

PRrROOF: First, consider the case where equality holds in the FDCR
inequality, i.e., suppose that

VoT(¥) - Cov (T(Y), Ol ri%) 9)>

dlog £(Y;60)\ dlog £(Y;6) 3
Ve(—-———-————-ae ) Covyg — ,T(Y) | =0.

Since this matrix is the variance covariance matrix of the residuals in the
population regression of T'(Y) on the components of dlogf(Y’;6)/06,
equality holds if and only if the residuals, which have zero mean, are
identically null. (Technical difficulties due to the presence of negligible
sets are avoided because of condition (a).) Thus we have

7(s) - Covo (1), ZEZEY )

v, (9log(¥;6) ~! dlogb(y;6)
o 90 96

This can also be written as

7() - 2076 2080 _ g(9), vy

9(0) =0, Vy,o.

It follows that

. -1
2}0_%20@,—0—) =1(6) (%%Q) (T(y) — 9(6)), V y,0.

Integrating with respect to @ given y shows that the logarithm of the
density is of the form

log £(y; ) = Q'(O)T(y) + b(0) + logh(y), V.0,

where Q(6) and b(@) are of dimensions px 1 and 1 x1 respectively.
Moreover, Q(#) and b(f) are differentiable, and their derivatives are

296) _ 1) (9‘1@)_1,

00 o0
ab(6) 8g(0)\ "
20— 16 (%2) g0
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Hence 6Q'(6)/80 is nonsingular, and

ob(6) _ 6Q’(9)

ie.

9(0) = -

(23)" 50

Conversely, if the family is exponential and satisfies conditions (i) —
(iii), then we can let

9(6) =~

(2g0)" a0

Then it is easy to see that T(Y) is an unbiased estimator of g(#). For,
differentiating the identity [ £(y;6)du(y) = 1 with respect to 8 gives

B—Qg}'j /y T(y) £(y:6) duly) + —5= 6b(0) / £(y; 6) du(y) =

ie.
Ob(0)

8Q/(0)E oT(Y) + 55~

=0,

ie.

] -1
EgT(Y) = — (3%0)) 625,?) 9(6).

To compute the variance covariance matrix of T(Y), we note that

/y T'(y) £(y;6) du(y) — o' (6) =

Hence the function g is differentiable. Differentiating again with respect
to 0 gives, after some algebra

a@’(é)))* 99(0) _

Eo(T(Y)T'(Y)) — g(6)g(6) - ( 50 a0

ie.

! =1 g
v = (52) 240
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To complete the proof, it remains to compute the Fisher information
matrix. Since the score is

Pogllyd) _ 990y, , 20)
00 - T+ "0
BQ (") 826) 7(y) - BoT(YY),
it follows that
76) = VBlog;éY 9?
- 020290
_ 04(6)3Q(0)
08 8¢ -

Because the parametric model is regular, then the information matrix
Z(0) and therefore dg’(8)/06 and HQ(0)/0¢’ are nonsingular. Hence we

can write
096 _ 14 (ag<o))*,

60 o0’
/ -1 a7
o - () ot
9g(6) - 39 (9)
90) (z() 2220,

Thus T'(Y) is an efficient estimator. O

Corollary 6.1: Under the assumptions of Property 6.5, the exponential
model is of minimal order p in the sense that the statistics Ty(Y),...,
Tp(Y) and the functions Q1(8),...,Qp(0) are each independent in the
- affine sense.

PROOF: The independence of T;(Y), i =1,...,p, follows from the non-
singularity of VgT'(Y). The independence of the functions Q;(8), j =
1,...,p follows from the nonsingularity of 0Q(6)/8¢'. O

Property 6.6: If T(Y) is a g x 1 efficient estimator of its mean and
if A and B are two constant matrices of dimensions r X q and v x 1
respectively, then the estimator AT(Y)-+B is also an efficient estimator
of its mean.
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PROOF: Since T(Y) is efficient, its variance covariance matrix is equal
to the FDCR lower bound for the parameter g(8) = E,T(Y)

Og(6 _108a(8)
W (y) = 220071012400

On the other hand, AT(Y') + B is an unbiased estimator of Ag(6) + B,
and its variance covariance matrix is

Vo(AT(Y)+B) = AV(T(Y))A’
AQ‘?.(@_I(Q)—IM A/

56 26
0(Ag(6)+B)._ ,._,8(Ag(8) +B) -
ey e

which is equal to the FDCR lower bound for the parameter function
Ag(6) + B. Thus AT(Y) + B is efficient. O

It is straightforward to obtain a converse to Property 6.6.

Property 6.7: Given a regular exponential model of minimal order p
with density

£(y;0) = h(y) exp (Z Q;(0)T;(y) + b(9)) ,
j=1

every efficient regular estimator is an affine function of the statistic
T(Y). Thus only offine functions of E¢T(Y) can be estimated
efficiently.

ProoF: If T*(Y) is an efficient estimator of g*(6), then the residuals in
the population regression of T*(Y") on 8log £(Y;6)/86 are null

* ag* (0) -1 610g€(Y, 0) — %
Now it suffices to note that the score vector is an affine function of T'(Y).
0

Property 6.8: If T'(Y) and T*(Y) are two efficient estimators of g(6)
and g*(6), respectively, then the statistic (T(Y), T*(Y)) is an efficient
estimator of (g(8), g*(8))'.

Proor: Let
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be the partitioned FDCR lower bound for the parameter vector (g(f),
g*(8)). The estimator (T'(Y),T*(Y)) is unbiased for (g(6),g*(9))".
Hence, from FDCR inequality, we obtain

T
Vb( T* )—Btoa
ie.

( 0 Cov(T(Y), T*(Y)) - Bggr ) >0
Cove(T*(Y),T(Y)) — Bgeg 0 =5

ie.
Cove(T(Y), T*(Y)) = Byg--
Thus Vy(T,T*)' = B and the estimator (T, T*)’ is efficient. O

6.3.2 Examples of Efficient Estimators
Example 6.6: Consider a random sample of size n drawn from a

Bernoulli distribution B(1,p). The model is exponential of minimal
order one with

£(y; p) = exp (n log (T%S) 7 +nlog(l —-p)) .
The functions Q(p) and b(p) are

Q) =nlog =, b(p) =nlog(l—).

The sufficient statistic T(Y) = Y is an efficient estimator of its mean
g(p) = p = —(db(p)/dp)(dQ(p)/dp). The efficiency of T(Y) = Y for p
can be verified directly since
VYi _ p(l-p)

n n

VY =

which is the inverse of the Fisher information matrix (see Example 3.13).
On the other hand, the estimator n/(n—1)((Y)?— (¥ /n)) is unbiased
for p? but is not efficient because it is a nonlinear function of Y.

Example 6.7: Consider a random sample of size n drawn from a normal
distribution N(m,o2). The density is

n 2
) 2y _ _ Y Yi/n mn_ _nmtT 7 2
Ly;m,o )-exp( e + poa iy 210g27r0' )
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A sufficient statistic is T(Y) = (¥2,7)’ where Y2 = L Y"1 | V2. More-
over, T(Y) is an efficient estimator of its mean

‘ _ Em,a’"‘ Y]E _ 0.2 + m2
Em,a'2T(Y) = ( Em,¢72Y1 = m .
Thus, in such a model, only parameter functions that are affine trans-

formations of (62 + m?,m)’ can be estimated efficiently. In particular,
the mean m can be estimated efficiently, but the variance cannot.

Example 6.8: The preceding example can be readily generalized to the
linear model with normal errors

Y =Xb+u,

where the conditional distribution of u given X is N(0, 6°I). The density
is

! ! ’
(bt |X) = ep{t o xx) XY -1
YX'Xb n \
TT5gr T 510g27ra }

A sufficient statistic is
_{ X'X)" X'y
T(Y) - ( Y'IY 1

which is an efficient estimator of

b b
I\ 6?2 )5\ ne2+¥X'Xp /-

As in Example 6.7, there exists an efficient estimator of the parameter
b. The variance o2, however, cannot be estimated efficiently.

6.3.3 Lehmann—Scheffé Theorem

Every efficient estimator is optimal in the class of unbiased regular esti-
mators. See Definition 6.4 and Property 6.4. The converse, however, is
not true. This is a consequence of the next property, which, in addition,
establishes the existence of best unbiased estimators in some cases and
provides a method for constructing such estimators.

Lehmann—~Scheffé Theorem 6.2: Suppose that there ezists a com-
plete sufficient statistic S(Y'). An unbiased estimator of g(f), which. is -
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a function of this statistic, i.e., is of the form T(Y) = h(S(Y)), is best
in the class of unbiased estimators.

PROOF: In view of the Rao-Blackwell construction (see Section 6.1.3),
it suffices to restrict our comparison to unbiased estimators that are
functions of S(Y). Thus let T*(Y) be another unbiased estimator of
this type, i.e., such that T*(Y") = A*(S(Y)). We have

Ey(T(Y)-T*(Y)) = E[h(S(Y)) - h"(S(Y))]
= g(0) —g(6) =0.
It follows from the completeness of S (see Definition 3.6) that A(S(Y))=
h*(S(Y)). Hence, the two estimators T and T™ are identical. That is,

there exists only one unbiased estimator that is a function of S(Y).
Moreover, this estimator is best by the Rao-Blackwell property. O

Under the assumptions of Theorem 6.2 it suffices to have an unbiased
estimator T'(Y) of g(6) in order to construct the best unbiased estimator.
Namely, it suffices to consider the Rao-Blackwell estimator E(T(Y) |
S(Y")), which is best unbiased.

Exponential models constitute an important class of models for which
there exist complete sufficient statistics.

Property 6.9: Consider the exponential model
T
£(y;0) = C(O)h(y) exp Y Q;()T5(y),
=1

where the mapping Q is bijective and the interior of Q(©) is nonempty.
Then the statistic T(Y) = (T1(Y),..., T (Y)) is complete.

ProoOF: We need to show that
Eog(T(Y))=0, V8= g(T(Y)) =0.

Since this condition does not depend on the chosen parameterization, we
can work with the canonical parameters ¢ = Q(0) = (g1,-..,4¢-). Now
consider a function g(T'(Y)) of the statistic T. Its mean is

Eog(T(Y)) = /y o(TW))C* @h(y) exp < ¢, T(y) > du(y),

with C*(q) = C(@~1(g)).

141



Unbiased Estimation

Let p*T denote the measure induced by T of u* = h-u. The preceding
equation becomes

. " T
BT =C"@ [ gtep < a,t > du (1)
)
Supposing that this expectation is zero for every value of ¢ implies that
/ g(t)exp < g,t>du* (1) =0, Vg.
)

The left-hand term is the Laplace transform of the measure g-u*7. This
transform is null only if the measure g - *T is null in view of Theorem
B.1 on Laplace transforms. That is, g = 0. O

Example 6.9: From Theorem 6.2 and Property 6.9, it follows that, in
an exponential model satisfying the conditions of Property 6.9, every
function of T'(Y) with a (finite) mean is a best unbiased estimator of its
mean. Although best unbiased, this estimator is, in general, not efficient
unless it is a linear function of 7(Y"). That is, the risk is-not, in general,
equal to the FDCR, lower bound. In some cases the risk can be larger
than the bound for every value of the parameter.

Example 6.10: Consider a random sample of size n drawn from a
normal distribution N(m, 02). The estimator

= Loy v = (- (7)),

z-*l

is a function of the complete sufficient statistic T'(Y") = ((¥2),¥)’. Thus
it is best unbiased for its mean Es® = 2. Its variance, which is equal
to 20*/(n — 1), is always larger than the FDCR lower bound, which is
equal to 20*/n (see Exercise 6.6).

Example 6.11: Consider a random sample Y;,...,Y, drawn from a
uniform distribution Ul fo.6]> 6 € IR**. The statistic S(Y) = SUDjw,... n Vi
is sufficient. To see that it is also complete, we can determine its dlStI’l~
bution, which is given by

P(S(Y)<s) = Pg(Y- <s, Vi)

HPg(Y<3) ()

ge=1

I
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where s € [0,6]. The density is obtained by differentiating. It is

n n-1
25(.9;0): sen ﬂosssg.

Now consider a continuous function (to simplify) of the statistic S(Y")

that has zero mean for every 0, i.e.
EGQ(S(Y)) = 0, Vo> 07

ie.

8 . n—1
ns
/0 on g(s)ds=0,V8>0,

ie.
6
/ s§" 1g(s) ds =0, V8 >0.
0

Differentiating with respect to 6, we obtain
6" 19(8), V>0,

ie.
g(6)=0, Vo>0.

Thus the statistic S(Y") is complete. The best unbiased estimator of 8 is
the function of S(Y) with mean 6 that is given in Example 6.5, namely,

(n+1)/nsup;; ., Y.

6.3.4 Uniqueness of the Best Unbiased Estimator

Property 6.10: A best unbiased estimator T*(Y) of g(8) is uncorrelated
with the difference between itself and every other unbiased estimator of

9(8)-

Proor: It is equivalent to show that every linear combination w/T™ of

T* is uncorrelated with every linear combination v/ (T —T*) of (T' —T*),

where T is an arbitrary unbiased estimator. Consider the estimator
S5.(Y) =u'T*(Y) + o/ (T(Y) — T*(Y)).

This estimator is unbiased for 4/g(f). Its variance is

VoSa(Y) = Ve(W'T*(Y))+ 2a Covg[u/T*(Y),v'(T'(Y) — T*(Y))]

+ V' (T(Y) - T*(Y))],
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which is larger than the variance of w'T*(Y") because the latter is best
unbiased. Hence

Va, o®VR/(T(Y)-T"(Y))]
+2a Covg[u'T*(Y), ' (T(Y) — T*(Y))]-> 0.
This second degree polynomial in e is nonnegative only if
Covp[u'T*(Y),v'(T(Y) — T*(Y))] = 0.
0O

Property 6.10 implies that if 7*(Y") is best unbiased and T'(Y) unbi-
ased, then -

VI(Y) = V[T*(Y)+(T(Y)~T*(Y))]
= VoT*(Y) + Vo(T(Y) ~ T*(Y)).
Hence
Vo(T(Y) = T*(Y)) = VoT(Y) — VaT*(Y). (6.1)
Property 6.11: The best unbiased estimator of g(f) is unique.

Proor: If T(Y) and T*(Y) are two best unbiased estimators, then we
have VoT*(Y) = VoT'(Y'), V 6. From equation (6.1), it follows that

V(T*(Y)-T(Y)) =0, V4,
which implies

"(Y) - T(Y) Eo(T*(Y) - T(Y))

= g(0) —g(6)=0.
In particular, an efficient estimator of g(#) is necessarily unique.

6.4 Best Invariant Unbiased Estimators

The results of Section 6.3 can be used to find best unbiased estimators
in models that are parametric. These theorems no longer apply to semi-
parametric models such as models in which only the first two moments
are parameterized. Nonetheless, in some cases, it is possible to find
best unbiased estimators by imposing additional invariance conditions
on estimators.

In this section, we consider such an approach:
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a) when the parameters of interest appear linearly in the first moment,
and when the class of estimators is restricted to estimators that
are linear in the observations, or

b) when the parameters of interest appear in the second moment and
the class of estimators is restricted to quadratic estimators.

6.4.1 Gauss—Markov Theorem
It is assumed that the observations satisfy the linear model
Y=Xb+u, BE(u|X)=0, V(u|X) =02,

where Y is an n-dimensional vector and X is an n x K matrix of rank
K. The model is conditional on X. Contrary to Example 6.8, no other
assumptions are made on the conditional distribution of the errors.

The parameter of interest is the K-dimensional vector b, which is
linearly related to the conditional mean of Y given X. We consider
unbiased estimators that are linear in ¥. The reasoning is conditional
on X.
Gauss—Markov Theorem 6.3: The Ordinary Least Squares (OLS)
estimator b(Y) = (X'X)"'X'Y is best in the class of linear unbiased
estimators of b. Its variance is VbH(Y) = o?(X'X) 1.
Proor: The OLS estimator is clearly linear and unbiased. Its variance
covariance matrix is A

Vb(Y) = o?(X'X)"L.
Consider another linear estimator of b. It is of the form b(Y) = AY. It
is unbiased (conditionally on X) if
Ey02b(Y)=AXb=b Vb,o?

ie,if AX =L
. We now establish a property analogous to Property 6.10, i.e., that
b(Y") is uncorrelated with 5(Y) — b(Y'). We have

Covpq2 (B(Y),b(Y) - B(Y))

= Covp.z ((X'X)"1X'Y, (X'X)"1X'Y — AY)

FA((X'X)"! - (X'X)1X'A)
FA((X'X)™ - (X'X)™)
~ (since AX =1)
= 0.
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The desired result follows from
VH(Y) = V(Y) + V(B(Y) - b(Y)) = VB(Y).
O

Corollary 6.2: Consider the conditional model
y=Xb+u with E(x|X) =0, V(u|X) = o2Qy,

where g is known positive definite and X is of full colummn rank.
The Generalized Least Squares (GLS) estimator b(Y) = (X'Q5'X)~!
X'Q5'Y is best in the class of linear unbiased estimators of b. Its vari-

ance is VH(Y) = 02(X'Q5 X)L, '

Proor: It suffices to apply the preceding result after an appropri-
ate transformation. Specifically, we want to find the best estimator

of the form b(Y) = AY. Using the matrix Qg 172 we have b(Y) =
AQLY2Q %Y = A*Y*, where A* = AQY? and Y* = ;%Y. Thus
the problem becomes equivalent to finding A*, i.e., the best unbiased
estimator that is linear in Y™*. Since Y* satisfies the model

Y* = X*b+u*, with X* = 052X,
v = Q7Y% V| X) =0,

it follows that the solution is
b(Y) = (X¥X*)IXY* = (X'Qp ' X)X/ lY.
m]

Because the reasoning is conditional on X, the condition that € is
known means that €2y does not depend on unknown parameters although
it may depend on X.

6.4.2 Best Quadratic Unbiased Estimators
It is assumed that the observations satisfy the linear model
Y =Xb+u,
where, conditionally o X, the errors u;,¢ = 1,...,n, are independent

with E(u; | X) =0, E(x? | X) =02, E(ud | X) =0, E(u} | X) = 30%.
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For instance, the latter assumption on the fourth-order moment is sat-
isfied when the errors are normal. The parameter of interest is now o2,
and we consider estimators that are unbiased and quadratic, i.e., that
are second-order homogeneous polynomials in the observations Y¥;. In
particular, this implies that estimators of the variance are multiplied by
A% when the observation vector Y is multiplied by A. These estima-~
tors are of the form 0?(Y) = Y’AY where A is a matrix that can be
chosen to be symmetric. Moreover, since o? is a nonnegative parameter,
the matrix A must be positive semidefinite so that the corresponding
variance estimator remains nonnegative.

Now such an estimator is unbiased if

E(Y'AY) = 0%, V b,0°.
Since
E(Y'AY) = ETr (Y'AY)
E Tr (AYY")
Tr (AEYY)
(Tr (AXB(Xb)) + Tr 62A
VX'AXb+0? Tr A,
the unbiasedness condition implies
X'AX =0,
TrA=1.
Next consider the second-order moment of the above estimator. Since
the estimator is unbiased, its variance is the expectation of the square of

the estimator. Hence searching for the best quadratic unbiased estimator
becomes equivalent to solving the following optimization problem

min E(Y'AY)?,
A

i

subject to A being symmetric positive definite, X’AX =0, and Tr A =
1.

Consider the quantity E(Y’AY)2. Since A is symmetric positive
definite and since X'AX = 0, it follows that AX = 0. Hence, subject to
the constraints of the problem, Y’AY is equal to (Y —Xb)'A(Y —Xb) =
u' Au. Moreover

n 7 n T
E(W'Au)® = E Z Z QiU Z Z AUkl

i=1 j=1 k=1 l=1 .
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n

n
Z Z aijaklE(uiujukul).

n n
=1 k=1 l=1

P>

i==] j

Consider each term of this sum. If the-index 1 (say) appears only once,
then
E(usujupwy) = Bu;E(ujugy) = 0.

Thus, only in the following cases, the quantity E(u;jujuru;) is nonzero,
in which case it is given by
Buf =30 if i=u=k=]I,
Ewlu)=ElEul =¢* if i=j k=1 (i # k),
ot i i=k, j=1(i+#j),
ot i i=1, j=k(i#7).

From these expressions we obtain

n n n
E@'Au)? = a? 30 + auai0t
13 33
=1 i=1 j=1

i

n n
+2 Z Z a?ja4

i=1 j=1

i
n n n n
= o\ XD ane+23 3 d
i=1 j=1 d=] j=1
o* ((Tr A)? +2 Tr A?)
o* (1+2 Tr (A?),

where we have used the constraint Tr A = 1.
Therefore the optimization problem becomes

min Tr (A?),
A

subject to A being symmetric positive definite, X’AX = 0, and' Tr A =
1. The condition X’AX = 0 means that the column vectors of X are
eigenvectors of A associated with the zero eigenvalue. Let Q be the or-
thogonal matrix of which the first X column vectors are the eigenvectors
of A belonging to the subspace generated by the column vectors of X,
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and the last n — K column vectors are the eigenvectors of A belonging
to the subspace orthogonal to X. Thus A can be written as

0 0

A=QA Q, with A =
AK+1

0 An

Since Tr A = Tr A and Tr A% = Tr A2, the optimization problem can
be written in terms of the eigenvalues of A

n
min Tr A = )" A},
=K1
n
subject to Tr A = Z A= 1
i=K 41

This problem has a unique solution, which is

Ai = K+1,...,n.

L
n-K’

Thus the matrix A corresponding to the optimal estimator is

1 0 0 Vo_ 1 o
A=n-—K Q( 0 In-x )Q ”n—K(I P),

where P is the orthogonal projection on to the subspace generated by
the column vectors of X. Hence the optimal estimator is

1
2 " —
$ = == KY I-P)Y
W'l
n—K’
where % denote the vector of OLS residuals

i=1-P)Y =Y - Xb.

Property 6.12: Consider the linear model defined at the beginning of
Section 6.4.2. Then the estimator

1 W'a
2 _ YA — e,
S“n—KYa P)Y n—K’

is the best quadratic unbiased estimator of 0.
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6.5 DBiased and Unbiased Estimators

6.5.1 Nonlinear Functions of an Unbiased Estimator

We have seen that if T(Y") is an unbiased estimator of g{f) then ATY)+
B is an unbiased estimator of Ag(d) + B. What happens if the map-
ping is no longer affine ? In general, if & is a nonlinear function then
Egh(T(Y)) = h(EoT(Y)) no longer holds. That is, a nonlinear func-
tion of an unbiased estimator is no longer an unbiased estimator of the
corresponding nonlinear function of the parameter.

More precise results can be obtained when the function is convex or
concave. To simplify, suppose that g(#) is ascalar function, and let  be
a convex function from IR to JR. From Jensen’s inequality (see B.9), we
have

ie.

Egh(T(Y)) 2 h(g(0)), V0,

where equality holds only if & is linear. Hence, there is overestimation on
average of the corresponding transformation of the parameter. Similarly,
underestimation is obtained when the function h is concave.

Property 6.13: Let T(Y) be an unbiased estimator of 9(0) € R:
a) If h is convez, then h(T(Y)) overestimates h(g(6)) on average,

b) If h is concave, then h(T(Y)) underestimates h(g(f)) on average.

Example 6.12: Let Yi,...,Y¥, be a random sample from a common
distribution with mean m and variance ¢2. Then

1 < -
2 _ }: . V)2
Sﬁn_li:l(x Y)

is an unbiased estimator of o2. Since the square root function is concave,
then the estimator s = v/s2 underestimates the standard error o = /2.

The fact that unbiased properties are not preserved by nonlinear
transformations suggests that unbiased properties should not be required
at all costs. A more important criterion is that of risk minimization.
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6.5.2 'Inadmissible Best Unbiased Estimators

A best unbiased estimator is, by definition, better than any other un-
biased estimator. It may, however, happen that a best unbiased estima-
tor is inadmissible, in which case any estimator that (strictly) dominates
it must be biaged.

Property 6.14: A best unbiased estimator may be inadmissible.

ProoF: It suffices to find an example where the best unbiased estimator
is (strictly) dominated by a biased estimator.

Let Yi,...,Y, be a random sample from N(0,02). The estimator
S(Y) = 137, Y2 of o2 is efficient and hence best unbiased. This
estimator is such that nS(Y)/o? ~ x%(n). Thus its risk function is

20
2 o ape—
R(S,0%) n'
Now consider the estimator defined by

n

T(v) == (% - TP

f==1
The statistic nT'(Y)/o? follows a x*(n — 1). Hence

-1 4 -1
E T(Y)= azg-"—n-—l, V2T (Y) = 204(—”-7;7-2.

The statistic T is biased, and its risk function is

n
= 20 2 + o3
- - 04(2”“1).
n2

Tt is easy to see that R(T,0?) < R(S,c?). Therefore the biased estimator
T(Y) strictly dominates the efficient estimator S(Y). O

Example 6.13: James—Stein Estimator.

Another well-known example is the inadmissibility of the OLS esti-
mator when the number of parameters is strictly larger than two. We
shall verify this statement in the simple case where the observations
vector Y follows a normal distribution N(6,I) with 6 € IRP.
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The OLS estimator of 6 is § = Y. This estimator is efficient and
hence best unbiased for . Note, however, that the squared length of
the estimator, i.e., |d]|2 = ||Y||?, overestimates 16]|? (see Property 6.13)
and that the bias can be substantial. Indeed, E|{0[|2 - ||6)]? = p and
the smaller ||0]|? the larger the relative bias on ||§]|?. This suggests to
transform the OLS estimator by multiplying it by a shrinkage factor that
decreases with ||0]|2. Since ||0||? is unknown, it can be replaced by ||4]|2.

For instance, consider the estimator defined by

g, = (1 - —C—-> g,
ll6}12

where c is a positive constant. This choice gives a shrinkage factor equal
to 1 — ¢/||f]|2. The shrinkage factor is not always positive. It could be

replaced by max (1 —¢/)|8)12, ) Now consider the scalar quadratic risk

associated to §,. We have

Eq\é. - 6| Egllf -6~ ——-lf2

el

» -6 9 1
Eg||6 ~ 8)|2 — 2cEp (——-———— +PEp | ——|.
lief2 612

Thus the difference between the risk associated with éc and that of the
OLS estimator is

o
—2¢cFEy <_(_0;%)__0_) +c2E, (-—:1—-5)
18l 141
A2 2 _nlh
_ B, (uen ol - &8 0)) +02E9( }2)
HE 1

1 6-0
~2¢+ (2¢]|8)|* + c2)Eq (?) + 20’ Ey ( " ) .
el llel?

We must determine whether this difference is positive or negative. Recall
that, if X and Z are two random variables such that the marginal distri-
bution of Z is P(]|0]|2/2), i.e., Poisson with parameter ||0]|2/2, and the
conditional distribution of X given Z is x2(p + 2Z2), then the marginal
distribution of X is a noncentral chi-square x?(p, ||9]|?) (see Property

I

]
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B.53). This result is useful here since ||§[|2 ~ x2(p, ||6]|?). We have

1 : 1 1
? (nouz> ? o(nonz‘ ) a(p-2+2z)

On the other hand, we have

1 N 1 1 1 \
o (nétP) ~ [ T -5l - ol

and

5 (5=o522) = X rrrms (1) ) - ()

Differentiating both expressions with respect to 8 gives

9 1 9 1
0™ (W) =56 (p— 2+2z) ’

6-0 9 27 — uenz,)
Bo[222) = —F .
o(umz) 62 9<p—2+2Z

Hence the difference between the two risk functions is

ie.

R(B.,0) — R(6,06)

1 2Z — |10
= - 24 02 — o2 A
= —2c+ (2¢||0||* + c*)Ey (_’p-——2+2Z)+2CE9 (p——2+2Z

(¢ = 2e(p — 2)) Eo (Fl“zlfzf) .

i

)

When p is larger or equal to two, the quantity Fg (1/(p — 2+ 22)) is

positive since Z is positive. Hence it is possible to choose ¢ so

that

¢ — 2¢(p — 2) < 0. We can even find an optimal value for c¢. This value

¢p, is the solution that maximizes (—c?+2c(p—2)). Hence ¢y = p—2.

The

corresponding estimator, 8 = (1 —-(-2)/ nénz) § is called the James—

Stein estimator.
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6.6 Exercises

EXERCISE 6.1: Consider a statistical model M = (Y, {Ps, 6 € ©}), and
a nested model My = (Y, {Ps, 0 € ©g}) where @y C ©. Show that an
unbiased estimator for 6 in the model My is not necessarily unbiased for
0 in the model M.

EXERCISE 6.2: Consider a random sample Y1, ...,Y, drawn from a dis-
crete distribution that assigns 0.5 probabilities to the points ¢4 and 65,
01 < 03, 61,0, € R. Verify that there does not exist unbiased estimators
for 6, and 6. Characterize the functions of the parameters that can be
estimated in an unbiased fashion. A

EXERCISE 6.3: Let Y3, ...,Y; be arandom sample drawn from a uniform
distribution Up,g;, 60> 0.

a) Verify that Py(sup¥; < 2) = (z/6)".

b) Show that the mean of a positive real random variable Z with
cumulative distribution function F(z) is

EZ= / 1 = F(2))d.
0

¢) Find the mean of Z = supY;, and compare the result to that of
Example 6.5.

EXERCISE 6.4: Consider a random sample Y7,...,Y, drawn from a Pois-
son distribution with parameter . Consider the estimation of g(0) =

exp(—0).
a) Verify that the estimator

T(Y) =Lys=0) = { 0 otherwise,
is unbiased for g(4).

b) Determine the conditional distribution of ¥; given the sufficient
statistic § =37 | ¥;.

¢) Conclude that the Rao—Blackwell improved estimator of T'(Y) is
s
(1-2)°.
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d) Show that the estimator obtained in c) is best unbiased. Show that
it is not efficient.

EXERCISE 6.5: Consider a model parameterized by 6 = (a,8)’. Let
é be an efficient estimator of @ and § be an unbiased estimator of S.
Verify that the covariance Covg(&, ) does not depend on the choice of

3. Conclude that, in the normal case, the sample mean ¥ is uncorrelated
with every unbiased estimator of the variance o2.

EXERCISE 6.6: Let Y1,...,Y, be a random sample drawn from a normal
distribution N(m,o?). Find the Fisher information matrix and compute
its inverse. Determine the variance of

1 o

i=1
Hint: Use the fact that (n — 1)5%/02 ~ x%(n — 1).
EXERCISE 6.7: Consider a random sample Y3,...,Y, drawn from a nor-

mal distribution N(m,o2). Characterize the estimators of o2 that are
unbiased, quadratic, and invariant with respect to permutations. What
do you conclude ?

EXERCISE 6.8: Consider the simple linear regression model
y; = bg +biz; +ui, E(u; | 2:)=0,i=1,...,n.
This model can also be written as
y; = ¢o + b1z} + u; where z; = x; — T and cg = bp + b1 Z.

Verify that the explanatory variables z* is orthogonal to the constant
term. Conclude that n .
by = Zi:l ?Jimzi ’
Z'i.:l Z:
is equal to the OLS estimator of b;, and hence that it is unbiased.

EXERCISE 6.9: Consider the model
Y = Xb+u where E(u | X) =0, V(u | X) = 0?Qp.
a) Verify that the OLS estimator of b, which is b = (X'X)~!X'Y is

unbiased for b. Conclude that its variance is larger (in the matrix
sense) than that of the GLS estimator (see Corollary 6.2).
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b) Give a necessary and sufficient condition for these two estimators
to have the same variance covariance matrix.

EXERCISE 6.10: Consider a homogeneous model parameterized by 8 €
© C R. One wants to find a-lower bound for the variances of unbiased
estimators of # that is more stringent than the FDCR lower bound.

a) Differentiate twice the equality 1 = fy L(y;0)du(y) and the un-
biasedness condition FEgT'(Y) = fy T(y)¥(y; 0)du(y) = 6 with re-
spect to 6.

b) Let

%3 . 2V ,
6(v;0) = 2850y (moge(Y, ), 1 &y; a)) |

o0 06 | L(Y;60) 062
where EL denotes the population linear regression. Verify that

E¢G(Y;6) = 0 and Eo(T(Y)G(Y;0)) = 1.

¢) Conclude that
1

ViI'Y) 2 g mwigy:

Verify that

VeG(Y:0) < Ve (W) .

00
‘What do you conclude ?
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CHAPTER 7

Mazximum Likelihood
Estimation

7.1 Principle
7.1.1 Definition

We consider a parametric model in which the joint distribution of Y =
(Y1,...,Y,) has a density £(y;6) with respect to a measure p. Thus
Py = £(y;0) - 1 where § € © C IRP. Once y = (y1,...,¥n) is observed,
the maximum likelihood method consists in retaining as an estimate
of the parameter @ a value 0(y) that maximizes the likelihood function
6 — £(y;6). Ez ante, ie., prior to the observa,tlons, y is unknown.
Nonetheless, we can determine the mapping 6 and hence study the esti-
mator (y), which is called the mazimum likelihood (ML) estimator.

Definition 7.1: A mazimum likelihood estimator of 8 is-a solution to
the mazimization problem

max 2Y;0).
Because the solutions to an optimization problem remain unchanged
when the objective function is transformed by a strictly increasing map-

ping, a maximum likelihood estimator is also obtained as a solution to

max log £(Y; 0). (7.1)
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Using the logarithm of the likelihood often allows some simplifications
in the numerical determination of the maximum likelihood estimator as
well as in the study of the properties of the estimator. This is because the
logarithm function changes products into sums and removes exponential
functions that appear in probability density functions. .

Remark 7.1: By definition, the mazimum likelihood estimator of a
function g(8) of the parameteris g(é)), where 4 is the maximum likelihood
estimator of 8. See also Property 7.7 below.

Remark 7.2: In the case of conditional models defined by families
of conditional densities £(y | z;8), a (conditional) maximum likelihood
estimator is defined as a solution to maxgee (Y | X;6). In general, a
solution depends on both Y and X.

7.1.2 Three Difficulties

Although intuitive, Definition 7.1 raises a few difficulties which we now
discuss.

a) Nonuniqueness of the Likelihood Function

When the observations are discrete, the likelihood function is the map-
ping that associates £(y;6) = Po(Y = y) to every #. In this case the
likelihood function is defined unambiguously. This is not so when the
distribution of the observations has a continuous part. For instance,
suppose that Y3,...,Y}, is a random sample drawn from the normal dis-
tribution N(6,1). Usually, one considers the joint density

6(y;0) = G )n/z (ehp 22(%-0 )
i=1

Other choices of densities that lead to the same family of distributions
are possible. For instance, we can use

oo { o), i Yo yz # 9,
£a(v;6) = { 100, if S y2=4.

The likelihood function is modified on the set {37, y2 = 6}, which has

zero probability. Hence £; is another density for P, with respect to the
Lebesgue measure.
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A direct application of the maximum likelihood method to the family
¢ leads to 6:(Y) = Y. On the other hand, the same method applied to
the family £, gives ,(Y) = Y7, Y2.

Thus, modifying the density on a negligible set may change the re-
sulting estimator. To avoid such a difficulty, whenever possible, one
may require densities to be continuous in y or piecewise continuous on
compact sets with nonempty interiors.

b) Nonexistence of a Solution to the Maximization Problem

The nonexistence of 6(y) may occur for all values of y or for some of
them. In general, this is due either to the fact that the parameter space
© is open or that the log-likelihood function is discontinuous in 4.

Example 7.1: Consider a random variable Y7 that follows a binomial
distribution B (1,1/(1 + exp#)) where 6§ € © = IR. If the observation is
y1 = 1, then £(1;0) = 1/(1+exp ). The likelihood function is decreasing,
and its maximum is not attained on ©. A maximum would be reached if
the parameter space is closed, which is the case if ©® = R = R U {£c0}.
Then the maximum likelihood estimate would be §(1) = —co. A similar
reasoning applies to £(0;6), i.e., when y; = 0.

Example 7.2: Now suppose that one has two independent random vari-
ables Y7 and Y3, each distributed as B (1,1/(1 + exp#)). As in Example
7.1, it is easy to see that there does not exist a maximum likelihood
estimate when the observations are y = (0,0) or y = (1,1). On the
other hand, the maximum likelihood estimate exists when y = (0,1) or
y = (1,0). Specifically, we have

expf

£((1,0);0) = £((0,1);0) = A+ expd

This function attains a unique maximum at § = 0. Thus we have
9((1,0)) =6((0,1)) =0.

A sufficient condition for the existence of a maximum likelihood es-
timator is given next.

Property 7.1: Sufficient Condition for Existence

If the parameter space © is compact and if the likelihood function
0 s £(y; 8) is continuous on O, then there exists a mazimum likelihood
estimator.
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¢) Multiple Solutions to the Maximization Problem
Multiple solutions may arise for all values of y or for some of them.

Example 7.3: One reason for multiple solutions is the nonidentification
of the parameter 6. Specifically, consider a nonidentified model where
each value 6 of the parameter is associated with another value 6* # 6
that leads to the same distribution £(Y;6) = £(Y’; 6*). Let h denote the
mapping that associates §* = h(d) to §. Thus if §(Y) is a maximum like-
lihood estimator, then 6*(Y) = h{6(Y)) is another maximum likelihood
estimator because it leads to the same value of the likelihood function. If,
however, the parameter function g(#) is identified in this model, then we
have g(6) = g(6*) and g(d(Y)) = g(6*(Y")). Therefore multiple solutions
due to nonidentification disappear for maximum likelihood estimations
of identified functions of the parameters.

Example 7.4: To illustrate the case of multiple solutions due to non-
identification of the parameter, consider a linear model Y ~ N(Xb,I)
where the matrix X is of size n x p and of rank strictly smaller than p.
The likelihood function is

£y | X50) = (-2~7;§n—/2exp {—%(y - Xb)'(y - Xb)} ,

which is maximized at values of b satisfying X'Xb = X'y, i.e., at values
that are associated with vectors in IRF that are in a subspace of dimension
p - rank X'X.

Multiple solutions may also arise when the model is identified.

Example 7.5: Let 17,...,Y, be a random sample drawn from the
uniform distribution Upg,g41). The likelihood function is

Uy:0) = JIf@:s6)=]]Ts<u<rso
i=1 g=]

= ninfyi-ZB Ilempyi.<_1+9-

The solutions to the maximization of £(y; §) are all the values § between
supy; — 1 and inf 3. In this example there is an infinity of solutions to
the maximization problem.

Example 7.6: Sometimes there may exist a finite number of different so-
lutions to the maximization problem for different observations. Consider
two independent random variables ¥; and Y5 following each a translated

162



7.1. PRINCIPLE

Cauchy distribution with density (1/7)(1/(1+ (y—0)?)). The likelihood
function is

11 1

1+ - 021+ (y2—6)*

The likelihood function converges to zero when 8 converges to 300 . Itis
symmetric about § = (y1 +y2)/2, i.e., £(y1,y2;0) = £(y1,y2; 1 +y2 — ).

To determine the maximizing values of this function, we consider the
values at which the first derivative is null. We have

y1,y2;0) =

‘g‘g‘(yl,yz;e)
_ , 2(y1 - 9) 2(y2 — 9)
- E(ylvy%g) [1 + (;l _ 0)2 + 14 (22 . 0)2}
5) (y1 +y2 — 20)(0% — (v1 + 92)0 + 1 + 3132)
(1+ (@ - 021+ (y2 — )%

The discriminant of the second-order equations 82— (y; +y2)0+1+y1y2 =
0is (y1 — y2)? — 4. If it is negative, then the shape of the likelihood
function is of the form pictured below. Moreover, there is a unique
maximum at §(y) = (y1 + y2)/2.

= z‘e(ylv Y23

Hyi,y2:0) &

1
!
!
1
1
t
|
[
1
L+

-V

Y y2

2
Figure 7.1: Unimodal Likelihood Function

On the other hand, if the discriminant is positive, the shape of the
likelihood function is of the form pictured below. The maximization
problem has two solutions 6;(y) and 6;(y) that are symmetric about
(V1 +Y2)/2.

A sufficient condition for the uniqueness of the maximum likelihood
estimator is given next.
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Figure 7.2: Bimodal Likelihood Function

E

Property 7.2: If the parameter space © is conver and if the log-
likelihood function is strictly concave in &€ = h(8), where h(-) is a bijective
transformation of the parameter, then the mazimum likelihood estimator
is unique when it exists.

PrOOF: Suppose the contrary. There would exist at least two distinct
solutions 6; (y) and 62(y). Since the function log #(y; §) is strictly concave
in £ = h(#), we would have

VAe(0,1) logf(y;6) > Alog(y;61) + (1 — A)log £(y; 62),

where 6(y) = h1 (/\h(él yH)+@2- )\)h(ég(y))). This contradicts the
property that §; and &, give the same maximal log-likelihood value. [

Example 7.7: A model, which is frequently used to explain how un-
employment spells depend on the ages of the unemployed individuals,
relies on Poisson processes. Specifically, suppose that, conditionally on
ages Z1,...,Zn, unemployment spells 31, ... ; ¥, are independent and ex-
ponentially distributed with a mean that depends exponentially on the
age of the individual

F(i | 23300, b1) = exp(bo + brz) exp(—y; exp(bo + b12:)).
The log-likelihood function is

Zlogf(yi | 233 b0,b1) = Z(bo +biz;) — Zyi exp(bg + byz;).
i=1

i=1 i=1

Since y; is nonnegative, the log-likelihood function is strictly concave in
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by and by as soon as one y; is nonzero. It follows that the maximum
likelihood estimate is unique on | Ji_, (y; # 0).

7.1.3 An Interpretation of ML Estimation

To simplify, we consider a random sample of size n drawn from a discrete
distribution with probabilities pr(6) and values g,k =1,..., K. Let ng
denote the number of observations with value §x. The log-likelihood
function is given by

K
L(y;0) = ) _ nz log pi(6).
k=1

The maximum likelihood estimator is obtained by maximizing L(Y’;6),
where LL(y;0) = E;Ic{=1 2% log pr(6), or by minimizing I(Pp | P), where
P denotes the empirical distribution P = (1‘7-1&, k=1,...,.K ) and [ is the
Kullback discrepancy measure (see Definition 1.5). Hence the maximum
likelihood method reduces to the search for the distribution in the model
that is closest to the empirical distribution according to the Kullback
discrepancy measure I.

7.2 Likelihood Equations

7.2.1 General Remarks

Maximum likelihood estimators are frequently found by solving the first-
order conditions of the maximization problem. For instance, this method
was used in Example 7.6. It is, however, important to note that the first-
order conditions are neither sufficient nor necessary unless additional
assumptions are satisfied.

Example 7.8: To illustrate that the first-order conditions are not nec-
essary, consider a random sample Yi,...,Y, drawn from a distribution
with density

f(y;0) =exp—(y— 0Ly, 0€ R
The likelihood function is

Uy;0) = [[f®:9)

i=1
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n
= exp (-' Zyi + nf’) To<ing gy -

d==]1

The likelihood function 6 — £(y; ) is graphed below.

I(y; ) A

] ‘
] 9

inf y;
i

Figure 7.3: Likelihood Function

The likelihood function attains a unique maximum at 4(y) = inf; y;.
The left derivative of the likelihood function, however, is not zero at this
point.

Example 7.9: Conversely, consider a value é(y) at which the first
derivative is zero. Then O(y) does not correspond necessarily to a maxi-
mum of the likelihood function. For instance, 0(y) may lead to a mini-
mum (see Example 7.6) or to an inflexion point. These cases are easy to
distinguish by examining the matrix of second partial derivatives. Note,
however, that, even if the matrix of second partial derivatives is negative
definite, the value H(y) may correspond to a local maximum and not to
a global maximum.

In practice, to determine the ML estimator é(y), one finds the values
at which the first partial derivatives are zero. Then, one determines
the local maxima 9 among those values and the corresponding values
Z; of the function £ (or L; of the function L = log£). The values b;
corresponding to the maximum value 7 = max; 2 (or L= max; L; ) are
retained. It is then necessary to compare this value £ to the maximum
value attained by £ on the boundary of ©.

It is frequently difficult to determine all the local maxima. The pre-
ceding procedure greatly simplifies when £ or L satisfy some concavity
properties; in which case the first-order conditions become sufficient for
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a global maximum, or when the likelihood function converges to zero at
infinity, in which case maxima belong to a bounded set.

7.2.2 Unconstrained Maxima

The first-order conditions are necessary in the well-known case consid-
ered in the next property, which is thus given without proof.

Property 7.3: If 0 = (64,...,0,) € © C IR, if the log-likelihood
function is differentiable in 0, and if 6(y) belongs to the interior of ©,
then the mazimum likelihood estimator satisfies

OL(y;8) _ 0logt(y;0) _
09 a0 -

These equations are called the likelihood egquations.

0.

Example 7.10: Let Y3,...,Y, be a random sample drawn from a trans-
lated logistic distribution with density

=)
69 = Trepm-ap <%

The log-likelihood function is

L(y0) = > logf(y:0)
ge=1
= Y (%—0)—2) log(l+exp(y; —0)).
d=1 f==1

The log-likelihood function is continuous in §. Moreover, when 6 diverges
to oo, then L(y;0) diverges to —oo. Hence the likelihood function
attains a global maximum on IR, which is a solution to the likelihood
equation
_ 0L(y;60) _ = _exp(y; — 0)
0= T n+ 22 T

Tt is known that such an equation has at least one solution. This solution,
however, cannot be determined in closed form. Thus it is necessary to use
. some numerical algorithms to solve the likelihood equation (see Chapter
13).
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Example 7.11: Let Y7,...,Y}, be a random sample drawn from a Pois-
son distribution P{)X). The log-likelihood function is

n n.
Ly ) =~nx+ Y wlogh—Y  log(u!).

f==1 iz=1

This function is strictly concave in A provided there exists at least one
nonzero observed y;. It atrains a maximum at pY satisfying

0= aL(:% = —n + Z yz

=1

Hence A = 7.

7.2.3 Constrained Maxima

Statistical models are frequently defined through explicit constraints on
parameters. The most common ones are equality constraints. Then
the log-likelihood function 6 + L(y;8) = log{(y;d) is defined on © =
©*N{g(d) = 0}, where ©™ is, for instance, an open subset of IR” and g is
a function from IRP to R™ with r < p. As a consequence, maximization of
the likelihood function must take into account the constraints g(8) =
To do so, we can introduce a vector A of r Lagrange multipliers and
the maximization of the Lagrangian function L(y; 6) — \'g(0). The first-
order conditions are obtained by differentiating the latter function with
respect to 6 and A. Setting the derivatives equal to zero; we obtain the
system

OL(y;6) _ 8¢'(6) 5 _
30 ag A= (7.2)
9(8) =

Example 7.12: Consider a vector Y of which the components are dou-
bly indexed: Y = (Y, ¢ = 1,...,I, j = 1,...,J). Suppose that Y’
follows a multinomial distribution M (n;p;; = p1 pj, t=1,..,I, j=
1,...,J). The parameters p;. and p.; satisfy Tz__l P =1, }:J_lpJ =1,
2. 20,i=1,...,Jand p; 20, j=1,...,J.

Leaving-aside the inequality constraints for the moment, we must
introduce two Lagrange multipliers X; and Ap. The Lagrangian function

168



7.2. LIKELIHOOD EQUATIONS

is

I J
Alp) = L{yip)—XM (sz‘- - 1) -X | p;i-
i=1 j=1
= 1 Y e —— 1_11 i
og (HMHM o ) +§=:U§;1y og(pi.p.5)
J
. I(Zpi.-—l)—/\g Zp.j—-l).
il F=1

Equating to zero the first partial derivatives with respect to p;., p.;, A1, A
gives

J=1

I
apj (Zyzj)_"'/\Z_ ) .7=117J’

Z%J)”"""/\l i=1,...,I,

i==1

J=1

Let ;. = 23;1 yij and y.; = Zle ¥ij. From the first I equations we
obtain ;. = Mpi, 4 = 1,...,J and Ay = Y, ¥ = n. Similarly,
we have Ay = n. Thus there exists a unique solution to the likelihood
equations, namely

ﬁ‘i' = %a i=1,. 1I,
~ Y.i
p'.‘i=#1 j=1...,J

Note that this solution satisfies the constraints p;. > 0 and P = 0.
This solution corresponds to a global maximum since the log-likelihood
function is strictly concave and the constraints are linear.
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7.2.4 Concentrated Likelihood Function

The numerical determination of maximum likelihood estimators can be
simplified by considering sticcessive maximizations. Specifically, consider
a partition of the parameter vector 8 into two subvectors o and 3 so that

=(c',0"

Property 7.4: The solutions 6= (&8 to the mazimization problem
maXe g log £(y; a, B) can be obtained via the following two-step procedure:

a) In a first step, mazimize the log-likelihood function with respect to
a given B. The mazimum value is atiained for values of a in a
set A(B) depending on the parameter 8. Thus, if o € A(B), the
log-likelihood value- is

log£c(y; f) = maxlog £(y; o, ).

The mapping log £, is called the concentrated (in a) log-likelihood
function.

b) In a second step, mazimize the concentrated log-likelihood function
with respect to B. The mazimum value is attained on a set B of B
values.

Then the solutions § = (&', B') belong to the set Upes {A(B) x B}.
PRroOF: Let (&, Jed )’ be a maximum likelihood estimator. We have
VB, logl(y; & f) = logt(y; e, B).
In particular, we have
Va, logl(y;é,B) > logt(y;a,p),

ie., & € A(B) and log.(y; B) = log £(y; d,@). Moreover, since the first
inequality holds for every 8 and every a € A(B), it follows that

V B, logfe(y; B) = logLe(y; B),

i.e., that B € B. _ .
Conversely, let (@, 3')' be an element of [Jge5{A(3) x 8}. We have

V B, logle(y;B) = logle(y; B)-
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By definition of the concentrated log-likelihood function, we have

Va, logl(y;B) > logl(y; , B).

It follows that

Va,0, logl(y;f) =logl(y; & B) > log £(y; e, B).
Hence (&, ')’ is a maximum likelihood estimator. O

The above two-step procedure is useful when the correspondence
B — A(B) can be determined explicitly, in which case the original maxi-
mization problem reduces to a maximization with respect to a subvector
(G of which the dimension is smaller than that of .

Note also that this two-step procedure can be generalized to a par-
tition of 6 in a large number of subvectors: § = (¢, ...,a/;). Namely,
one begins with the maximization with respect to oy given (a4, ...,a).
One obtains a set of solutions fil(az, ...,a) and a concentrated (in
;) log-likelihood function log £1.(y; a2, . ..,as). In a second step, one
obtains a set of solutions Ap(as,...,as) and a log-likelihood function
log £oc(y; @3,...,a5) concentrated in o; and ap. Continuing in this
manner until the Jth step where one maximizes, with respect to oy,
the log-likelihood function concentrated in (aj, ..., @s-1). The elements
of Ay are the maximum likelihood estimators of ag. The procedure is
completed by substituting recursively the successive estimates into the
correspondences A;.

Example 7.13: Consider the random variables 3,1 =1,...,T, defined
by the model

Y: = at + vy, with u; = pus_y + &,

where the errors e;,t = 1,...,T are mdependent and identically dis-
tributed N (0, 02).. We can write . -

Y: = pYie1 +at — ap(t — 1) +&;.

Conditionally on Y; assumed to be known, the density of the observations
is

1 1
#(y; @, p, 02) = s €XP — =5 — Pyt — at + ap(t — 1))
W:0:,0%) = G &P =53 ;(yt pye—1 — at +ap(t — 1))
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Thus the log-likelihood function is

2 T
L(y;a,p,0) = -3 log 2 — % log o

T

1

~57 2% = pye—1 = alt = pt + p))*.
t==1

Concentrating a out gives

Sy (Y = pyr—1)(t = pt+ p) = @(p)
Zg;__l(t—-pt+p)2 ’

‘ T T,
Lic(y; p,0%) = "'510%2”—‘2‘10&02

a(p,0%) =

T
—.-—'1 -~
—53 (0 = pys — (p)(t — pt + p))*
=1

Now concentrating ¢ out gives

T
5%(0) = 5 e ~ pue-r — (o)t = pt + )
t=1

Thus the log-likelihood function concentrated in a and o2 is

T T T, .
Lo(y; p) = —5 log 27 — 5 — 5 log 5%(p).

Hence we are led to minimize with respect to p the function

T
T5%(p) = Z(.%"Pyt—l
t=1

__ZZ—J(% ~ pyi—1)(t—p t+p)
Y (t—pt+p)2

T
= Z(yt - pye-1)?
t=1

(t=pt+p))

T _ _ 2
(Zt=1 (¥ — pye-1)(t—p t+ p))
Y1t —pt+p)?
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Example 7.14: Frish—-Waugh Theorem

Consider a linear model with two sets of explanatory variables X
and Xg

Y = X;b; + Xgbs + u, where u ~ _N(O, I).

Concentrating bs out is equivalent to considering a model with a fixed
by, i.e., a linear model with endogenous variable Y — X b; and exogenous
variables Xo

Y - le)_ = X2b2 -+ u.
The optimal value by(b;) is
ba(b1) = (X X3) ™" Xp(Y ~Xaby).

Substituting this expression for by in the original model leads to the
maximization of the concentrated likelihood function, which corresponds
to the linear model

Y = Xib + Xo(X5 Xo) 1X5(Y — Xiby) + v.

or
(I — Xo(X4X2) " XL)Y = (I — Xp(X5X5) " 1X5)X1b; + v.

Thus the maximum likelihood estimator 51 is the OLS estimator in this
model, i.e.

By = (X4(I — Xa(X5X2) 1X5)X1) ™ X (I - Xo(X5X2) ' X5) Y,
where we have used the fact that X2(X5X,) "X} is an orthogonal pro-

jection operator. The latter expression is equal to the first components
of the vector '

b= (X'X)IX'Y = (( §i )(xl,xz))—1 ( §i )Y.

Properties of the concentrated log-likelihood function can be easily
derived from those of the original log-likelihood function. Hereafter, it is
assumed that concentrating leads to a unique value, i.e., A(8) = {&(8)}.

Property 7.5: If the log-likelihood function

L(a, B) =log £(y; o, B)
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is differentiable in (o, 8')', then the function &(B) and the concentrated
log-likelihood function L.(B) = log{.(y; B) are differentiable in 3, and

we have
OL.(B) _ OL(&(8).5)

a8 a8

Proor: Differentiability properties follow from the implicit function
theorem. Moreover, since L (3) = L(&(8), 8), we have

OL(B) _ 0a(B) 8L(a(l),B) +5L(&(ﬂ),ﬁ)
o3 a8 dex aB
OL(&{B).B)
I B

where the second equality follows from the fact that the derivatives
OL/Ba evaluated at (&(3), ) are null because &(B) maximizes L(c, 3)
with respect to a. U

Property 7.5 is useful in practice for finding 3, especially when the
derivatives L/93 are simpler than those of the concentrated log-
likelihood function L..

Property 7.6: If the log-likelihood function L{c, ) is twice differen-
tiable in @ = (o', '), then the function &(B) and the concentrated log-
likelihood function is twice differentiable in 3, and we have

FLe(f) _ ( (azf:(a(/s),m)"”) -
op ap! o6 a6’ ’

where (-)P? denotes the block corresponding to the parameter 8 of the
inverse of the partitioned matriz () .

Proor: Differentiability properties follows from the implicit function
theorem. Moreover, by definition of &(8), we have

BL(E(6).5) _
~ o P

Differentiating with respect to 3. we obtain

P L(a(A),8) + 8L(&(B), B) 0&(B)
da 8p' da o op

=0, V;B1
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or equivalently
9a&() _ (62L<a<ﬂ> ﬂ>>‘1 L(a(6), 6)
ap da do! Oa 0

On the other hand, differentiating with respect to @ the equality estab-
lished in Property 7.5, we have

OLo(B) _ 9*L(&(B), B) 94(B) | 8*L(&(p), )
8B op' 96 0o’ op' 86 0p"

Using the above expression for &(3)/96’, we obtain
OPLe(B) _ 90°L(&(B),B)

, V8.

8pop! - ap op'
_9PL(&(B),B) (aZL(&wm))"l 82L(&(6), B)
op 0o/ da o fa 08

Hence, from the partitioned matrix inverse formula, we obtain

() - (9"
0

Note that, when the log-likelihood function is concave in (o, 8), the
preceding property implies that the matrix 82L.(8)/88 08’ is negative
semidefinite. Thus the concentrated log-likelihood function is concave in

B.

7.3 Finite Sample Properties

7.3.1 Functional Invariance

Property 7.7: Consider a dominated parametric model (Y, P = {Pp =
Z(y, 0) - 1, 6 € ©}) and a bijective function g from © on to a set A If
6 is a mazimum likelihood estimator of 9, then A= g(H) is a maogimum
likelihood estimator of A in the model

(ya = {P/\ = ’1()\): AE A})

PRroOOF: By definition of 6, we have
6 € © and £(y; () = £(y;6), Y6 €O,
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or equivalently, letting \-= g(6) and A = g(8), we have
AeAand £y g7 ()W) 2 L9 (), Y A€ A

The latter condition means that ) is a maximum likelihood estimator of
A in a model with-densities £(y; g~1(})). O

Thus maximum likelihood estimation is invariant to parameteriza-
tion. Note also that Property 7.7 agrees with Remark 7.1, which defines
the maximum likelihood estimator of a function of the parameter.

Example 7.15: Reparameterization can be used to generate strictly
concave log-likelihood functions. For instance, consider T' random vari-
ables Y7*, ... Y that are normally distributed N(at+b,02),t =1,...,T,
where a, b, and 02 are unknown parameters. Suppose that these vari-
ables are not completely observed. Namely, suppose that only Vi,...,Yr
are observed where Y; is related to the latent variable Y;* by

Y, = Yz, Y>>0,
¢ 0, otherwise.

This model, called the Tobit model, corresponds to a family of distri-
butions that have a probability mass at zero and that are absolutely
continuous on R*. The log-likelihood function is

L(y;0) = logé(y;0)

T
> (g0 log Po(¥y* < 0) + 1,50 log f:(y:;6)),

t==1

where f; denotes the density of Y;. Hence

L at b
L(y;0) = > {ﬂyt=o log @ (—;‘ - ;)

t=1

+1y, >0 (“ log(ov/2m) — %(y—t:g-ﬂ)} ;

where ® is the standard normal cumulative distribution function.
Let Ay = a/o, Ay =b/o and A3 = 1/0. We have

T
log£(y; 97 (N) = > Iy—olog ®(~Ait — Ag)
=1

1 .
+1y,—o(~log vV2m+log As— 5 (Asye—Ait—A2)?).
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Since

d? log ®(x) =j_(ﬂ_a_rl) _ ¢(=z)

i? - dn \B()) " Bla P@) TR <0

(see Property B.33), the function A — log £(y; g~1())) is strictly concave
in A. Thus the maximum likelihood estimator J is unique and is charac-
terized by the first-order conditions. The maximum likelihood estimator
of the original parameters is obtained as

y

7 2 A
1b=_1 a =
3

G =

C.%’)‘ 3/)

|-
b2

Example 7.16: Consider an equilibrium model where demand and sup-
ply depend on one explanatory variable z in addition to prices

di = ap; + b+ Ut,
8t = aps-+ ﬂz‘t + vy,
@ = dy=s;.

The error vectors (uy,v;)’ are assumed to be independent over time and

2
identically distributed N (( 8 ) ) ( Tu 0’2‘” )) The reduced form
Ouwy 02

is
b ,Bzvt —Ug 4 Vg )

g = - +

b a—o a—-o a—oa '
ab afzy  —ou -+ avg

G = - + + .
a—a a—o a—a

This can be written as

Dt = w1+ W20t + &,
Q@ = W91+ Tk + 7,

(2)-((3)-(2 ).

The reduced form parameters are related to the structural parameters
by

where

: @ af
My =— M = gl = ———, Mg = + )
a—ao a—a a— o a—a
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2 0121 + 0-12) - 2(7uv
% = (ea—a) 7
2 _ 0Pl 40?02 — 2000y,
In = (a—a)? ’
_ +ooZ+aok—(a+a)ouw
Oep = aa) _

It is easy to verify that the mapping that associates the reduced form
parameters to the structural parameters is bijective. The model is said
to be just identified (see Section 3.4.3).

The maximum likelihood estimator can be obtained by determining
#'s and 63,&,27 and 6;, in a first step. For instance, #;; and 72 are
the OLS estimators in a regression of p; on the constant term and ;.
In a second step, the maximum likelihood estimator of the structural
parameters is obtained by solving back the preceding equations. For
instance, we have & = #fg;/#1;. Such a two-step procedure is called
indirect least squares.

7.3.2 Relationship with Sufficiency

Property 7.8: Under the assumptions of the factorization criterion
(Theorem 8.1), a mazimum likelihood estimator is a function of every
sufficient statistic.

ProoF: Let S(Y) be a sufficient statistic. From the factorization crit-
erion (Theorem 3.1), we have £(y; ) = ¥(S(y); 9)h(y), ie.

log £(y; 8) = log ¥(S(y); ) + log A(y).
Hence maximizing log £(y; ) with respect to 8 is equivalent to maximiz-

ing log ¥(S(y);0). Therefore a maximum likelihood estimator depends
on Y through S(Y). O

7.3.3 Exponential Models

Property 7.9: Under the assumptions of the converse to the FDCR
inequality (Property 6.5), an unbiased estimator T(Y') that is efficient
for 8 € © C IRP is the unigue solution to the likelihood eguations.

Proor: From the converse to the FDCR inequality it follows that, if
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T(Y) is an efficient unbiased estimator of 0, the density is of the form

=1

‘ P
#(y; 6) = h(y) exp (Z Qi(8) Ti(y) + b(o)) :

The vector functions Q(8) = (Q1(6),...,Q5(8))’ and b(f) are related to
the mean of T(Y") = (T1(Y),..., T,(Y)) by

P -1
ET(Y)=0=— (d%g)) di’i(;), Voeo.

Now solutions to the likelihood equations are obtained from

Olog £(y; é) _

o O
ie.
5 [ S enw+um) ) =0
j=1
- Q@07 , BO)
5 T +—5" =0,
ie. - .
T(4) = - (d%")) )

Hence the likelihood equations have a unique solution which is é(y) =
T(y). O

One can ask whether the above solution to the likelihood equations .
corresponds to a maximum of the likelihood function. If the mapping Q
is invertible, one can define new parameters ¢ by ¢ = Q(#). In terms of
g the log-likelihood function can be written as

log£*(y;q) = logf(y; Q' (q))
= ¢ -T(y) + B(g) + log h(y),

where 8(q) = b(Q~(g)). Hence the second-order derivatives of the log-
likelihood function are equal to the second-order derivatives of ((q).
Since the latter do not depend on the observations, they are equal to
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their expectations, i.e., to the Fisher information matrix for g. There-
fore, the matrix of second partial derivatives, which is symmetric, is
negative definite. Thus the (unique) solution to the likelihood equations
corresponds to a global maximum. To complete the argument, it suffices
to invoke Property 7.7 so as to establish that the (unique) solution to
the likelihood equations in 8 corresponds to a global maximum of the
likelihood function.

7.4 Asymptotic Properties

‘We now study the properties of maximum likelihood estimators when the
number of observations is large. Under suitable regularity conditions,
ensuring for instance that the model is close to a sampling model, the
maximum likelihood estimator exists and converges to the true unknown
parameter value as the number of observations increases. In addition,
the maximum likelihod estimator is asymptotically normally distributed
and its variance covariance matrix is equal to the FDCR bound, i.e., it
is asymptotically efficient.

There are different proofs of such properties. Each one corresponds
to different regularity conditions. The main purpose of this section is
to present the main steps of these proofs and to discuss the regularity
conditions. To simplify, we consider a sampling model although the re-
sults of this section can be extended to more general situations where the
observations are neither independent nor identically distributed. Such
situations are illustrated by some examples that can be studied directly.

The reader who would like more rigorous proofs of the next asymp-
totic theorems may consult Chapter 24, Volume II. Also, the concept.of
asymptotic efficiency introduced here is discussed in Chapter 23, Volume
II in more detail.

Consistency and asymptotic efficiency of maximum likelihood estima-
tors constitute an important justification for the use of this estimation
method when the sample size is large. There are, however, some cases
where these “good” asymptotic properties do not hold. Some examples
are given in Section 7.4.5.

7.4.1 Existence and Strong Consistency

We consider a sequence of observations Y;,i = 1,2,... satisfying a para-
metric model. It is assumed that the following regularity conditions
hold.
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Regularity Conditions:

Al: The variables Y;,7 = 1,2,... are independent and identically dis-
tributed with density f(y;8), § € © C IRP.

A2: The parameter space © is compact.
A3: The true but unknown parameter value 8y is identified.
A4: The log-likelihood function

Ln(y;0) =) log f(1:;6)

i==1

is continuous in 8.
AB: Ey, log f(Y;;0) exists.

A6: The log-likelihood function is such that (1/n)L,(y;6) converges
almost surely to Fy, log f(Y;;6) uniformly in 6 € ©.

Property 7.10: Under Assumptions A1-A6, there exists a sequence
of mazimum likelihood estimators converging almost surely to the true
parameter value Op.

SKETCH OF THE PROOF: Assumptions A2 and A4 enpsure the exis-
tence of a maximum likelihood estimator @,. It is obtained by maxi-
mizing Ly () or equivalently by maximizing 1L,(f). Since 1L,(8) =
;1; >y log f(¥:; 6) can be interpreted as the sample mean of the random
variables log f(Y;; @), which are independent and identically distributed,
the objective function converges almost surely to Ejy, log f(Y;6) by the
Strong Law of Large Numbers.

To complete the proof, one uses the fact that, when the latter con-
vergence is uniform (see Assumption A6), then the solution 8,, converges
to the solution to the limit problem

mo?‘x Eﬂo IOg f(Y1 0)1
ie.
mpec | 10g £(430) 03 00) ().

Now, properties of the Kullback information measure together with
the identification condition on § (see Assumption A3) imply that the so-
lution to the limit problem is unique and equal to 6,. Hence 4, converges
almost surely to 6. O
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Clearly, the assumption that is difficult to verify is the uniform re-
quirement on the almost sure convergence in Assumption A6. On the
other hand, the other hvpotheses are easily verifiable. They can also
be weakened provided the statement of the theorem is modified appro-
priately (see Chapter 25, Volume II for more details). For instance, the
compactness requirement of the parameter space can be replaced by:

A2': The interior of © is nonempty and 6y belongs to the interior of ©.

Property 7.11: Under Assumptions Al, A2', A3-A6, there exists a
sequence of local mazima of the log-likelihood function that converges
almost surely to 6. :

SKETCH OF THE PROOF: The basic idea is to consider a compact subset
of the parameter space and to apply Property 7.10. Specifically, consider
a closed sphere with radius r > ( centered at 6y and strictly included in
©. Let V(fg,r) denote such a sphere. Consider the constrained maxi-
mum likelihood estimation problem, i.e.

max _L(8).

6V (fo,r)

Since V' (6o, 7) is compact, Property 7.10 implies that there exists a se-
quence of solutions 6, to this problem that converges almost surely to
8. Convergence implies that, for n sufficiently large, 8, belongs to the

interior of V(fp,r). Thus 8, corresponds to a local maximum of the
log-likelihood function. O

The preceding property remains valid if Assumption A6 is replaced
by:

A6': There exist a neighborhood of 6 on which (1/n)Ln(6) converges
almost surely and uniformly.

Corollary 7.1: If in addition to the assumptions of Property 7.11 the
likelihood function is differentiable, then there exists a sequence of solu-
tions to the likelihood equations that converges almost surely to 0y.

Proor: This is a straightforward consequence of the fact that a
local maximum on the open sphere V%(g, ) must satisfy the likelihood
equations. O

When @ is open, a consistent sequence of local maxima may not be
a sequence of global maxima.
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Example 7.17: Suppose that the observed variables Y;,i = 1,...,n,
are defined by Y; = min(Y};,Y5;), where Y3; and Y3; are independent
variables following the normal distributions N(m;,0?) and N(mg,03),
respectively. The marginal density of Y; is

w0 = 0(25) (o (457))
o (42) (- (45).

where ¢ and @ denote the density and the cumulative distribution func-
tions of the standard normal distribution.
The likelihood function is

wn = (e (45 (-0 (257)

o3 25 (- (252) )

1 fy—m\ _ 0, if m# y,
al'l—%;qs( o >_{+001 if m=y,

_ 0, fy<m,
hm®<u> ={ 1/2, f y=m,
70 g 1, if y > m,

Using

it is seen that the likelihood function diverges to +-cc when my and
oy are fixed, m; = maxy; and oy converges to zero. These solutions
correspond to global maxima. They are, however, not consistent since
&1 converges to zero, which is not the true value o4.

From Property 7.11, however, there exists a consistent sequence of
local maxima. These local maxima are not global maxima since the
likelihood is finite everywhere on R? x R*2. This example is due to
Quandt.

7.4.2 Asymptotic Distribution

Since the sequence 6y, converges to 6y, it is useful to consider the asymp-
totic behavior of 6, — 6p. In particular, it is interesting to determine its
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rate of convergence toward zero. This allows us to establish the asymp-
totic normality of the ML estimator.
We need additional regularity conditions.

Regularity conditions:

AT: The log-likelihood function Ly (8) is twice continously differentiable
in an open neighborhood of 6;.

A8: The matrix 5 log £(Ys:6
T60) = Bn, (-5 S50 )

exists and is nonsingular.

Property 7.12: Under the assumptions of Property 7.11, suppose that
Assumptions A7-A8 hold. Then a consistent sequence 6y, of local maz-
ima s such that.\/n(8, — 8) converges in distribution to a normal dis-
tribution with mean zero and variance covariance matriz I1(6) ™!, i.e.

V7(fn — 80) % N(0,Z1(60)?).

SKETCH OF THE PROOF: Since the sequence 6,, satisfies the likelihood
equations 8L(f,)/80 = 0 and since 8, converges to g, a Taylor expan-
sion of the score vector 8L, (8)/80 in a neighborhood of 8 = g gives

8L (0) ,, 8Ln(6o) . 0°Ln(bo)
s * oo+ zoog O
where the symbol # means that the difference between the left-hand side

and the right-hand side is an op(1) (see Chapter 24, Volume II). Letting
6 = 6,, and using the likelihood equations, it follows that

%L, (60) aLn (00)
—W(f? —O) # ——,

or equivalently

1 82Ly (6o 1 9Ln(6o)
( naeae')‘/_(o 9")#\/‘ 9
Now, on the one hand

18°Ln(6o) 1 i 8%log f(Yi; 600)
n

n 9000 niy 9096
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converges almost surely to

82 log f(Y;: 6

by the Strong Law of Large Numbers. Thus we have

1 8L, (6
T1(60)vn(0n — f0) # —= 7 aé o),
On the other hand, we have
1 O0Ln(f0) _ 1 Zalogf(yi,oo)
vn 00 - \/ﬁi_l 00
_ Olog f(Y3; 60) Olog f(¥i; 6o)
- f%( 86 ~ Bo 3¢ :

which converges in distribution to

N (o, Vau (w_;g’_@)) = N(0,73(60)),

by the Central Limit Theorem.
Collecting the preceding results and premultiplying by Z;(6p) ™%, we
obtain the desired result. O

Property 7.12 gives an approximation to the sampling distribution of
the ML estimator 6, for large n. Specifically, the approximation is

« 1
b= N (90, 511(90)"1> .

Since 1
;—7'1(90)_1 = (nZ1(60)) ™" = Tn(60) %,

where Z,(6p) is the Fisher information matrix for n observations, we
obtain .
9.,,, ~N (90,1-,,_(90)_1) .

This means that the distribution of f,, can be approximated by a normal
distribution centered around the true parameter value 6y with variance
covariance matrix equal to the FDCR lower bound. We shall say that the
ML estimator 8,, is asymptotically unbiased and asymptotically efficient.

185



Mazimum Likelihood Estimation

The Fisher information matrix Z;(6p) depends on the unknown
parameter value 6. It can, however, be estimated consistently when
Z:1(0) is continuous in §. For instance, some consistent estimators are

Il(én)v
or i
_10%log£n(Y;6,)
n 00060 '
or
L g Olog £ (¥ ) Dl (Vi ) (13)
n 6 00’ ' |

The asymptotic properties of the ML estimator of a function g(fo)
of the parameter are easily-derived from those of the ML estimator 4,,.

Property 7.13: Let g be a continuously differentiable function of 6 €
IR? with values in R?. Then, under the assumptions of Property 7.12:

(i) g(6,) converges almost surely to g(6o),

(ii) /n (g(én) - 9(00)) converges in distribution to the normal distri-

bution ,
N (o, dg(e")zl(oo)-lflg—(—’-’l’l) .

do’ do

Proor: This follows straightforwardly from Properties B.68 and B.69.
]

7.4.3 Concentrated Likelihood Function

In Section 7.2.4 we saw that, in some cases, concentrating out a subvector
o of = (d/,8') from the likelihood function may be useful. The next
property states that a consistent estimator of the variance covariance
matrix of the ML estimator 8, of 8 can be readily obtained from the
concentrated log-likelihood function.

Property 7.14: For every 3, suppose that the log-likelihood function
Ly(o, B) = log€n(y; &, B) has a unique global mazimum in o, denoted
&(B). Suppose also that the assumptions of Properties 7.6 and 7.12 hold.
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Then the asymptotic variance covariance matriz of /m(Bn — Bo) can be
estimated consistently by
s o\ —1
n 00 98p ’

Proor: This readily follows from the equality

(aszwn))"l _ (BZLn(&@),Bn))”"
58 05 56 66’

(L6 B\
- 86 8¢’ ’

(see Property 7.6) and the fact that the asymptotic variance covariance
matrix of v/n(B, — Bo) is estimated consistently by

162La(An, 80\
n 06 8¢ )

O

7.4.4 Direct Derivation of Asymptotic Properties

The general framework presented in Sections 7.4.1 and 7.4.2 will be used
to derive further asymptotic properties when studying, for instance, some
large sample tests. This general framework, however, imposes conditions
that are sometimes too strong for particular statistical problems. In
addition, it may be more interesting and sometimes easier to establish
directly the asymptotic properties of the ML estimator. Some examples
are given below.

Example 7.18: Consider a random sample Y3,...,Y, drawn from a
Poisson distribution P()\). The maximum likelihood estimator of A is
Xn = ¥,,. This estimator is such that n}, = 3., ¥; follows a Poisson
distribution P(n)). A direct application of the Strong Law of Large
Numbers shows that A, = ¥,, converges almost surely to EY; = A. In
addition, from the Central Limit Theorem it follows that

V¥, = A) S N0, 3Y;) = N(0, A).

187



Mazimum Likelihood Estimation

Example 7.19: A similar reasoning can be used in a multiparameter
context. Consider a population classified into K mutually exhaustive
and exclusive subpopulations. Let pi,...,px denote the corresponding
proportions, where pr > 0, k= 1,...,K and Ei\=1 pr = 1. A random
sample of size n is drawn with equal probability and replacement from
the whole population. Let (ni,...,ng)" denote the observation vector,
where ny denotes the number of individuals in the sample belonging to
the kth subpopulation. The observation vector follows a multinomial
distribution M (n,p;,...,pk). The maximum likelihood estimator is

~ - PR Y4 ni ng\’

p= (pla"'!pK) - (n 1 T ) .
Applying the Strong Law of Large Numbers and the multivariate Central
Limit Theorem (see Property B.63 and Theorem B.8) establishes that
is a strongly consistent estimator of (pi,...,px) and that

VR(p —p) % N(0, diag p — pp').

The preceding examples are straightforward applications of basic
classical asymptotic theorems. In more complex situations it may be
necessary to invoke more powerful versions of these theorems.

Example 7.20: Let Yi,...,Y, be a random sample drawn from a
gamma distribution ~(1,1/8), where § € R™. The maximum likeli-
hood estimator of 1/8 is ¥;,. Thus from Property 7.7, the maximum
likelihood estimator of 6 is 6, = 1 /¥,.. Hence the asymptotic properties
of 8,, follow from those of ¥;, using Properties B.68 and B.69. Specifically,
since ¥, is a strongly consistent estimator of 1/6, then 6, = 1/ Y, isa
strongly consistent estimator of 1/(1/6) = 6. Since ¥,, is asymptotically
normal; i.e.

VAT~ 3) 4 NO,VaYh),

it follows that
) 2
V(b —6) 5 N (o, (i%{,—(’—)) Vm) :

ie.
1

V(b —6) S N (o, o

vm) ,
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ie.

Vil —9)-+N( 7).

Example 7.21: Suppose that the observations Y;,¢t = 0,1,... are de-
fined by Y; = pY;.-1 + u; where the errors u; are independent and iden-
tically distributed N(0,1). Let T denote the sample size. Conditionally
upon Yy, the joint density of Yi,...,Yr is

1
T S A

Maxumzmg the log-likelihood function (conditional upon Y5) gives pr=
F Zt—-l Yt Ye—1. In this example, the observations Y; are neither indepen-
dent nor identically distributed. Nonetheless, invoking stronger versions
of the basic classical asymptotic theorems (Properties B.65 and B.66),
it can be shown that jr is a strongly consistent estimator of p and that
VT (pr — p) follows asymptotically the normal distribution N (0,1 — p?)
(see Example B.6).

7.4.5 On the Regularity Conditions

The good asymptotic properties of the maximum likelihood estimator,
namely, its strong convergence, its asymptotic efficiency, and its approx-
imate normality, hold under some regularity conditions. It is important
to examine whether such properties are robust when the regularity con-
ditions are weakened.

a) The Number of Parameters Increases with the Number of
Observations

Up to now we have implicitly assumed that the number of parameters
is equal to a fixed constant p. In some cases, the number of parameters
increases naturally with the number of observations. In such cases, the
ML estimator (i) may no longer converge, (ii) may converge to a param-
eter value different from the true value 6y, or (iii) may still converge to
8. In general, the outcome depends on the importance of the number
of parameters relative to the number of observations.

Example 7.22: Let V3,Y3,... be independent random variables, each
following a Poisson distribution with parameter 6;, i = 1,2,.... For
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any sample size n there are as manyv parameters as observations: For
a sample size n the maxicmum likelihood estimator of 8; is i, = Y;,
Vi < n. Thus the ML estimator does not depend on n and converges to
the random variable Y; 5 6;.

Example 7.23: Consider independent pairs of observations (Yi¢, Y2t)',
t=1,2..., each drawn from

() (8 %))

Let T be the sample size. There are T'+1 parameters for 2T observatlons
The maximum likelihood estimator of ug; is

. 1
ey = ‘2‘(},1t + Yat).

The maximum likelihood estimator of o7 is
1 L
6% = oT ; (Yt = fer)* + (Yar — juer)?)
_ 1 i (Y]t - Y2t)2
T 2
= T Z(y - Va,)?

Thus fi;7 converges to the random variable (Y3; + Ya;)/2 when T in-
creases to infinity. Moreover, from the Strong Law of Large Numbers,
62 converges almost surely to

1 n 1- 0'2
ZE(Yu —Yu) = ZV(Yu ~Ya) = 5
i.e., to a constant different from o3.

Example 7.24: Now suppose that one has independent observations
Yir,t =1,..., T, 7=1,...,T, T = 1,2,..., each following a normal
dlstrlbutxon N (ﬂou ad). We have

i = “ZYT -Y “‘*llut

r=]
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Moreover
1 K& _
0= ) (Y —T)?
t=1 7==1
T T
1 1 5\
= 72 72 W -T2

t:

Il
-

T=1

T -
Each sequence 7 Y7_; (Yir — ¥;.)? converges almost surely to o2. Hence
the average of these sequences, namely 6%, converges to 3.

b) The True Parameter Value §; Does Not Belong to ©

The model is misspecified in the sense that it does not contain the true
distribution generating the observations. This important case is studied
in Chapter 8 in detail. In general, there is strong convergence to a
parameter value that is different from the true value.

c) The Support of P; Depends on the Parameter

This arises when the distributions in the model have a nonstrictly
positive density with respect to a measure that is independent of the
parameter. In this case the maximum likelihood estimator is frequently
consistent but is not asymptotically normal.

Example 7.25: The likelihood function of an independent and identi-
cally distributed sample drawn from a translated exponential distribu-
tion with density

F(y;8) = (exp —(y — 0)) Iy

is given by

oy;0) = ] (exp—(y:i —6)Ly,50)

i=1
n
= (exp - Z(% - 0)) Ilinfi yi=>0-
fm=1
The maximum is attained at
br, = inf ¥,
(2
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where the likelihood function is not differentiable.
The estimator 8, converges almost surely to 8. To see this note that

Poo | |JUbm—b0l>€)] = Py | | lm>00+e)
man mzZn
( since by, > 65)
= Pgo (én > G+ E)
( since , is decreasing)
= Py(Vi<nY;>0p+e)

= HPBU(YJZ > 00+€)

i=1

+00 "
= (/6 exp-—(y~90)dy>

ote
= exp(-ne).

"This quantity converges to zero when n increases to infinity. The strong
convergence of 8, to 8y follows. .

In addition, it is easy to see that v/n(6, — 6;) cannot converge to a
centered distribution because 8, is always larger than 6. More precisely,
the cumulative distribution function of 8,, is given by

Pay (6 < 2) = 1 — exp—(n(z — 6o))-

Thus the random variable n(6,, — 6o) follows a gamma distribution ~(1).
Note that the rate of convergence is 1/n instead of 1/4/n. Moreover, the
asymptotic distribution is (1) instead of a normal distribution.

d) 6, Belongs to © but not to the Interior of ©
This case arises when the parameter space © is not open.

Example 7.26: Consider the model associated with the Boz—Coz trans-
formation

A |

St

A
where the errors u; are independent and identically distributed N (0, o?).
The parameter A is, in general, constrained to be between zero and one.
The limit cases correspond to a log-linear formulation (A = 0) and a

=axy+b+u, t=1,...,T,
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linear formulation (A = 1). When A¢ = 1, the maximum likelihood
estimator of ) is consistent but its asymptotic distribution is not centered
normal because Ay — 1 is always negative.

e) Correlated Observations

Properties of consistency and asymptotic normality hold only when the
observations are not strongly correlated.

Example 7.27: Let the observation vector Y = (¥1,...,Y,)’ be jointly
normally distributed with mean EY = me and variance covariance ma-
trix VY = (1 — pp)I+ poee’, where e denotes the vector of which all the
components are equal to one and py € (0,1). Thus every pair of obser-
vations is correlated with identical correlation pg. The model is called
an equi-correlotion model.

The maximum likelihood estimator of m is 7, = ¥;,. Its distribution
is normal N(m, (1+ (n — 1)po)/n). This estimator does not converge in
quadratic mean since

V?n — po # 0.

f) Nonidentically Distributed Observations

Example 7.28: Consider independent random variables ¥;,7 = 1,2...,
each following a normal distribution N(az;,1) where a is a parameter
and 24,4 = 1,2... are given constants. Let n be the sample size. The
maximum likelihood estimator of a is

Its distribution is normal N(a,1/ Y i, #2). This estimator may not be
consistent. For instance, if Z?=1 z? converges to one, then &, converges
-in distribution to N(a,1). Therefore the ML estimator is not weakly
consistent and e fortiori not strongly consistent for a.

On the other hand, if Y., 22 diverges to infinity, then
.
2t

Since Ed, = a, the ML estimator converges to a in quadratic mean.
However, &, — a does not converge necessarily to a normal distribution

Vi, =

-+ 0.
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at the rate 1/,/n. More precisely, we have

\| imf(&n -a) % N(0,1),

i=1

and the appropriate rate of convergence is 1/ \/Zi-;l z2.

g) Discontinuity of the Likelihood Function

When the support of the distributions Py remains constant when @ varies,
a discontinuity of the likelihood function is unlikely in practice. This
explains the artificial nature of the next example which is due to Basu.

Example 7.29: Consider independent and identically distributed ran-
dom variables drawn from

{ B(1,9), if 6 € QN 0, 1],
B(1,1-6), iffe@°nio,1

where @ denotes the set of rational numbers and Q° its complement.
The likelihood function is

[ oI = g)a, if0e@nio,1],
q{*'(?/7 9) - { 9”"”37(1 — a)nﬁ’ if 9 e Qc N [Oa 1]?

where § = ;1; Y1 i Maximizing the likelihood function gives b=V

Wt T2
since Y is always a rational number. From the Strong Law of Large
Numbers, it follows that

6. 2 0, ifOEQﬂ[O,l],
n 1-6, if e @Q°nJo,1).

7.5 Marginal and Conditional ML
Estimation

7.5.1 Principles

For computational reasons, it is sometimes interesting not to use all
the information contained in the observations. This is the topic of this
section.

194



7.5. MARGINAL AND CONDITIONAL ML ESTIMATION

To simplify, we assume that the pairs of observations (Y7, X]), i =
1,...,n are independent and identically distributed. For the noninde-
pendent and nonidentically distributed case, see Chapter 24, Volume II.
The joint distribution of each pair can be decomposed as the product of
the conditional distribution of ¥; given X; and the marginal distribution
of Xi

F(yi,i50) = f(yi | 35 0) f (55 0).
Definition 7.2:

(i) A marginal mazimum likelihood estimator of 8 is a solution br, .,
to the problem

n
max  _log f(Xi;6).

i==]

(i) A conditional mazimum likelihood estimator of 8 is a solution § ,,
to the problem

n
geag;bgfm | X5;9).

Clearly, the roles of the variables X and Y can be interchanged.
For instance, we can define a marginal maximum likelihood estimator
associated with Y.

In practice, it frequently happens that some components of 8 do not
appear in either the marginal distribution or the conditional distribution.
Thus, although the true parameter value 6y is identified in the joint
model for (Y}, X})',i =1,...,n, it may not be identified in the marginal
model or in the conditional model. To take into account such a difficulty,
we assume that 6 can be partitioned as 6 = (¢/,8',7')’, where (¢, ')’
appears in the conditional model and (#',~')’ appears in the marginal
model

(Y, X550) = f(Y; | Xi;0,8) £(Xi38,7)-
An important case arises when there is a cut. Then there are no common
parameters .

Property 7.15: Suppose that there is a cut so that
fwozi;0) = f(yi | mi:0) flzs7), (7)€ AxC.

The mazimum likelihood estimator of 0 is
A &
=1 %™ }.
" ( Fmn )
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PROOF: Since

S log f(yi,zi8) =D log f(ui | mis ) + Y log f(zi;7),

i==1 i==1 i=1

then maximizing the joint log-likelihood function with respect to 8 =
(¢/,v') is equivalent to maximizing separately the conditional log-
likelihood function with respect to « and the marginal log-likelihood
function with respect to . O

Thus, if the parameter vector of interest is ¢, then we can neglect the
marginal distribution of the variables X; when estimating o by maximum
likelihood methods. ’

7.5.2 Examples

The determination of a conditional maximum likelihood estimator is
similar to the determination of the unconditional maximum likelihood
estimator.

Example 7.30: Consider a family of densities defined on IR, parame-
terized by a mean m, and given by

F(y,m) = exp(A(m) + B(y) + C(m)y),

where A and C are continuously differentiable real functions.
It is easy to verify that m being the mean implies

0A oc 0

om T
In addition, the derivative 8C/0m is the inverse of the variance associ-
ated with the density f. Thus, if this variance is strictly positive, then
the function C is strictly increasing and hence bijective.

Now suppose that the variables Y7, ..., Yy are mutually independent
conditionally on X, ..., Xr. Suppose also that the conditional density
of ; given X = (z1,....z7) is f(y: | 2:,0) = f(y,C(z}0)) with
8 € IRP. The log-likelihood function is

T
logé(y | z;6) = (A(C™H(z:0)) + B(us) + i) .

t=x1
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The first-order conditions are
dlog £(y | =;6.)
o0

1 04 o
92 1(ld,)) +
<—-—§ﬁ(c—1(zgoc)) om0 (20 yt) -

]
B

t=1
— 3 (<) )
T

t==1

= th (yt — By (Yz | a:t)) .

t==1

These conditions express the orthogonality between the explanatory vari-
ables and the estimated residuals y; — Eéc (Y; | z¢). For this reason, the
previous system is called the system of normal equations.

Example 7.31: Constrained Maximum

An important example is given by the linear model ¥ ~ N(X6, 621),
where X is a n X K matrix of rank K, o is known, and 4 is subject to
some linear constraints. The linear constraints are of the form G8 = g,
where G is a known r x K matrix of full row rank r and g is a known
T X 1 vector. We have

X0)'(y—X0)

2

n 1(y -
L(y;6) =~ log(afzm) - 503

OL(yi6) _ X/(y=X6)

00 o2

If A\ denotes the vector of Lagrange multipliers associated with the r
constraints, the first-order conditions are

4 — j ~
___X (y erc) . G’)\ — 0,
i)
. Gl = g
From the first set of equations, we obtain
X'Xf, = X'y + 02G'},

or
.= (X'X)" X'y + o2(X'X) G/
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Using the second set of equations, we obtain
RG(X'X)™IG' A = g - G(X'X)"1X'y.
Hence ‘
« 1 - - -
A= E(G(X'X) 1G) g - G(X'X)"1X'y), (7.4)
and
. = (X'X)7'X'y
+X'X)IG(GX'X)1G) g - G(X'X)"1X'y). (7.5)
The log-likelihood function is strictly concave because the matrix
82L(y;0)/08 86’ = —X'X is negative definite. Moreover the constraints

are linear. It follows that the constrained ML estimator éc is the maxi-
mum likelihood estimator.

7.5.3 Asymptotic Properties

The approach is similar to that used for establishing the consistency and
asymptotic normality of 6 (see Section 7.4). Here, we need to impose
suitable regularity assumptions on the distribution of the pair (¥, X})'.
To simplify, we assume that these pairs are independent and identically
distributed. In particular, this implies that, conditionally on X1,..., X,,
the conditional distribution of ¥; depends on X; only and that these
conditional distributions are identical across i

Yil X1y Xn . pYilXi:
Ptl 1y n__P ;I 1’

and
pYilXi=e o pY;lXj=s vy j.

In addition, the conditioning variables-must be mutually independent
and identically distributed. Although such an assumption is not likely
to be satisfied in practice, we shall maintain this assumption to simplify
the exposition. The next results, however, hold under weaker conditions
(see Chapter 24, Volume II).

Identification conditions must also be modified so as to allow.for:

(i) identification of the true values cp and Sy in the conditional model,
namely

f(y I .’L‘;O{,ﬁ) = f(y I E;QO’IBU)ﬁ Vzy,
implies o = o9 and B8 = Sy,

198



7.5. MARGINAL AND CONDITIONAL ML ESTIMATION

(ii) identification of the true values By and v, in the marginal model,
namely

f(m; :81 'Y) = f($; ﬁ0770)7 v z,
implies f = fp and v = .

The remaining regularity conditions are similar to those given in
Section 7.4. The reader can also find a set of sufficient conditions by
invoking the general results of Chapter 24, Volume II.

Thereafter, Ex(-) denotes expectation with respect to the marginal
distribution of X; while E(- | z) denotes expectation with respect to the
conditional distribution of ¥; given X; = z. Also, let 6, = (',7') and
0. = (, 3').

Property 7.16: Marginal Maximum Likelihood Estimation

Under the regularity conditions discussed in Section 7.4, the estima-
tors fBmpn and Ymmn:

(i) ezist asymptotically,
(ii) are strongly consistent for the true values By and v,

(i) are asymptotically normally distributed with
an ) _ ﬁO d Nfo i——l 0
\/ﬁ((&mn Y - (’ m(D)),

_8log f(X; B0, 70)
0, 0L, )

where

Im(60) = Ex (

Proor: See Chapter 24, Volume II. O

Property 7.17: Conditional Maximum Likelihood Estimation
Under the regularity conditions discussed in Section 7.4, the estima-
tors G and Bep: '

(i) -exist asymptotically,
(i) are strongly consistent for the true values o and o,

(i) are asymptotically normally distributed with
' é:fcn _[ @ d 21
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where

~ 2 .
7.(60) = Es, (_6 logfgc laég; 2, ﬂo)) _

PrOOF: See Chapter 24, Volume II. O

Note that Z,(6y) depends in general on 4 since it is necessary to take
expectation with respect to the true marginal distribution of X.

The corresponding Fisher information matrices can be-expressed as
variance covariance matrices of the marginal and conditional scores re-
spectively. Namely, we have

Zn(Bo) = Vi (ahgfé;f;ﬂo,w)

B Olog f(X; Bo,v0) Olog f(X; Bo,0)
X 80, 80" '

7 7)! Y | X; By,
T.(60) = ExVa, ( og f{( a|9 Bos o) !X)

- W, (310gf(YlX;ﬂo,'Yo))

96,
- E Olog f(Y | X; Bo,v0) Blog f(Y | X; Bo, o)
o 6, 6, '

Property 7.18: The estimators cn, Bc,n, Bm,n, and Ymn are asymp-
totically at most as efficient as the mazimum likelihood estimators Gy,
Br, and . '

Proor: It suffices to compare the information matrices associated with
the joint model, the marginal model, and the conditional model. Parti-
tion these matrices according to (a/, #’,v'). We have

Iaa Iaﬁ Ia'y
Z(6o) = | Ipa Zps Zpy |,
Iva Iyp Iy

= Zegm Laym
Im(QO) = ( IﬁB, b ) )

v8,m I'm m

7 . Iaa,c Iaﬂ,c
Lo(B0) = ( Ipoe Zppe )
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From Property 3.9, we have

709~ (5 2 )+ (767 0)

Thus the difference
Iaa Iaﬁ Ia'y Iaa,c chﬁ,c 0
Zga Zgp Ipy | — | ZBax ZIppe O
Zia Ivg Iy 0 0 0

is a symmetric positive semidefinite matrix. Then it suffices to show

that
( ) < , , )
,Hc'n, Iﬁa'c Zﬂ,@ ,C

én Toa Io T, _ -1
= V< Bn > - (( Ioa ZIpp ) - < Iﬁz )I'Y'Yl(I'YaIwﬂ)> )

or equivalently that

Iaac Iaﬂc ) ( Iaa Ia > < Ioz"y -1
’ i - I {TvaTys).
( Ipae Ippe ) ~ \ Zoa Ipp Tp, )T Gredos)
But from Definition A.2-(viii), if A and B are two symmetric matrices
satisfying A > B, then we have PAP’ = PBP’ for every matrix P of

which the number of columns is equal to the common dimension of A
and B. Applying this property with

— — fc(9o) 0 — _ Ia'y ~1
A = I(6), B--( o o ) P=(I, (Im I}

gives the desired result. A similar proof establishes the asymptotic inef-
ficiency of the marginal maximum likelihood estimator. O

Corollary 7.2:

(i) The conditional ML estimator G, is asymptotically as efficient as
the ML estimator &y, in the following two cases:

— where there are no common parameters 3,
— where &, and B, are uncorrelated asymptotically.

(ii) The marginal ML estimator ¥m n is asymptotically as efficient as
the ML estimator 4y, in the following two cases:
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— where there are no common parameters 3,
— where [3,, and 4, are uncorrelated esymptotically.

ProOOF: The conditional ML estimator &, is asymptotically as efficient
as the ML estimator &, if and only if

(Icm,c = Zop,c(Zpp,c) "IIﬁa,c)

-1 -1
|+ _ Zpp Lpy Zga
- <I‘m' Ty Zar) ( Zyg Lyy Iy '

But the above partitioning of Z(f) shows that

-3

Toa = Tacer Zap =Tapcr Loy =0, Tpp = Lgp,c +Lppm.

Hence we obtain

(Iaa - Ia,'3 (Zﬁﬁ,c-) - 11-.30 )

- (meaen (2 2) (%))

Two cases arise:

-1

a) There are no parameters 8. Then terms containing 8 disappear
and the preceding equality becomes

Tor = (Taa —0Z10)71,
which is trivially satisfied.

b) There are some common parameters 3. The preceding equality is
equivalent to

-1
Top(Zpp.c) " Loa = (Tap: 0) ( i §ﬁ7 ) ( Iga )’
'7,5 vY
ie.
Top Zop o Zpa = Lop (Tos — Tpy LiZyp) " Lpa-
Since .
Zsp ~ Zoy Ty Tvg = Zop,e +Zopm — Zoyim Loy Typms

is strictly larger in the matrix sense than Zgg, equality holds if
and only if Z,g = 0.
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This establishes (i). The proof is similar for (ii). O

The marginal and conditional information matrices Z;, (8) and Z,(8o)
defined in Properties 7.16 and 7.17 can be estimated consistently in var-
ious ways. For instance, the conditional information matrix Z.(fp) can
be estimated consistently by:

(1) Z.(8,) where 0, is a consistent estimator of 8y = (a}, 85, 75). In
particular, this requires that a consistent estimator of -y is avail-
able and hence that a parametric marginal model for X is specified
and estimated, or by

(if) other estimators that do not require the specification and estima-
tion of the marginal model for X. One of these is

__1_52 logén(y I T; Gen, Bc’n)
n 00, 06", '

where £,(y | ) denotes the conditional density of V3,...,Y, given
Xi1,...,Xn. Another estimator is

1 Zn: 010g £ (s | Ti; Grens Ben) 0108 £ (ys | Ti; Gien, Ben)

n 86, 0!, '

i=l

7.6 Exercises

EXERCISE 7.1: Consider the linear model Y’ ~ N(X#, o?I), where ¢ and
0? are unknown parameters. Suppose that @ is subject to some linear
constraints G8 = g.

a) Determine the constrained maximum likelihood estimator of # and
02 and the Lagrange multipliers associated with the linear con-
straints.

b) Compare your results to those obtained in Example 7.31.

ExeRrcise 7.2: Consider a linear model with explanatory variables X;
and X, namely, Y ~ N(X;b; + Xyb,,1). Determine the log-likelihood
function L.(b;) concentrated in bp. Derive an expression for the matrix
— (62 log £.(b1) /b, 8b’1)_1. Compare this expression to the variance co-
variance matrix of the maximum likelihood estimator of b;.
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EXERCISE 7.3:

a) Determine the log-likelihood function of the equilibrium model

D; = ap;+ziby +uy,
St = zthy + vy,
Q = Dy=8,

where ‘the error terms u; and v; are independent and distributed
N(0,02) and N(0,02), respectively.

b) Concentrate out the likelihood function with respect to by, o2,
b; and o2, successively. Conclude that the maximum likelihood
estimator of a is given by

V;mp(Q "AQA) i
CoVemp(@ — Q,p — )’

where Vemp(-) and Covemp denote the empirical variance and co-
variance and

a=

..]_T

T
Qt = It (Z 11?:«,-%) Eﬂ"iQt,
fe==1 t=1
T -1 7
P = m (Z wézt) > zip.
tz=]

t==1

Interpret Q¢, pt, Q¢ — Qt, Pt — Pr, and 1/a.

c¢) Find a new parameterization such that the log-likelihood function
can be maximized directly. Hint: Note that the demand equation
can be replaced by the inverse demand equation
_ b] Ut

g = —— - Ly — — —.

a a

EXERCISE 7.4: Consider a random sample of size n drawn from a bi-
variate normal distribution

N (( my ) o2  poioe
m 3 2. .
2 PoO102 a5
Determine the maximum likelihood estimator of the correlation coeffi-

cient p:
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a) when the parameters m;, my, 01, and o3 are known,

b) when these parameters are unknown.

EXERCISE 7.5: Error terms can be introduced in a model in various
ways. Consider the following two versions of a disequilibrium model:
Model 1:

D: = api+ o+ uy,
Sy = aps+zf+u,
Qt = m_in(Dt, St)

Model 2:
D: = api+zib+ s,

Sy = api+zb+u,
Qt = min(Dt,St)-{—et.

In each model it is assumed that the errors u; and v; are independent
and distributed N(0, 02) and N(0, 02), respectively. In the second model
it is also assumed that &; is distributed N (0, 02) independently from wu;
and vy.

a) Interpret the error terms in each model.

b) Determine the likelihood function of each model assuming that the
observed endogenous variable is the quantity exchanged Q;. Which
likelihood function is easier to maximize?

¢) Propose a model containing both models as special cases.

EXERCISE 7.6: The disequilibrium model

D; = api+zb+u, w~ N(0,02),
S: = api+zB+v, v~ N(O, 0'124),
Q: = min(Dy,S:),

is augmented by a price equation
Pt —DPt-1=A(Ds—S), A=0.

a) Determine the joint distribution of p;,Q; fort =1,...,T.
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b) Find the limit of the likelihood function when the parameter A
increases to infinity.

¢) Verify that this limit is equal to the likelihood function associated
with the equilibrium model .
Qv = apt +x:b + g,
Q: = ap+zf+ .

d) Interpret the parameter A and discuss the result obtained in c).

EXERCISE 7.7: Consider a consumption function of the form
logC; = aplog R; + aylog Cy_1 + aglog Ry—y + a3 + uy,

where the errors are independent and identically distributed N(0,0?) .
Suppose that the model is estimated by maximum likelihood (condition-
ally upon the first observation C}).

a) Find the long-run income elasticity of consumption as a function
of ag, a1, and a,.

-b) Find an expression for the asymptotic variance of the maximum
likelihood estimate of this elasticity as a function of the variances
and covariances of the maximum likelihood estimates dg, d;, and
as.

EXERCISE 7.8: Consider a parametric model {P,0 € ©} where the
parameter space is reduced to one element 8 only. What is the maximum
likelihood estimator of #7 Discuss its asymptotic properties.

EXERCISE 7.9: Let Y;* ~ N(m,1),¢t=1,...,T, be an independent and
identically distributed sample drawn from a normal distribution N(m, 1).
We consider three models where the observed variable is defined by:

a) Y = Y;*,
b) Yz = Y*1yy 5o,
c) Ya = ]1Y;>o-

In each case, find the asymptotic variance of the maximum likeli-
hood estimator of m. Discuss the information loss due to the partial
observability of ¥;* as a function of m.

EXERCISE 7.10: Show that concentrating the likelihood function in
Example 7.13 leads to the same results if one consider the distribution
of the observations Yp, Y1, ..., ¥r unconditionally upon Y;.

206



7.7. REFERENCES

7.7 References

Amemiya, T. (1979). “The Estimation of a Simultaneous Equation
Tobit Model,” International Economic Review, 20, 169-182.

Amemiya, T. (1985). Advanced Econometrics, Blackwell.

Cox, D.R. and Hinkley, D.V. (1974). Theoretical Statistics, Chapman
and Hall.

Heckman, J. (1979). “Sample Selection Bias as a Specification Error,”
Econometrica, 47, 153-161.

Jennrich, R. (1969). “Asymptotic Properties of Nonlinear Least Squares
Estimators,” Annals of Mathematical Statistics, 40, 633-643.

Kendall, M. and Stuart, A. (1973). The Advanced Theory of Statistics,
Griffin.

Kiefer, N. (1979). “On the Value of Sample Separation Information,”
Econometrica, 47, 997-1004.

Quands, R. (1982). “Econometric Disequilibrium Models,” Econometric
Review, 2, 1-63.

Silvey, S.D. (1970). Statistical Inference, Chapman and Hall.
Wilks, S.S. (1962). Mathematical Statistics, Wiley.

207






CHAPTER 8

M-Estimation

As seen in the previous chapter, the maximum likelihood method con-
sists in estimating parameters by maximizing the log-likelihood function.
Similar methods can be defined by optimizing other objective functions.
The corresponding estimators are frequently called M-estimators where
M indicates either a minimization or a maximization.

In Section 1 we derive the general asymptotic properties of such es-
timators. Then these general results are applied to various estimation
methods such as nonlinear least squares methods (Section 3), pseudo-
maximum likelihood methods (Section 4), and L, estimation methods
(Section 5). These methods are especially useful when estimating semi-
parametric models defined vie moments conditions (Section 2).

8.1 Definition and Asymptotic Properties

8.1.1 Definition

We consider a parametric or semiparametric model where the parame-
ter 6 is unknown. To include conditional models, we assume that the
observed variables can be partitioned into a set of endogenous variables
denoted Y and a set of exogenous variables denoted X. Observations
are pairs (¥;, X;), i=1,2,... and n denotes the sample size.

Definition 8.1: An M-estimator of a function g(0) of the parameter is
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a solution to the optimization problem

n
optyegor=c D ¥, Xiig)s

i=]
where ¥ is a given real function.

In what follows, we assume that the objective function is maximized,
i.e., we consider the problem

n
max D Vi Xis9) (81)
. Note that it is always possible to consider a maximization problem since
a minimization problem can be transformed into a maximization problem
by considering the function —U.

In some simple cases, the function ¥ is differentiable in'g. Then an
M-estimator §n(X,Y’), when it exists and belongs to the interior of G,

must satisfy the first-order conditions

3 2 Xiida) _ g

5 (8.2)

i=1

8.1.2 Existence and Consistency of M-Estimators

The study of the general asymptotic properties of M-estimators is sim-
ilar to the study of maximum likelihood estimators presented in the
preceding chapter. The basic idea consists in replacing the optimization
problem (8.1) by an appropriate limit problem. To simplify, we assume
that the pairs (Y;, X;) are identically distributed. The objective function
is

n
> w(Y;, Xisg),
d==1
or equivalently
1 n
=Y (Y Xig).
i==1
From the Strong Law of Large Numbers, it can be seen that the objec-

tive function can be approximated asymptotically by the mathematical
expectation of the function ¥(Y, X;g). Thus the limit problem is

max Ex Eo¥(Y, X g), (83)
geG
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where Ey denotes the expectation with respect to the true conditional
distribution of Y given X and Ex denotes the expectation with respect
to the true marginal distribution of X. Under suitable regularity con-
ditions, the set of solutions to the finite sample optimization problem
converges to the set of solutions to the limit problem. More precisely,
we have the next result of which a proof relies on the general theorems
of Chapter 24, Volume II.

Property 8.1: Suppose that:
(i) The pairs (Y;, X;) are independent and identically distributed,
(i) G is compact,

(iii) U is continuous in g and integrable with respect to the true distri-
bution of (Y;, X;) for every g,

(iv) (1/n) >, ¥(Y;, Xi;9) converges almost surely and uniformly on
G to ExEo¥(Y,X;g),

(v) the limit problem has a unigue solution g%, = goo(6o), where 8y is
the parameter value associated with the true distribution of (Y, X;).

Then there exists an M-estimator §,(X,Y") converging almost surely to
Goo (90) = ggo'

As in maximum likelihood estimation, assumption (ii) that G is com-
pact can be replaced by assumption (ii’) that G is open. In this case we
have:

Property 8.2: Suppose that ¥ is continuously differentiable in g and
that assumptions (i), (ii’), (iii)-(v) hold. Then there erists asymptoti-
cally a solution to the first-order conditions that converges almost surely
to goo(fo) = g%,. This solution corresponds to a local mazimum of the
objective function.

Thereafter, such a solution converging to g3, is called an M-estimator as
well. '

Although M-estimators converge, the preceding two properties show
that their limits are not necessarily equal to the value g(fp) of interest.
A necessary and sufficient condition for the consistency of M-estimators
is given in the next property.

Property 8.3: Under the assumptions of Property 8.1 or Property 8.2,
there exists an M-estimator converging almost surely to g(@), 8 € ©, if
and only if goo(0) = g(#), V 8 € ©.
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Thus, provided suitable regularity conditions are satisfied, it suffices
to show that the solution to the limit problem is equal to the value of
interest so as to establish the strong consistency of an M-estimator.

8.1.3 Asymptotic Normality

Asymptotic normality of an M-estimator is established by taking a
Taylor expansion of the first-order conditions in a neighborhood of the
limit value goo(fp). We have

i a‘Il(Y'u Xi; gn) =

0,
i=1 ag
which gives
_1_ i a‘I’(YiaXi;goo(GO))
Ak
1 &PV, X go(60) -
R T 0 a0 #0,

where # means that the left-hand side and the right-hand side differ by
a quantity converging to zero in probability. Hence

\/'r—"(gn - 900(90))
n - . -1 n - »
4 < L g~ 62\1101-,&-,9&(00») L ¢ BU(Y:, Xi; oo (60))

n i Og 8g’ vn poe Og
BPU(Y, X; 900(60)) \ ™" 1 = BU(Y:, Xi; goo(f0))
# <EXE° - g g ) Vn ,; 89 ’

where we have used the Strong Law of Large Numbers applied to the
sample means of second partial derivatives.
Now we have

dg

because goo(fo) is the solution of the limit problem. Thus the vectors
0V (Y;, Xi; 9 (60)) /89 are independent and identically distributed with
mean zero and variance covariance matrix

WY, X goo(60)) OF(Y, X; goo (O
I=EXE0( ( 6};9 (60)) B 8g,9 (0))).

Ex By Y0 Xi 900 (60)) _ (%EXEOW(K,Xi;gw(eo)) 0,
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From the Central Limit Theorem it follows that

vy b

Hence the vector /7(gn — goo(6o)), which is a linear transformation of
the preceding vector, is asymptotically normally distributed with zero
mean and variance covariance matrix J~1ZJ "1, where

_82U(Y, X; goo (60))
dg Oy’ '

< N(0,T).

gu=1

J = ExFEy (

Of course, this result holds provided a Taylor expansion is justified.
Suitable regularity conditions are given in the next property.

Property 8.4: Suppose that the assumptions of Property 8.2 hold and
that:

(vi) U is twice continuously differentiable in g,

(vii) the matriz J = ExEy (—0*¥(Y, X; goo(60))/ g dg') exists and is
nonsingular.

Then v/7(Gn—9oo (B0)) is asymptotically normally distributed N(0, 1T
J~1), where '

T = ExEy (B‘I'(Y, X; goo(60)) OU(Y, X; gm(oo))> -

dg ag’

Proor: See Chapter 24, Volume IL. O

The variance covariance matrix J~'ZJ ! depends on the unknown
true distribution of the pair (Y;, X;). It must be estimated when evalu-
ating the precision of the estimator §,. To do so, it suffices to replace
mathematical expectations by their corresponding sample means and
goo(fo) by the consistent estimator g,. Thus a consistent estimator of
the matrix J~1ZJ ! is

V [V(gn = goo(60))] = T2, (8.4)

where 2g
s 1= 02(Y5, X5 n)
J= nZ g 8¢ '’

i==1
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and

5 _1_ u B\I'(Y X,,gn) OU(Y;, Xii Gn)
1= n g < og'

Remark 8.1: In the special case of maximum likelihood estimation (see
Chapter 7), the function ¥ is equal to the log-likelihood function for one
observation, g(6) = 6, and the matrices.J and-T are equal since they are:
equivalent expressions of the Fisher information matrix. Specifically. in
this case, the asymptotic variance covariance matrix simplifies to

j—lIJ-I = J-—l =I-—1

As expected, we obtain the inverse of the Fisher information matrix.

8.1.4 Quasi Generalized M-Estimators

M-estimation can be generalized to cases where objective functions de-
pend on nuisance parameters. These cases are frequent and- naturally
arise when searching for optimal M-estimators.

Specifically, the objective function is now of the form

k13
> u(Y:, X 9,8),
=1

where &, is a function of the observations that converges almost surely
to a limit ¢y depending on the true distribution of the observations.

Definition 8.2: A quasi generalized M-estimator gn, is a solution to the
optimization problem

maXZ‘I’(K,Xug, &n)-

g=1

Existence and consistency properties are obtained by considering,
as before, the corresponding limit problem where sample means are re-
placed by their expectations and &, by cp

max Ex Eq¥(Y, X; g, co)- (8.5)
geG

Under suitable regularity conditions (see Chapter 24, Volume II), the es-
timator §; converges almost surely to the unique solution geo(fo) = g5
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8.1. DEFINITION AND ASYMPTOTIC PROPERTIES

to the limit problem (8.5). Thus the presence of consistent estimators of
nuisance parameters in the objective function does not introduce new dif-
ficulties in terms of consistency. In general, however, such a presence will
modify the asymptotic variance covariance matrix of an M-estimator.
To see this, we now consider a Taylor expansion of the first-order
conditions in a neighborhood of the point (geo(fo), o) = (9%, o). From

"~ 0U(Y;, Xi; G En)
> -0
0g

i=1

we obtain

1 = 0U(Y;, Xi; 95, o)
vn Z og

i==1

1 = 0%0(Y;, Xi59%,,¢0) - 0
+7—ﬁ; 59 B4/ (9n — 9o0)
1 < 2(Y;, Xi; 9%

Y g oc L (&n — co) # 0.

i=1
Hence

1 i 8U(Y;, Xi; 9oo: ©0)
\/;i i=1 ag

62\1’(1/’ X;ggo:CO) = 0

62‘11(1/'7 X;ggoch) =
+ExEp ( B 90 ) V(En — co) # 0.

It follows that

V(G — g) # T ( L 3~ O XiiGo0r0) 4 4y /i, Co)) ,

VTR ¢

where 2 (Y, X; 95, o)
7 =Exto (‘ 5909 )

nd (Y, X; g5: <o)
H*—-:EXE'O( 5986’00 )
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If the vector of random variables

L yn 0V (Y;, X395, co)
\/ﬁ =1 ag
V1(én — ca)

is asymptotically normally distributed with mean zero and variance co-
variance matrix
7z IOc
Z-c0 Icc ’

then the quasi generalized estimator §, is asymptotically normally dis-
tributed. Namely, we have

Vildn - 9%) % N0, V), - (86)

veom(wn( £ % )-(4))

Thus, with the exception of the special case considered below, this vari-
ance covariance matrix is different from that of the M-estimator that
treats ¢, as given. :

Property 8.5: If

where

2 . A0
H = ExEp (3 ‘I'(KX’QWCO)) =0,

g Oc

then the quasi generalized M-estimator §, satisfies

Va(Gn —9%) S NO,T T T7Y),

where
2Y(Y, X; 9%, co)
7 = Bxbo (_ dg 89’ )’
.0 . 0
T = EXEO B‘I’(Y',X,QOO,CO)B\I’(KX,QOO,CO) .
Og dg'

Thus the condition ExEo (82¥(Y, X;4%,c0)/8g ') = 0 greatly
simplifies the asymptotic variance covariance matrix. In particular, it im-
plies that the asymptotic properties of the quasi generalized M-estimator
Jr, can be obtained without taking into account the asymptotic distri-
bution of the nuisance parameter estimator é&,. After having estimated
co by &, in a first step, one can use this estimate in a second step for
obtaining an estimate g, of g.
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8.2 Nonlinear Regression Models of Order
1 and 2

8.2.1 Definitions

Let Y3, ...,Y, be n observations on an endogenous random variable with
values in JR. Tt is assumed that Y; has a conditional mean given some
exogenous variables X1, . .., Xn of the form h(X;, bo), where bpisa Kx1
vector of unknown parameters. Thus the statistical model is a semipara-
metric conditional model given by

Y; = h(Xi, bo) + us, 8.7

where
Eo(u; | X1,...,Xn) =0, Vi

Such a model is called a regression model of order 1.

Our goal is to find consistent estimators of the parameters by appear-
ing in the conditional mean. It is clear that the conditional distribution
of Y3,...,Y, in such a model is not completely specified since only the
conditional mean is considered. Hence maximum likelihood estimation
as well as properties of exponential families cannot be invoked. It is
necessary to introduce other estimation methods. '

The precision in model (8.7) can be assessed through the conditional
variance covariance matrix of the vector of errors (us,...,un)". There-
after it is assumed that these errors are conditionally independent. More-
over, we let

Volus | X1, Xn) = w?(X5) (8.8)
denote the conditional variance. In general, this variance is unknown.
When additional information on the form of the conditional vari-
ance is available, it is frequently possible to construct more efficient
estimators. Tn this case, the conditional model is defined by its first two
moments. Namely, we have
Y; = h(Xi, bo) + us, (8.9)
where
EO(ui ! -X17 ve 7X'n) = 0,
VO(ui i Xla LERR] X’n) = wz(X’ia :30):
and fp is an'L x 1 vector of unknown parameters. We say that we have
a regression model of order 2.

217



M-Estimation

8.2.2 Special Cases and Examples

In some applications the first two moments may have some simple ex-
pressions.

Example 8.1: When h(X,b) = F(X)'b, where F is a vector function
with values in JR¥ it is easy to see thiat a change of exogenous variables,
namely Z = F(X), gives the model

Y = Zb+u;,

where
Eo(’u.i l Zl, .o ,Zn) =0.
That is, we have a linear model.

Example 8.2: More generally, the search for consistent estimators is
frequently facilitated in the case of decomposable models of order 1, i.e.,
models for which ‘

h(X,b) = F(X)' H(b).

Let Z = F(X). We have
Y, = Z;H + u;,
where H = H(b) and
Eo(ui | Zu,.... Zn) = 0.

Such models can be viewed as models that are linear in H where the
natural parameters H are subject to the constraints H = H(b).

Example 8.3: Some specific forms for the conditional variance may
turn out to be useful. In some cases the conditional variance:

(i) is known up to a proportional factor
wz(Xivﬁ) = IH wz(Xi)a
where w?(X;) is known and 8 is an unknown positive constant,

(ii) is a linear combination (with nonnegative weights) of positive
parameters

w( Xy, B) = brwd(Xs) + ...+ Brwd (Xy),

where w?(X;),l=1,...,L are known and 8 > 0,1 =1,...,L are
unknown nonnegative constants,
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(iii) is a transformation of a linear combination of the parameters

L
W (X, 8) =k (Z ﬂzkz(Xi)> ,
=1

where the functions k and k;, [ = 1,...,L are known, and f,
l=1,...,L are unknown constants.

Econometric models are often derived from economic theory which
suggests some deterministic relations between the variables Y and X.
Such relations are made probabilistic by introducing suitable error terms.
Econometric models are more or less simple depending on how the errors
are introduced.

Example 8.4: Consider a constant elasticity of substitution (CES) pro-
duction function .
Y: = (aK] + bL})*.

There exist various ways for introducing error terms.
First, error terms can be introduced directly in the right-hand side.
In this case, error terms are interpreted as measurement errors on Y and
we have
Y; = (aKT +bLY)* + us.

The model is not decomposable.
Another method consists in introducing error terms inside the paren-
theses so that ,
Y; = (GKZ‘ -+ bLZ +ut)F,

which is equivalent to
Y] = aK{ + bL] + us.

Hence, if 7 is known, the model is linear after a suitable fransformation.

Exafnple 8.5: Consider a simultaneous equation model. Its reduced
form consists of equations of the form

Y3t=XtHj(9)+th, i=1...,J, t=1,...,T,

where Yjy is the tth observation on the jth endogenous variable, II;(6)
is the vector of reduced form parameters in the jth equation which is
a function of the structural parameters 8, and v;; is the error term
in the reduced form with mean zero. The reduced form model is a
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decomposable nonlinear regression model. Thus it may be useful to
consider all the endogenous variables simultaneously, i.e., to write an
equation of the form (8.7) with possibly an equation of the form (8.8),
where Y; is now a vector. This extension, which is strdlghtforward is
left to the reader.

Example 8.6: The number of registered patents of a firm 7 during a
given period is a discrete variable Y;. It is natural to propose a condi-
tional model based on the Poisson distribution. For instance, suppose
that the variables Y; are conditionally independent given some firms
characteristics X;. Suppose also that the conditional distribution of ¥;

is
where A; = exp(X;b). Note that the exponential form implies that ); is
positive as required. :

The previous model, however, may not be fully satisfying for it im-
plies a strong relationship between the conditional mean and the condi-
tional variance. This is because E(Y; | X;) = V(V; | X;) = exp(X:b).
To solve such a problem, a method consists in introducing an error term
€; in the expression for \;, namely

A; = exp(X;b + &5).

The unobserved error term &; can be due to omitted variables. Then
assuming that E(expe; | X;) =1 and V(expe; | X;) = 02, we obtain
E(E ! X,) = E(exp(Xib+ Ei) I X,)
= expX;b,

and

VYi| X)) = V(EY: | X&) | X))+ EVY:| Xi,e) | Xs)
V(exp(Xib+€;) | Xi) + E(exp(Xib+ &) | X;)
o2 exp(2X;b) + exp(X;b).

In particular, the parameters appearing in the conditional mean and the
conditional variance are related to each others.

8.2.3 First-Order and Second-Order Identification

In general, the parameters b and 3 are functions of a same set of param-
eters 6 € O, i.e., b= b() and B = B(H).
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Definition 8.3:

(i) The parameter vector b is first-order identified if, for every value
bo
h(z,b) = h(z,bo), ¥V x € X,= b= b,

(ii) The parameter vector 6 is first-order identified if, for every value
o
h‘(ma b(e)) = h(:l), b(@g)), VzekX,=0=0b,

(iii) The parameter vector 0 is second-order identified if, for every value
bo

{ h(z,b(9))) = h(z,b(6o)), ¥z € X

wz(m,ﬂ(e)) = wz(w’ ﬁ(eo)), VzeX, = § = 0p.

First-order identification of @ clearly implies first-order identification
of b. Hence 0 is not first-order identified if b is not. A parameter that
is first-order identified is known if the first-order conditional moment is
known. Similarly, a second-order identified parameter is known if the
first two conditional moments are known.

Definition 8.3 is related to the definitions of identification introduced
in Chapter 3. Specifically, it suffices to introduce an appropriate family
of distributions for the endogenous variables. For instance, consider the
family of normal distributions. We have the following result.

Property 8.6:

(i) The parameter 6 is first-order identified if 0 is identified in the
conditional model

(R", {(5@ N(h(X;,b(8)),1),0 € @}) )
fe=1

(i) The parameter 6 is second—order'identiﬁed if 0 is identified in the
conditional model

(R”, {é N(h(X;,b(0)),w*(X:, 8(0))),0 € @}) .

i=1
ProOF: This follows from the fact that two normal distributions are
identical if and only if their means and variances are equal. O

From the proof, it is clear that we could have chosen other fami-
lies of distributions that are completely characterized by their first two
moments.
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8.3 Nonlinear Least Squares

8.3.1 The Method

‘We consider the nonlinear regression model

Y; = h(X4, bo) +
where Eo(u; | X1,...,Xn) =0 and by € B.
Definition 8.4:

(i) A nonlinear least squares estimator of b is a solution to the opti-
mization problem

s - ALY
rbneag;(n h(X;,b))>.

(i) A weighted nonlinear least squares estimator of b is a solution to
the optimization problem

n
min Zlo’ — h(X;,b))%a(X:),
=
where a is a given strictly positive function.

The weighted nonlinear least squares estimator is obtained by min-
imizing a weighted sum of squared errors Y; — h(X;, b). This estimator
clearly depends on the chosen weights a. It is denoted b, (a). The ordi-
nary least squares estimator f)n(l) corresponds to the weights a = 1.

Least squares estimators have the usual geometric interpretation.
Namely, let Y = (Y3,...,Y,) denote the vector of observations on the
endogenous variable, and let £ denote the manifold associated with the
specified model

L= {(h(X1,b),...,h(Xn, b)), be B}.
N ~ ) R !
The vector Y(a) = (h(Xl, bn(a)),..., h(Xn,bn(a,))) is the element

of £ that is closest to Y in the metric associated with the scalar product
defined by a. Thus Y'(e) is the orthogonal projection of Y on to L.
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a(a)

P

Figure 8.1: Nonlinear Least Squares Estimation

Definition 8.5:
(i) Yi(a) = h(X;,bn(a)) is called the predicted value of Y,

(i) 4i(a) = Y; ~Yi(a) is called the ith residual of the nonlinear regres-
sion.

Note that ¥;(a) is the prediction of ¥; based on the model and ii;(a)
is the predicted va%ue for u;.
The estimator by, (a) is found by solving the first-order conditions

—gl; (Z[Yz - h(Xi, I;n(a))]za,(Xz)) =0,

q==]
i.e.

3t - b ba(@ 2EER@) o (ga0)

f==]

These equations are nonlinear in bn (@). They are solved using numerical
algorithms (see Chapter 13). For some decomposable models, however,
they can be solved analytically.

Example 8.7: If h(X,b) = F(X)'b, the model is linear and bn(a) is the
weighted (linear) least squares estimator (see Corollary 6.2). Specifically,
we have

n -1 n
br(a) = (Z F(XQF’(X,-)a(X,—)) > F(Xi)Yia(X:),

i=1 i==1
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provided the first matrix is nonsingular.

Example 8.8: Suppose that the conditional mean can be written as
h(X,b)=F(X)'H(b), where H is a bijective mappmg Then the weighted
nonlinear least squares estimator is

bo(a) =H* ((i F(Xi)FI(Xi)a(Xi)>- ZF(X Yia(X; ))

i=1 i=1
That is, it suffices to apply the inverse mapping H~! to the solution
obtained in Example 8.7.

The first-order conditions (8.10) express the orthogonality between
the residual vector (4;(a), ..., @(a))’ and the hyperplane that is tangent
to the surface £ at the point Y (a). This hyperplane is generated by the

K x 1 vectors X
ah(Xi, bn (a’))
ob i=1 .

Here, orthogonality is defined with respect to the scalar product

n

(21,22) = Y a(X:)z1i22:.

fe=1

8.3.2 Asymptotic Properties

The asymptotic properties of nonlinear least squares estimators follow
directly from the general results given in Section 8.1. The objective
function is defined by
1 »
U(Y;, Xi5b) = “'Q'G(Xi)(YE — h(X;,b))>.

The limit problem associated with the least squares method is

. _ 2

IbnelélEXEo [a(X)(Y h(X,b)) ] .

Since Eg denotes the expectation conditional on X, we have
ExEy [a(X)(Y h{X,b)) ]

ExEq [a(X)(Y = R(X, bo) + h(X,bo) — h(X,))?]

Ex [a(X)Eo(Y — h{X, bo) + h(X, bo) — h(X,D))?]

Ex [a(X)[VoY + (A(X,bo) — h(X,))?]]

Ex (a(X)wd(X)) + Ex[a(X)(R(X,b) — h(X,0))?],

il
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where VpY = w(X) is the conditional variance of Y given X. Only the
the second term depends on b. Since this term is nonnegative and equal
to zero when b = by, the solutions to the limit problem satisfy

a(z)(h(z, bo) — h(z,5))* =0, Yz € X.
Since a(z) > 0, the latter condition is equivalent to
h(z,bp) — h(z,b) =0, VT € X.

Thus bp is the unique solution to the limit problem if and only if the
parameter b is first-order identified.

Property 8.7: Under the regularity conditions (i)-(iv) of Property 8.1,
if b is first-order identified, then there exists a nonlinear least squares
estimator by (a) converging almost surely to the true value by.

The determination of the asymptotic variance covariance matrix
requires the computation of the following matrices

J = BxEo (-—————————~82\Ig’;§f bo) )
and
T =ExEp (awa:é;c; bo) 6‘1'(};’;( ; b")) :
‘We have
FICX ) a(a)(y - hx, bo Loobo)
o) 2Hube) )

Taking conditional expectation given X and noting that Eo(Y ~h(X, bp))
== (), we obtain

7= By (a (20 2K, o) OR(X, bo)) .

5 5 (8.11)
The other matrix is given by

7= e (a(x)? 2 I (i by
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ie.
7= By (a0 2000 IR0 oy~ hX, o))
Hence .
T=Ex (a(X)23h(g‘g o) Bh((;; .bo) 2 (X)) (8.12)

We have established the following property.

Property 8.8: Under the regularity conditions of Property 8.4, there
erists a nonlinear least squares estimator bn(a) that is asymptotically
normal with :

| V() —bo) S N(O,TIIT Y,
where the matrices J and I are given in equations (8.11) and (8.12).

Example 8.9: Consider a decomposable model where
h(X,b) = F(X) H(b).
‘We have
On(X,b) OH'(b)
ob b
The first-order conditions are
n 173
S e ¥ - P Boa@) 220 D pxy = o
i=1

. F(X).

ie.

O (afa)) OH (bu(a)) § > a(XIHF(X)

MZ (X:)F(X:)F(X:) H(ba(a)) = 0.

Hence the first-order conditions are separable in terms. that are func-
tions of by (a) and terms that are functions of the observations Y;. This
separability property remains when we consider the asymptotic variance
covariance matrix since

7 = 2200 g oy o p) 20
and
OH! (bo) 8H (bo)

I= Ex (a*(X)w§(X)F(X)F(X) )5

ob oy
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8.3.3 Quasi Generalized Nonlinear Least Squares

In general, different choices of weights lead to estimators with different
asymptotic variance covariance matrices. In this subsection we consider
the choice of optimal weights.

Property 8.9: The asymptotic variance covariance matriz of the esti-
mator by, (a) is minimized when a(X) is proportional to 1/wi(X).

Proor: Consider the following two random vectors

-1
71 = Bx (a0 2T BT o 30y B0 ),
_ 1 Bh(X,bo) Bh(X,b0)\ "
% = Bx <w§(X) b - o' 0)
1 8h(X,bo)

The two vectors Z; and Z, are centered. Moreover, we have:
() VZ1 = ExVo 2, + VxEoZ1 = ExVoZ, = T 'IT %,

() VZy = J3 0Tyt = J5" because Jy = Tp where Jp and I
denote the matrices J and Z when a(X) = 1/wg(X),

(iii) Cov (Z1,Z2) = EXcOV() (Zl,Zg)

= Ex (J"la(X)ah(X’bO)VoYah(X’bo) - .70‘1>

b B w(X)
— -1 ah(Xa bO) ah(X1 bO) -1
= J Ex (a(X) b BT, ‘-70
VARt
= %"1
V Zs.

It follows that .

V(Zl - Zz) = VZ;—Cov (Zl, Zz) — Cov (Zz, Zl) +VZs
: V&, ~VZy—VZg+Vis
J-—lIJ—-l - ‘76_1'
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Hence J 171 — jo is a positive semidefinite matrix for any choice
of a, i.e.
Va>0, J7ZT 7 > J5t = T Tyt

Therefore the asymptotie variance covariance matrix is minimized when
a(X) = 1/wd(X). More generally, if a(X) is proportional to 1/wd(X),
then the estimators b,(a) and b,(1/w?) are identical. Thus the choice
of such a function a allows us to attain the smallest possible asymptotic
variance covariance matrix. &

Property 8.10: Suppose that the conditional variance is either known,
i.e., w?(z, B) = w(z), or is known up to a positive scalar, i.e, w?(z, B) =
Bw?(X). Then the estimator obtained by minimizing

Z T )(Y h(X;,b))?

i=1

is asymptotically optimal in the class of weighted nonlinear least squares
estimators. This estimator is called the generalized nonlinear least squares
estimator.

Proor: This follows immediately from Property 8.9. O

When the conditional variance is neither known nor known up to a
scalar, the optimality property 8.9 cannot be applied directly. Specifi-
cally, one would like to choose a function a(X) that is proportional to
1/w?(X, Bo), which is, however, unknown since fp is unknown.

A natural idea consists in replacing, when possible, 3g by a consistent
estimator G,.

Definition 8.6: A quasi generalized nonlinear least squares estimator
is a solution by, to the problem

n

w3 m—)(Y h(Xe, b)),

where B, is a consistent estimator of fBo.

Property 8.11: Under the regularity conditions given in Section 8.1.4,
there ezists a quasi generalized nonlinear least squares estimator b, con-
verging almost surely to by and asymptotically normally distributed with

Valbn — b0) % N(0, T57Y).
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In particular, this estimation method achieves the lower bound for
the asymptotic variance covariance matrices of weighted nonlinear least
squares estimators.

PROOF: We need to verify the condition given in Property 8.5, namely

0*W(Y, X; by, Bo)

H = ExEy 36 0F" = 0.
Since
PPR(Y, X;bo, ) _ O 1 ah(X bo)
abof  ofF (wz(X gy~ X bo)) )

and since Eg(Y —h(X, b)) = 0, it is easily seen that the above condition
is satisfied. Therefore the asymptotic distribution of the quasi general-
ized least squares estimator is identical to that of the generalized least
squares estimator that assumes (g to be known. O

8.3.4 Linearizing a Nonlinear Model

Estimating a nonlinear econometric model of the type ¥; = h(X;, bo)+u;
reduces to solving a system of nonlinear equations which do not have, in
general, some closed form solutions. In practice, to simplify the compu-
tation of the nonlinear least squares estimator, it is frequent to replace
the original nonlinear model by a linear approximation that is more
tractable. Such a linearization can be performed with respect to either
the exogenous variables or the parameters.

a) Linearizing With Respect to the Explanatory Variables

The basic idea consists in replacing the regression curve = — h(z,bo) by
its tangent at a point z°. Letting = be a row vector, this leads to

0
Y; = h(z® bo) + (Xi — xO)M + us,
oc
ie. p 0
Y%"&«’h(wo,bo) OM +X?—’—L-%5:—@+ui.

Thus the endogenous variable satlsﬁes approximately the linear model

Y = a+ Xif +u;,
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where the “true values” of the parameters o and j correspond to the-
intercept and the slope of the tangent at 20 to the regression curve when
X; is a scalar variable. These “true values” are given by

Bh{x0, bg)

— i) 0 L, 0

Qg = h‘(m ,b(’) z aw, H)
Bh(a:",bo)

Bo oz

Then it may seem natural to estimate the unknown values o and Go
by regressing Y; on the constant term and X; by ordinary least squares
methods. As we shall see in the next example, however, these estimators
do not converge to g and fp.

Example 8.10: Consider the quadratic speciﬁcat.ion
Y = h(Xibo)+u
= boo + Xibio + XPboo + ui.
The model obtained by linearization is
Y; & bog + (2°)2bgg + Xi(b1o + 22%90) + us.
The sample correlation coefficient between Y; and X; is equal to

ﬁ — COvemp (1,1.1 Xz)
Vemp(X)

It converges to

_ Covx (Xbyo + X2byg, X)

Covx(X?,X)
Poe ™ Vx(X) ‘

Vx (X)

= byg + b2o

This limit is equal to the desired value bjp + 22%byq if and only if either
bag = 0 or Covy (X2, X) = 229V (X).

The condition byg = 0 corresponds to an original model that is linear
and hence for which there is no need for linearization. In the general
case where byg # 0, there is convergence to the desired value only if the
value 20 is equal to half the coefficient of a regression of X2 on X. Such
a condition is unlikely to be satisfied in practice.

Example 8.10 shows that the estimation of a linear model when the
regression curve is nonlinear does not lead, contrary to invuition, to the
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estimation of a tangent to this curve. Nonetheless, it is easy to interpret
the estimated regression line obtained from the above linearization.

Property 8.12: When the regression curve of Y on X is nonlinear
and given by E(Y | X) = h(X,bo), the estimation of a misspecified
linear model Y; = X; + u; by ordinary least squares (OLS) leads to the
consistent estimation of the hyperplane defined by y = zfo, where B
satisfies

Ex (h(X, bo) = X o) = min Ex (h(X, bo) = X )"
Proor: The OLS estimator is obtained by minimizing
1 n
=3 - XiB)%.
=
It converges to the solution to the limit problem
mbin E(Y - XB)2.

Then it suffices to note that
E(Y — Xf)? = E(Y — h(X,b0))* + Ex(R(X, bo) — XB)*.
The desired result follows. O

Hence linearizing the original model with respect to the explanatory
variables leads to estimating the hyperplane y = zf that is closest to
the regression curve according to the mean square error criterion. .

b) Linearizing With Respect to the Parameters

It is also possible to take a Taylor expansion of the original model with
respect to the parameters. Let by be a parameter value chosen a priori.
A Taylor expansion of the original model gives

Oh(X;,bo)

~ h(X;, 50) + T (bo — 50) + g,
ie. . 5 - 5 -
- h(X;,bo) 5 h( X, b
Y; — h(X;, bo) + (Bb’ 0) bo =~ (ab' o) bo -+ us.
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Tangent at x0 ————3o-

- True regression curve

T Estimated best linear approximation

Figure 8.2: Approximated Linear Model

The second equation can be viewed as a linear model with “endogenous
variable” 5 .
~ = h(Xi,bo) ¢
lfi = Y; - h(XiybO) + ——La—é’—'g')'bﬂ,
and “exogenous variables”
o ORh(Xi,bo)
%, = S

Then it may seem natural to estimate the unknown parameter by from
an OLS regression of Y; on X;. The estimator is

oo (Z OH (X, o) ah(Xi,zo)>'1

i b’
=\ O (X, bo) [+, 2 Oh(Xi,bo)s
; i (Y; h(Xi,bo) + —g7—"bo | -

In general, this estimator does not converge to the true parameter value
be.

Example 8.11: Suppose that the original model is exponential, i.e.,
Y; = exp X;bp + u; where X is a scalar exogenous variable. A Taylor
expansion around bg = 0 gives

Y = 1+ X;bo + us.

The OLS-estimator in this linearized médel is

I X(i-1)
Z?:l X’Lz .

o
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It converges to

[X(Y —-1)] _ Ex[X(exp(Xbo) —1)]

) _E
7 T Ex(X?) Ex(X?2)

Since exp(Xbg) — 1 > Xby, it is easily seen that b > bo. Hence in this
example, the OLS estimator in the linearized model overestimates the
true parameter value.

Although a Taylor expansion around a fixed value of b produces, in
general, inconsistent estimators, this may not be the case when a Taylor
expansion is performed around a random value. More precisely, we have
the following result.

Property 8.13: Let b, be a consistent estimator of bo. The OLS esti-
mator of by in a model linearized around by, is also consistent for bo.

PRrROOF: The OLS estimator in the linearized model is

n ' i A -t
- <Z oh (Xi,bn)ah(Xi,bn))

po ob o'
" oW (Xab) (i iy g Kbl
; ob Y; h(Xubn)"' oy ba ) -
Hence
. Bk (X, bo) OR(X, bo) \\
b # b + (EX( ab o/
!
< (20 - hx )

where # means that the left-hand side and the right-hand side differ by
a quantity converging to zero in probability.
Since h(X, bp) is the regression curve of ¥ on X, we have

E(Y — h(X,bp))? = min E(Y — A(X, b))2.
The corresponding first-order conditions are

E (?_”i%%-’ﬁ’l(y — h(X, bo))) ~ 0.

Tt follows that B b bo. O
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8.4 Pseudo Maximum- Likelihood
Estimation

8.4.1 ML Estimation With Specification Errors

To study the relationship between an endogenous variable Y and some
exogenous variables X, one considers a conditional model specifying the
form of the conditional distribution of Yi,...,Y, given Xiy,...,X,. To
simplify, it is assumed that the model is parameterized by 8 € © which is
an open subset of IR?, that the model is dominated and that the densities
can be written as

n
L1, Yn | B1,- . @03 0) = [ [ v | 2::0), 6¢€O.

i=1

Thus the model implies the mutual independence of the variables Y3, ...,
Y,, conditionally on X3, ..., X,, and the equality of the conditional den-
sities f(y; | zi;8) across observations.

Throughout this subsection, we shall consider the case where the
model is misspecified. The true distribution of the observations is given
by the density

n
eO(yli"'ayn l (L'1,--.,$n) = H.f()(yz t mi)1
i==1

where fo(y | z) does not belong to the specified family, i.e.

foly ) € {f(y|=;6), 6 € O} (8.13)

In such a misspecified context we saw in Chapter 1 that it is possible
to evaluate the discrepancy between the true density fy and the model
{f(y | z;8), 6 € O} by the Kullback information measure. This leads
naturally to the concept of pseudo true (or quasi true) value 6 of the
parameter 8 that corresponds to the distribution in the model that is
closest to fp. This pseudo true value is a solution to

%neaécExEo log f(Y | X;0),

where Ey denotes the conditional expectation of Y given X under fo.
Thereafter it is assumed that 83 is unique.
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Definition 8.7: A pseudo (or quasi) mazimum likelihood (PML) esti-
mator 8, of 8 is a solution 0, to

n
max > log £(V; | X;0).

qe=1

Thus én is a maximum likelihood estimator based on a misspecified
model.

Property 8.14: Under the regularity conditions of Property 8.1, the
pseudo mazimum likelihood estimator converges almost surely to the
pseudo true value 6.

PROOF: It suffices to note that the asymptotic optimization problem is

IgleaécEng log f(Y | X;6).

This problem has a unique solution which is the pseudo true value 63.
O

The previous result some useful in practice for evaluating the direc-
tion and the magnitude of some asymptotic biases.

Example 8.12: Sample Selection Bias.

To determine the average income in a population of households, a
researcher has n available observations on income Rji,...,R,. It is as-
sumed that the observations are independent and identically distributed
with density f(R,m) on IRt, where m € R" is an unknown mean.

However, individuals with high income, for instance those with in-
come larger than a threshold R, do not answer the survey. This fact
is not taken into account by the researcher. If mg denotes the true
population mean income, then the true density of each observation is

f(Rva) ) ]112 B
—_ e 1p.g,
fy" f(r,mo)dr
which coincides with the conditional density of R given that there is

a response to the survey, ie., given R < R. The pseudo maximum
likelihood estimator is a solution to

fo(R) =

" log f(Ri,m).

d==1

m

ax
mEB+
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It converges to the pseudo true value which is the solution to

max, Folog f (R,m),

me
ie. _
foR f(r _mo) log f(r, m)dr
me R foR f(rymo)dr

ie.

R
max [ (5, mo) log £(r,

In general, the solution my is not equal to the true value my.
For instance, consider the case where- the family f is the family of
exponential densities

1 T
fr,m) = = exp (=) Lso.
The limit problem is
R
1 T T
mﬂgx/0 —n—;aexp (-——n-;-o-) (—- logm — _TI—‘L) dr,
ie.
max logm (exp(—R/mq) — 1)
) R - mg -
Lir— exp(—R/mo) + — (exp(=R/mo) - 1).
The first-order condition gives
0 = — (exp(—R/mg) — 1)
mg
1 = ~ -
—— (Rexp(—R/mq) + mg (exp(—R/mq) — 1)),
0
ie.

‘Rexp(———R/mg)
exp(—R/mg) — 1

mg = + mg.
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Thus, in general, specification errors lead to an asymptotic bias. The
latter is given by

Rexp(—R/mo)

exp(—R/mq) — 1
uwexp(—u)

Oexp(—u) — 1’

my—my =

where u = R/my. It is easy to see that the asymptotic bias is always
negative and decreases in absolute value when the threshold R increases.

Asymptotic bias A

Figure 8.3: Asymptotic Bias

Property 8.15: Under the regularity conditions of Property 8.4, the
pseudo mazimum likelihood estimator is asymptotically normally dis-
tributed with

V(B ~05) 5 N0, TZT 1),

where
82log f(Y | X; 63
T = By (-ZRESELTA))
T = EXEO(Blogf(ggl X;00)310gf(;’9’l X;Ho))_

Proor: This is a straightforward application of Property 8.4 with the
function ¥ being the individual log-likelihood, i.e., ¥ =log f. O

It is important to note that the matrices J and Z are not, in general,
equal when specification errors are present. Thus comparing estimates
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of the two matrices J and Z can be useful for detecting specification
errors (see the information matrix test discussed in Chapter 18, Volume
11).
Example 8.13: Omitted Heteroskedasticity. :

Consider an heteroskedastic linear model with known variances

Yi=Xibg+u;, i=1...,n,

where the errors u;. are independent and distributed N(0,w?(X;)) and
X; is a K x 1 row vector.

Suppose that the parameter vector b is estimated by OLS or equiv-
alently by maximum likelihood of the misspecified model, where u; is
assumed N(0,1). The pseudo maximum likelihood estimator of b is

n -1 5
by = (X'X)"1X'Y = (Z X{Xi> > X

i=1 i=1

It converges to the true value by, which is here equal to the pseudo true
value bg. The specified density used for determining b, is

1 1
log f(Y; | Xi;b) = 3 log2m — E(Yi ~- X;b)%.

‘We have 51 V1 X:h
ng( ‘ 1 ) =-'.X,(Y—Xb),
ob
and 821 FY | X;b)
0g 90)
ob ov’ =-XX
Hence

J = Ex(X'X) and T = Ex(w?(X)X'X).

Although equal when w?(X) = 1, these two matrices are, in general,
different. -

8.4.2 Consistent PML Estimation of Order 1
a) Definition

We consider a regression model of order 1. Thus the model focuses on
the relationship between X and Y via the conditional mean of ¥ given
X

Y; = h(X;, bg) + u;, where Ex('u.i ' X1y ,Xn) =0. (8.14)
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Here Y and h can be multidimensional of size G.

The model is assumed to be first-order identified. Since maximum
likelihood estimation is possible only if the form of the distribution of ¥;
given X; is specified, various families of conditional distributions for ¥;
given X; can be proposed. Our goal is to find those families that lead to
consistent estimators of by even if the resulting models are misspecified.

More precisely, we consider a family of densities parameterized by
a mean m. The densities are denoted f(y,m), m € M. The set M
is assumed to contain all possible values for h(z,b). We are interested
in pseudo maximum likelihood estimators of b obtained as if the vari-
ables Yi,...,Y, are conditionally independent given X3,...,X, with a
conditional distribution of Y; given Y1,...Y,,... given by the density

£ (i3 bz, b))-

The corresponding pseudo maximum likelihood estimator b,, is a solution
to

a3 log £ (¥ (X ) (8.15)

i=1
b) Consistency

From Section 8.4.1 the estimator b, converges almost surely to the
pseudo true value bjj, which is the solution to the limit problem

max ExEylog f(Y; h(X,1)).

In general, the pseudo true value b} depends on the limiting distribution
v of the exogenous variables. Hence, in principle, it should be denoted

b (v). :

Property 8.16: Under the assumptions of Property 8:1, the pseudo
mazimum likelihood estimator by, is consistent for by for any possible
value of the parameter, any functional form of the conditional mean, any
limiting distribution v of the ezogenous variables, and any conditional
distribution satisfying (8.14) if and only if the pseudo true densities are .
of the form

f(y;m) = exp(A(m) + B(y) + C(m)y),

where m is the mean of the density f(y;m). Such a density is called a
linear exponential density.
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That is, it is necessary and sufficient to specify a family that is a
linear exponential family. The proof of this proposition relies on the
following lemma, which is proved in the appendix to this chapter.

Lemma 8.1: Let g1,...,9x and-h be real scalar functions from R® to
IR satisfying the following two conditions:

(i) For every indezxk=1,..., K, there exists two probability distribu-
tions Py, and Psy such that

/ o (¥)dPu(y) > 0, / 0v(©)dPai(y) < O,
y y

[, eswaPut) =0, [ swirn@ =0, vi#k
(i) For every probability distribution P satisfying

/ygk(y)dP(y) =0, Vk=1,...,K,

we have
[ rapw =0,
y
Under these two conditions, there exist real numbers A\g, k = 1,..., K
such that

K
h(y) = Mge(y), Vye RC.
k=1

PROOF OF PROPOSITION 8.16:
(i) Necessity: The pseudo maximum likelihood estimator is consistent
if the solution to the limit optimization problem

max ExEylog f(Y; h(X,b))
is the true parameter value by, i.e., the value defined by
ExE)Y = Exh{X,b).
In other words, if

ExEo(Y — h(X, b)) =0,
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then we must have

dlog f(Y; h(X,bo)) _
E) B

where we have used the first-order conditions associated with the solution
to the limit optimization problem.

The preceding property must hold for any functional form of the
conditional mean. In particular, it must hold when h(X,b) = b. In
addition, the above equality must hold for any marginal distribution of
X and any conditional distribution of ¥ given X. Thus the preceding
property reduces to

ExEq

0,

Olog f(Yibo) _
ob h

for any conditional distribution of ¥ given X.

We now apply Lemma 8.1 with g (y) = y1—boy, . - ., 96 (¥) = ¥ —boe
and h successively equal to the partial derivatives 8 log f (y3b0)/0b;, §j =
1,...,G. It follows that there exists a square matrix A of size G, which
is a function of X and by such that

Eo(Y-—bg)L“O:#EQ 0

_Q_b_g_g_l(;ﬁ_’}gl = A(X, bo)(y — bo).

Since the family of conditional distributions of ¥ given X has been
chosen independent of X, then A is also independent of X so that

dlog f(y;b) _
5 — =ADy-b).
Now it suffices to integrate this equation to obtain the desired result
f(yim) = exp(A(m) + B(y) + C(m)y),
where dA(m)/dm = —A(m)m and dC(m)/dm = A(m).

(ii) Sufficiency: Conversely, suppose that the pseudo maximum like-
lihood estimator corresponds to the linear exponential model

f(y;m) = exp(A(m) + B(y) + C(m)y).
The limit problem is
max Ex Eolog f(Y; h(X, b)),
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ie.
mex Ex Eo[A(h(X, b)) + BY) + C(h(X, 0))Y],

- max Bx Eo[A(W(X, b)) + O(h(X, B))Y].

Now, from Kullback inequality (see Property 1.1) it follows that the
integral ‘

[ 108 £ X, ) 0 X, ) du)
is maximized at h(X,b) = h(X, by). But this integral is equal to

A(R(X, b)) + C(h(X, b)) (X, bo) + [ Bt bo)dute),

where the last term does not depend on b. Hence the maximum value
of ExEp[A(h(X,b)) + C(h(X,b))Y] is attained at a point bf. satisfying
h(z,b3) = h(z,bo), V z. Thus we have by = by since by is first-order
identified. O

Remark 8.2: The preceding proof shows that it is possible to select
a family of the form f(y,z;m), i.e., a family that also depends on the
exogenous variables. In this case the linear exponential model becomes

f(y1 Z; m) = exp(A(a:, m) + B(IB, y) + C(.’E, m)y)1

where

0A(z,m) + 8C (z, m)

om ém =0.

Property 8.16 shows that there exists a large number of pseudo true
distributions leading to consistent pseudo maximum likelihood estima-
tors. The objective functions associated with these consistent pseudo
maximum likelihood estimators are of the form

n

> “[A(h(z:,b)) + B(y:) + C(h(zi, b))y

f=1

Since the second term does not depend on parameters the optimization
problem reduces to the maximization of

Z[A(h(mz )) + C(h(zi,b))yi]-

i=1
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In particular, it follows that the observations ¥; need not have the same
support as that of the pseudo true distributions. For instance, a pseudo
true family of Poisson distributions can be used even when the variables
¥ are not positive integer-valued.

In contrast, it is crucial to take into account the constraint h(z,bd) €
M on the conditional mean. Consider again the previous example. The
pseudo true family of Poisson distributions can be used only if the con-
ditional mean h(z,b) is positive valued.

The objective functions that are maximized in pseudo maximum like-
lihood estimation depend on the chosen families of pseudo true distri-
butions. Those associated with the most important linear exponential
families are given in the next table. It can be seen that the nonlinear
least squares estimator can be viewed as a pseudo maximum likelihood
estimator associated with the family of normal distributions.

Consistent pseudo maximum likelihood estimators are found by solv-
ing first-order conditions of the form

i dlog f(Vi; h(Xs,bn))
ob -

0

im=]1

ie.

“ 0K (X, b,) [dA(R(X:,0,)) | dC(A(X:,bn)) <
> + Y| =0.
ab dm dm

i=1

Using the fact that

dA(m) + dC(m)m —0,
dm dm :
the first-order conditions can be written as
i R (Xi, bn) dC(R(X;, br
ab dm

Dy, - h(X;, b)) = 0.
i=1
Since dC/dm is the inverse of the variance covariance matrix 3(m) as-

sociated with the pseudo true distribution (see Exercise 8.1), the latter
equality is equivalent to

zn: ah’(g{;n I;n) E—l(h(Xia En))(Yz — h(Xi, Bn)) =0. (816)

g==1

This equation can be interpreted as an orthogonality condition between
the residual vector @; = Y; — h(X;,b,), i = 1,...,n and the hyperplane
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8.4. PSEUDO MAXIMUM LIKELIHOOD ESTIMATION

tangent to the manifold -
L= {(h(X1,b),...,h(X,,b)),b € B}

at the point corresponding to the estimated value b, of the parameter.
This orthogonality condition is defined with respect to the scalar product
associated with the block diagonal matrix of which the ith diagonal block
is B1(A(X;, by)).

Example 8.14: In the special case where the model does not have
exogenous variables, i.e., ¥; = b + u;, the first-order condition is

S BTG ~b) =0,

i=1
ie.
Lid -~

> (¥ —ba) =0.

i=1
Hence ) _

by =Y.

Thus all consistent pseudo maximum likelihood estimators are identical
and equal to the sample mean of the observations.

c) Asymptotic Distribution

Under the regularity conditions of Property 8.4, a pseudo maximum like-
lihood estimator associated with a linear exponential model is asymptot-
ically normal. Its variance covariance matrix is obtained from the first
and second partial derivatives of the objective function.

We have

log /(4 b)) _ OF(2,0) dO(H(,1)
ob ob <

— h(z,b)),

8%10g f (3, h(=,b)) _ i 0hu(z,8) OC(h(z,b))

b oY b o omy W~ h(@:0)

k=1

dm dm’ = hi(z,)) -

8h’(a:, b) ( 2Cy(h(z, B, dC(h(z, b))> Oh(z,b)

dm oy
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Hence, upon integration, we obtain

_ Olog f Olog f
1= E"‘E"( b oy )
Bl de ,dC" ok
- Ex(abd Eo(Y — B)(¥ — h) ,ab,)
_ Ol ., Ok
= E"(ab2 nx ao)’

where 2 denotes the true variance covariance matrix of Y conditional on
X, and ¥ denotes the conditional variance covariance matrix associated
with the chosen pseudo true family. All these quantities are evaluated
at the true value of the parameter.

Similarly, we have

_ ~8%log £(¥ | X;bo)
J = ExEo ( 35 o )
8! dC Bh . _
ExEo (—a—b‘g—-—é—i]—/) (smce E()(Y - h) = 0)
3 Oh' _, Ok
= Bx ( %> oy )

Hence we can state the following property.

Property 8.17: Under the regularity conditions of Property 8.4, a con-
sistent pseudo mazimum- likelihood estimator associated with o linear
ezponential family is asymptotically normally distributed with

Vi(bn = bg) 5 N0, T~1ZTY),

where

!
I = Ex (ah 2"192-1ah>

b oY
B oh’ _16h>
J = Ex(abz oy )’

€ is the true variance covariance matriz of Y conditional on X, and
is the conditional variance covariance matriz associated with the chosen
pseudo true family.

Thus the precision of a PML estimator depends on the associated
family of pseudo true distributions through the second—order moment X
only.
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Example 8.15: Consider the generalized Poisson model introduced in
Example 8.6. We have h(X,b) = exp(Xb) and @ = oZexp(2Xb) +
exp(Xb), where X is a row vector.

(i) If the family of pseudo true distributions is chosen to be the family
of Poisson distributions P(h(X,b)) = P(exp Xb), we obtain

!
%}—z- = X'exp Xb and ¥ = exp(XDb).

The corresponding pseudo maximum likelihood estimator is a solution
to

n n
max — z; exp X;b + Z_; Y, X;b.
P G

Its asymptotic variance covariance matrix is

JIT! = (Ex(X'XexpXb))™
Ex(X'X (exp Xbp + 02 exp 2Xbp))
(Ex(X’XeXpro))_l,
which gives
T ZT ™t = (Ex(X'X exp Xbo)) ™

+02(Ex (X' X exp Xbp)) " Ex (X' X exp2Xbo)(Ex (X' X exp Xbp)) L.

(i) If the family of pseudo true distributions is the family of normal
distributions N(exp Xb, 1), the pseudo maximum likelihood estimator is
the nonlinear least squares estimator, which is solution to

2
max Z(Y; — exp X;b)*.

=1
Its variance covariance matrix is
J 1T = (Ex(X'Xexp2Xh))™?
Ex(X'X exp 2Xby(exp Xbg + 02 exp 2Xbg))
(Ex(X'X exp2Xbg))~L.

The two variance covariance matrices J~'Z.7~! and J~1ZJ7~! are not,
in general, comparable. Hence neither estimator is clearly more efficient
asymptotically than the other. It is, however, possible to show that
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the first estimator dominates uniformly the second estimator for certain
distributions of the exogenous variables (see Exercise 8.2).

The next property provides a lower bound to the asymptotic variance
covariance matrices of pseudo maximum likelihood estimators.

Property 8.18: The variance covariance matrice of a pseudo mazimum
likelihood estimators is at least as large as.

on' . or\\ !
£= (5= (%' m))

ie, JTITT1 = K.

PROOF: The result follows from the equality

J gl -k
_ O _1wi/2_ 7-100 1)
o

| dh
~1/2ys—1/2 [ s21/25—1 _w-1/2
=208 <2 R

J"l) ) =0.
0

The lower bound K is a function of the moments of the true but
unknown distribution. It is independent of the chosen family of pseudo
true distributions.

8.4.3 Quasi Generalized PML Estimation

The existence of a lower bound K raises the question of whether it is
possible to find a consistent estimator of which the asymptotic variance
covariance matrix attains the lower bound XK. Such an estimator, if it
exists; would be asymptotically better than any other consistent pseudo
maximum likelihood estimator. The purpose of this section is to present
some two-step methods producing such estimators when the functional
form of the second-order conditional moment is known and given by

In a first step, the basic idea consists in estimating consistently the
parameter §y appearing in the second-order moment. Then, in a second
step, the method consists in estimating the parameter by using an appro-
priate pseudo maximum likelihood method based on a family of pseudo
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true distributions with a “good” variance. To do so, it is necessary to
define a doubly parameterized family of pseudo true distributions

f(y;m,n) = exp(A(m,n) + B(n,y) + C(m,n)y), (8.18)

where 7 = 7(m, %) and m denotes the mean of each distribution so
that 8A/0m + (8C/Om)m = 0. The additional parameter n, which is
a function of the mean m, and the variance covariance matrix X, is
assumed to be in a bijective relationship with ¥ whenever m is fixed.

Examples of such doubly parameterized families are the family of
normal distributions (7 = o2), the family of binomial distributions
(n = @), and the family of gamma distributions (7 = ), which are
given in the table of Section 8.4.2.

Property 8.19: Under the conditions of Section 8.1.4, let by, and By, be
two consistent estimators of by and By, respectively, such that

(va (b — bo)', V(B — Bo)')’

converges in distribution to a normal distribution. The estimator of by
defined as a solution to

max Z log f[¥:; h(X:, b), n(R(Xi, bn), R(Xs, Br))]s

i=1

is called a quasi generalized pseudo mazimum likelihood estimator. This
estimator, denoted by, is consistent and asymptotically normal with

Vr(bs — by) 2 N(0, K).

Proor: The result follows from the general properties of quasi general-
ized M-estimators obtained in Section 8.1.4.
(i) Consistency: When n increases, the objective function

© 3 log 1% (X, B, ((Xs, B, QK B

i==1

converges to
EXEO IOg f[Y7 h’(X: b): n(h(Xs bO)a Q(Xr ﬂO))]

From Kullback inequality, this quantity is maximized when h(X,b) =
h(X,bp). Thus, provided the model is first-order identified, the quasi
generalized pseudo maximum likelihood estimator is consistent.
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(ii) Asymptotic normality: First, we verify that the condition of
Property 8.5, namely

2 . 0

is satisfied. This condition holds because
Plog f(Y;m,m)\ _ d (8A(m,n)  0C(m,n).,
5 (55 ) - 5o (g (o + T )

8 ., (8A(m,n) , 8C(m,n)
an'E"( om T om

0 (9A(m,n)  8C(m,7)

Bn’( om T om ™
3}

= 5777(0)

= 0,

where we have used the equality A4/8m + (8C/0m) m = 0.

It follows that the asymptotic variance covariance matrix of the quasi
generalized pseudo maximum likelihood estimator is identical to that
of the corresponding pseudo maximum likelihood estimator. Now the
variance covariance matrix 3 of the limiting pseudo true distribution
is such that

n(h(X, b), Zo) = n(h(X, bo), X, fo))-
Since 7 is bijective for every given h(X, bp), it follows that g = Q(X, fo)

= .
Hence we have

J g™

OK —_; 6R\\ AW 1 1 OR
(EX (‘57;’30 %)) Ex ('5320 oo 55‘)
Ok __; 6R\\*
(5= (5=%))

B on o _;oh\\ ™
- (= (Fw'w))
= K.

Note also that we have T = J. O
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Example 8.16: Consider the linear regression model of order 2 defined
by

Y; = h(X;, bo) + us,

where

E(ui I Xl,...,Xn) =0,
V(ui l Xl, e ,Xn) = Y0 wZ(Xi,b()).
In such a model, the parameter by can be estimated consistently by the

nonlinear least squares estimator. Let by, denote such an estimator. The
parameter -y can be estimated from the associated residuals

(Y; — h(X;,bn))?
; (er En) )

In a second step we can base a quasi generalized pseudo maximum like-
lihood method on the family of normal or gamma distributions.

For the family of normal distributions, the estimator b,, is obtained
by solving

Z (Y; — h(X;,0))* b))2
i=1 (Xu bn)’)’n
i.e., by solving
Z (Y; — h(X;,0))* b))? .
= w(Xiba)
For the family of gamma distributions, the optimization problem is

maxZ*ﬂ(h(wan) fyan(Xu b)) (log h(Xs,b) + h(; b))
2 k3

ie.

LA X (X,,bn) Y;
Zl Fm? (Xir ) (l g h(X:,b) + h(Xz,b))

These two quasi generalized PML estimators differ from each other.
They have, however, the same asymptotic variance covariance matrix.
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8.4.4 Consistent PML Estimation of Order 2
a) Definition

The pseudo maximum likelihood approach presented above can be easily
generalized to the case where one wishes to estimate jointly the param-
eters appearing in the first two moments.

Specifically, we consider a univariate regression model of order 2 de-
fined by

Y; = h(Xi, bo) + us, (8.19)
where-

E(ui | Xo,...,Xn) =0,
V(ui l Xla ce 1Xn) = wz(XicﬁO)'

The parameters by and 3y are assumed to be second-order identifed.
The families of pseudo true distributions are parameterized by their
first two moments m and 2. Their densities are denoted f(y;m, a?).
A pseudo mazimum likelihood estimator of order 2 of by and Fp is
defined as a solution to

xggg:;logf(&z;h(Xi,b),wZ(Xi,ﬁ))- (8-20)

Property 8.20: Under the assumptions of Property 8.1, the pseudo
magzimum likelihood estimator of order 2, denoted (by, Bn), is consistent
for (b, Bo) for any possible value of the parameters, any functional form
of the conditional mean and variance, any limiting distribution v of the
ezogenous variables, and any conditional distribution satisfying (8.19) if
and only if the pseudo true densities are of the form

f(y;m,0°) = exp(A(m, %) + B(y) + C(m,0*)y + D(m, a*)y?)),

where m and o2 are the mean and the variance of the density f(y; m, o?).
Such o density is called a quadratic exponential density.

Proor: The proof is similar to the proof of Property 8.16 and relies on
Lemma, 8.1.

Specifically, the conditions on the first two moments imply that b
and (o must be the solutions to the limit problem. Using the particular
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functional forms and parameterization by = EgY and By = EoY?, then
the condition

¥ bo, B0, Eo(Y —bo) =0 and Eo(Y? - o) =0,

must imply

Olog f(Y;bo,0B0)\ _
Ey ( SF) = {.
From Lemma 8.1 it follows that

dlog f(Y'; bo, Bo)
a(blﬁl)l

Now it suffices to integrate the latter equation so as to obtain the required
form for the pseudo true densities. This establishes necessity.

The proof of sufficiency is similar to that given for Property 8.16. It
is left to the reader (see Exercise 8.4). O

= A(bo, Bo)(Y — bo) + p(bo, Bo) (Y — Bo)-

Example 8.17: The family of normal distributions N(m,¢?) is a family
of quadratic exponential distributions. Thus it can be used in a pseudo
maximum likelihood estimation method of order 2. Estimators are ob-
tained as solutions to

- (¥: — h(Xs,b))?
rg’aﬁx—;(long()(i,ﬂ)a- e )

Note that these estimators are consistent even if some constraints exist
among the parameters b and 3 appearing in the conditional mean and
variance.

b) Asymptotic Distribution

From the general results on M-estimators (see Property 8.4) it follows
that pseudo maximum likelihood estimators of order 2 are asymptoti-
cally normally distributed. Here, we shall give an expression for their
asymptotic variance covariance matrices when the pseudo true distribu-
tions are normal and the parameters b and f are unconstrained.

The objective function is defined by

(y — P(z,0))?

.‘I’(ya z;b,8) = 'Ingz(-'l’» B) — w2(z, B)
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The first partial derivatives of ¥ are
o 0¥~ h{z.b) Bh(z,b)
ob w?(z,8) b

o 1 (y — h(z,b))*\ 0w?(z,0)
B ("w%xﬂ) w4(z,ﬂ>') s

Let pg and py4 be the central moments of order 3 and 4
M3 = EO(Y - h(X bo))z, Hq = EO(Y el h(X, bg))4.
The matrix Z is given by

v 9v Q¥ 9T
b oY ob 98’
I =ExEy )
0¥ 9¥ °  9¥ 9¥
op oy ap op'
ie.
4 Oh Oh 2p3 Oh Ow?
w? b Y wb 8b 83
I =Fx
243 9w Oh _1 &) 9w 8uw?
wb 85 oY wt W8/ 0B 88

All functions appearing in the above matrix are evaluated at by and f.
To find an expression for the matrix 7, we need the second partial
derivatives of the objective function. We have

0 -20h0h  _y—h O%h
GO ~ 2 oboy Y oF ooy’
U _,y=hohdw?
86 65 TR YT
FU [ 1 (y=h?\ Bu?
FofF (“252‘* oA )6ﬁ6ﬁ'

12 2\ Ow? Buw?
(G- F0-9) 55

It follows that

_ 0%y _ 0w
b b’ ob 8p'
J = ExE,
: _ 8w __B%w
880y 8Bop
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2
o2

Ex

8.5 Estimation of a Conditional Median

8.5.1 The Model

In the nonlinear regression model of Section 8.2 the conditional distri-
bution of the endogenous variable Y given the exogenous variables X
is summarized by the conditional mean E(Y | X). Other measures of
central tendency such as the conditional median can be used. The con-
ditional median has the advantage of being less dependent on the tails of
the conditional distribution of Y given X. Thus an estimation method
based on the conditional median is likely to be relatively insensitive to
specification errors in the tails of the conditional distribution or to the
presence of outliers.

The model that we shall study is similar to the regression model
(8.7). Specifically, we assume

Y;; = h(Xi, bo) + Ug, (821)

where the error term u; has, conditionally on Xj,...,X,, a continuous
distribution with median zero.

The difference between this model and model (8.7) arises essentially
from the assumption on the error term u;. Here the error term is as-
sumed to have median zero while in the other model it was assumed to
have mean zero. These two assumptions are clearly identical when the
conditional distribution of the error term wu; is symmetric and the con-
ditional mean exists. For instance, this is the case when the conditional
distribution of u; is normal.

8.5.2 Least Absolute Deviations Estimation

Following the least squares method for regression models, we can define
an estimation method for the parameter b appearing in the conditional
median.
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Definition 8.8: A least absolute deviations (LAD) estimator of b is a
solution to the problem

n
mgn; [¥; — h(Xi,b)|-

Hence the discrepancy between the endogenous variable Y; and its
approximation h(X;,b) provided by the model is now measured by the
L,-distance instead of the usual Lo-distance.

A difficulty with the LAD method arises from the nondifferentiability
of the objective function. This function, however, is continuous and con-
tinuously differentiable at every point except at zero, where there exist
a left and a right derivative. Because of such properties, an approach
similar to the previous one can be followed provided the derivative at
every point is replaced by the right derivative. The latter derivative is
given by

ot|z|
oz

Hence a solution to the preceding optimization problem is obtained
by solving the first-order conditions. In the favorable case (defined be-
low) the first conditions are

= Iy>0 — lo<o- (8.22)

ot -
55 2 1Yi = h(Xi, ba)| =0,
i=1
ie.
n .
ah’(X‘ia b )
> (Lsmnxe bz = Lyimhtbor<o)) =0 (823)
i==] .

In the unfavorable case where zero does not belong to the set of
possible values of 8+ 35 [V — h(Xi,b)| /Ob when b varies, the first-
order conditions are replaced by inequalities. Specifically, assuming that
the function 8+ 35, |Y;—h(X;,b)|/0b is right continuous, the first-order
conditions become

AR -
—5—52 D’z - h(Xubn)l < 0’
=1
and +
0 z
= > 1Yi — h(Xi,ba)| 2 0.

f=]
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8.5. ESTIMATION OF A CONDITIONAL MEDIAN

Example 8.18: In the simple case of an iid sample drawn from a dis-
tribution with median b, the objective function is

n n
DU(Y,b) =) |¥i—b.
; i=1 i=1
This function is convex in b so that the first-order condition is necessary

and sufficient. The first-order conditions are
n

Z (n(Yi—BDO) - ]1(14_5;50)) 20,

i=1
and
"
) (n<n~8n>0) - “(Y,--i»nsm) =0,
=1
ie.
n n
> Lvisiny 2 D hviny
d==1 ==l
and
n n
> Yyisby S D Yy

_ A LAD estimator is such that there are as many observations above
b, as observations below b,. Thus LAD estimators are the empirical
medians associated with the empirical distribution of the observations.
This example suggests that the L;-norm is well adapted to the estimation
of a median. Moreover, the LAD estimator is unique if the number of
observations n is odd. On the other hand, there is an infinity of LAD
estimators when n is even. (This property clearly holds because the
distribution of the observations Y; is assumed to be continuous so that
observations are unlikely to be identical.)

Example 8.19: The convexity of the objective function noted above
still holds when the conditional median is a linear function of the pa-
rameters, i.e., when h(X;,b) = X;b. In general, however, it is no longer
possible to obtain explicitly the solutions to the first-order conditions.
Moreover, in the general case, it may be easier to solve directly the op-
timization problem using linear programming techniques. Specifically,
the original optimization problem which is min, Y i, |¥; — X;b| has the
same solutions as the optimization problem

min_‘fj(r:f +77),

b r =1
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subject to

i 20,

Yi=X1-b+r2'——ri“, i=1,...,nm,
r; 20,

The consistency and ‘asymptotic normality of LAD- estimators can be
established in a manner similar to that used in the preceding sections.

a) Consistency

Under suitable regularity conditions we can replace the optimization
problem in finite samples by its asymptotic problem. Thus we need to
study the limit objective function. In particular, if the pairs (X;,Y;) are
assumed to be mutually independent and identically distributed and if
the mean of Y — h(X,b) exists, we have

n
=3 1%~ h(X:,8)| 2 ExBolY - h(X, D)l
i=1

Hence b, converges to by if and only if by is the unique solution to the
problem min, ¥, (b) = Ex Ep|Y — h(X, b)|.
If u denotes the error term, we have

Voo (b) = Ex Eolu + h(X, bo) — (X, b)|.

Property 8.21: Suppose that the conditional distribution of Y given X
has a unique median h(X,bo) and that the parameter b is identified from
the conditional median, i.e.

h(z,b) = h(z,by), V = = b= by.

Then by is the unique solution to the problem miny ¥ (b).
The proof of Property 8.21 uses the following two lemmas.
Lemma 8.2: We have
+oc0
Blu—ol= [ (1= 2F(O)ksa + F(O)

where F is the cumulative distribution function of u.
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8.5. ESTIMATION OF A CONDITIONAL MEDIAN

Proor: We have

E!”‘“I = E((u_a)nu>a)+E((a"u)]lu50)

([ o)
[ ([ )

00 -+00
/ (1= F(&)lisadt+ | F(t)licadt.

-0 —00

i

using Fubini Theorem. Since l;<q = 1 — 14>, we obtain

-
Elu—a| = / (1 = 2F(8)) Lpq + F(2)) dt.

0

Lemma 8.3: If u is a random variable with o continuous distribution,
then the minimum in a of Elu — a| is attained at the medians of the
distribution of u, i.e., at real values a for which F(a) = 1/2.

PROOF: Minimizing F | u — a | is equivalent to minimizing

H(a) = /_ :° ((-;- - F(t)) oot %F(t)) dt

(see Lemma 8.2). Since the function F' is continuous and nondecreasing,
the set of values @ such that F(a) = 1/2 is a closed interval [ag, a;] (the
median interval). Since 1/2 — F(t) is strictly positive when ¢ < ag and
strictly negative when ¢ > a;, it is easily seen that the function H attains
its minimum at every point in [ag,a,]. O

PROOF OF PROPERTY 8.21: Lemma 8.3 can be used to solve the opti-
mization problem of ¥, (b). Since the conditional median of the error u
is zero, the minimum of E | u + h(z,b,) — h(z,b) | is attained at every
value of b such that h(z, b) = h(z,bp). Thus the minimum of the function
¥, is attained at every parameter value such that

h(z,bo) = h(z,b), Vz.

The identifiability of b from the conditional median implies that by is the
unique solution to the limit problem min, ¥, (b). O
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b) Asymptotic Normality

The asymptotic distribution of the LAD estimator is obtained by a

Taylor expansion of the first-order conditions. Such a Taylor expan-

sion, however, cannot be obtained in the same manner as in Section

8.1.3. This is because the first-order conditions are not. continuous in

the parameters. We shall sketch an approach due to Huber (1967).
The first-order conditions can be written as

1 OV Kb _
n ab -

i=1

(8.24)

(in the favorable case). From the regularity conditions, the strong con-
vergence of (1/n)Y 0, 81 ¥(Y;, X;;b) /0b to ExEyd+¥(Y,X;b) /ob,

which follows from the Strong Law of Large Numbers, is uniform in the
parameter b. Hence, if b, converges to by, we obtain

FHI(Y, X; bo)

1 i O U (Y, Xi; bn)
ab

7 ob

i=1

— ExEo

(see Chapter 24, Volume II for a proof). Hence we can write

1 0TV, X ba)
= R @
1 = 0 U(Y;, Xi;bo)
‘ﬁ; b

8+T(Y, X;b
+/i ((E"E““"(EZ‘“‘)') a
' be=by,

+ .
_ (EXan \If(xx,b)) )
b==bg

#

ob

Now, since by corresponds to a minimum of the function ¥ (b) =
ExEp¥(Y, X,b), the first-order conditions 0¥, (by)/8b = 0 must be
satisfied. Assuming that it is possible to interchange expectations and
differentiations, the first-order conditions give

o (bo)
b
<8+EXEO\II(X, Y; b))
b bty

0 =

260



8.5. ESTIMATION OF A CONDITIONAL MEDIAN

8+ ExEo¥(X,Y;b
= (EXEO X Oab( )) .
b=bg

Hence we obtain an expansion of the form

1 0+ U(Y;, Xi; bn)
0 = ;_:1 ab
1 6+\I’(Y;.)Xz;b0) 6+‘II(Y-7X;b)
# \/_Z +\/E(EXE0 o) )a,:a,, (8.25)

This expansion can be pursued provided E x B0t (Y, X;b)/0b is
differentiable in b. Since b, converges to by, we can write

1 Z 6+‘I’(Y;,Xu bo)

0 # \/_
(3 (A

If the matrix 5 SrU(Y, X:b)
(35 (™5 )>,,=bo

is nonsingular, this implies

Vb —bo) # -[(,;",, (E B Q:‘I"'%&Q))b:bj

1 Z a+‘I’(Y:“ X‘u bO)
b

z-l
Now, from the Central Limit Theorem

1 Z a’*"\ll(}f“ X’u bO)

!

follows asymptotically a central normal distribution with variance co-
variance matrix :

T U(Y, X;b0) OTU(Y, X; bo))

T=ExEo ( 9 g
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Hence the asymptotic distribution of &, is also normal. It is given by

Vilbn — bo) = N(0, 7727, (5.26)
where e . A
I = ExE, (a ‘p%’b X;b) 0 \1:(;;;7(; bo))
and
J = (56—5 (EXEO@‘%%_XLQ)l):%

This asymptotic result is readily applied to our case. We have

oru(Y, X;b oh(X,b
(ab ) = (ab ) (":ﬂ(Y—h(X,b)ZO) -+ H(Y—h(X,b)<0)) .

It follows that

OtU(Y, X;bp) 0TU(Y, X; b
1= E"E"( (Bb . (6b’ 0))

_ g, | (2MX,bo) Oh(X,bo)
- ( b a'

Eo(Liy —n(x,b0)20) — n(Y—-h(X,bo)<0))2J

_ 8h(X, bo) BR(X, bo)
Ex [ ( D Y )

Eo(Ly —h(x,b0)20) + Il(Ynh<x,bo)<0))}

- o (pnng )

. ((Oh(X.bo) BR(X, bo)
X ) ov '

Similarly, we obtain

S a+I(Y, X;b)
J = —é—g (EA Eo ov' ) b=byg

262



8.5. ESTIMATION OF A CONDITIONAL MEDIAN

_ 2 (Ex - (9—’%’5—”1 (Rol¥ — h(, 1) 2 0)

~By(Y = h(X,b) < m)))

b==bg

— By- (f'?f_"_(?.‘_’_’l (Po(Y=h(X, b) 2 0) = Po(Y=h(X, bo) < m))

ab ov
B(Po(Y — h(X,b) > 0) — Py(Y — h(X,b) <0))
'E"< (> o )Mo
Bh(X, bo)
ov '

The first term is equal to zero since
Py(Y — h(X,bo) 2 0) = Po(Y — (X, bo) < 0) = 3.

If fo denotes the density of the error term u, then the second term can
be written as

= i (LB, )

To summarize, we have established the following property which gives
the asymptotic distribution of b,.

Property 8.22: Under suitable regularity conditions, the LAD estima-
tor of the parameter vector appearing in the conditional median satisfies

. a 1 Bh(X, bo) OR(X, o)\ ~*
ﬁ(bn—bo)ﬂN(Oazf(;(())—zEx( b > o’ O) )

Example 8.20: Consider a linear regression model YV; = X;bo + u;
in which the distribution of the error term is symmetric with mean
zero. The parameter vector bp can be estimated either by ordinary least
squares or by least absolute deviations.

The OLS estimator is given by

-1
k1]
by, = (Z X{Xi) X;.

gzl

263



M-Estimation

Its asymptotic distribution is N (0, 02 Ex(X’'X)~1).

The LAD estimator, which is a solution to min, Y &, |¥; — X;b| is
asymptotically distributed as N(0, Ex (X' X)~/(4f0(0)%)).

Hence the least absolute deviations estimator is asymptotically more
efficient than the ordinary least squares estimator if the distribution of
the error term is such that

1 1
4fo(0)* > 32 < 2f0(0) > -

Example 8.21: If the error term is normally distributed, the OLS esti-
mator is asymptotically efficient. The ratio of the asymptotic variances
of b, and b, must be at least as large as one. In fact, it is

Vasbn 1 1
Vb 0003 7 1\
90\ Varo?

2

In particular, this ratio is independent of the value of the variance o§.

=T
=3

Example 8.22: As expected, the case of normal errors is clearly quite
favorable to ordinary least squares estimation. An opposite case is ob-
tained when the errors are Cauchy distributed with density

folw) = ;;X;l—:(l;)—g
0

For such a distribution, the OLS estimator is such that E|[b, — bo||> =
+00. Thus the OLS estimator is quite ill-behaved in the quadratic pre-
cision sense. On the other hand, generalizing Properties 8.21 and 8.22
to the case where the mean of u does not exist, one can see that the
asymptotic variance of the LAD estimator is given by

Ao € R**.

Vasv/e(bn — bo) = EX(X’X)‘“T ’\0

8.5.3 Maximum Score Estimation’

Other methods based on alternative criterion functions can be used to
define consistent estimators of parameters appearing in the conditional
median. Maximum score estimation is one of such methods.
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The basic idea of the method is to compare the sign of the endogenous
variable Y; to the sign of its approximation h(X;,b) provided by the
model. To do so, one introduces the score function which counts the
number of observations for which the signs of these two quantities agree.
The score vector is

n

S0 =Y (I >0 lwiso + dx<o Incn<o) - (8:27)

t=1

Definition 8.9: A magzimum score estimator of b is a solution to the
problem maxy S(b).

Hence one seeks a value of the parameter that maximizes the number
of times the sign of Y; agrees with the sign of its approximation h(X;,b).
The maximum score estimator is an M-estimator since the objective
function can be written as

S(b) = Xn: (Y3, Xi;‘b)) (8.28)

d==1

where ¥(Y, X;b) = Liy>0)d(a(x,0)>0) + Ly <o) L(n(x,5)<0)-

Remark 8.3: An advantage of this method is that it relies on the
sign of Y; only. Thus the method is especially adapted to dichotomous
qualitative models, where the latent model is Y;* = Xib + u; and the
observed variable is Y; = L(y>0)- Clearly, when the latent quantitative
variable can be observed, an estimation method based on the sign of Y;
may lead to a possibly substantial loss of precision.

a) Consistency

Under suitable regularity conditions allowing the consideration of the
corresponding asymptotic problem, it is possible to establish the consis-
tency of the maximum score estimator whenever the conditional distri-
bution of ¥ given X is continuous with a unique median h(X,bo) and
the parameter b is identified from the sign of the conditional median, i.e.

h(z,b)h(z,bo) 20, Vz=>b=bo.
For instance, such an identification condition is satisfied if h(z,bo) =

14 Zi{zﬂll borTk-
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We have

1
Voolb) = lim—~ > (Avisoy Lnxan>0 + Ivi<oylngran <o)

3=1
= ExEq (Ly>0) x>0 + Ly <oyLia(x.)<0))
= ExEo (Lus—h(xb0) Lin(x,)>0) + Luc—h(x,50)) (Bn(xpy<0)) -

Let Fy denote the cumulative distribution function of minus the error
term. The limit objective function becomes

Voo (b) = Ex (Fo(h(X, b0)) Ln(x.5)>0) + [1 = Fo(h(X, b0))] Linex,py<0) )-
Lemma 8.4: We have Uoo(b) < U(by), Vb, with a strict inequality if
b % bo. | |
Proor: We have

Uoo(bo) = Yoo (B) = Ex((Aax,60)>0) — Lin(x,p)>0)) Fo(h(X, bo))

+(L(n(x,b0)<0) = Linx,5)<0))[1 — Fo(R(X, bo))])

= Ex ((1(a(x,b0)>0) Ln(x.5)<0) = L x,b0)<0) Lnx,5>0) ) Fo (R(X, b))
(L (x,50)<0) Lr(x,0)>0) = L(a(x,50)>0) Ln(x,0)<0y) [1 = Fo(A(X, b))]).
Hence
Too(bo) = ¥oo(b) = Ex(Lnex,b0)<0)Linx,5)>0)[1 — 2Fo(h(X, bo))]
+L(n(x,50)>0) L(n(x,0)<0) [2F0(R(X, bo)) — 1]).

Since the median of the cdf F} is unique and equal to zero, we have

Fo(h(X, b)) < % if B(X, bo) <0,

Fo(h(X, bo)) > -;- if B(X, by) > 0.

Hence we have established the nonnegativity of ¥oo(bp) — ¥ ().
This quantity is equal to zero if and only if
Uh(z,b0)<0) Lin(zp)>0) = 0
Lh(zbo)>0) Lin(zpy<o) = 0, Vaz.

Since b is identified from the sign of the conditional mean, this implies
that b= by. O

Consistency of the maximum score estimator follows directly from
Lemma 8.4.
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b) Asymptotic Distribution

The asymptotic distribution of the maximum score estimator is not nor-
mal and its rate of convergence is of the order n~%/3. This can be
explained by the fact that the proof used for establishing the asymptotic
distribution (8.26) of the least absolute deviations estimator is no longer
applicable here. This is so because that proof relies on the first-order
conditions which require that the criterion function is continuous and
right differentiable. Here the objective function is given by

U(Y, X;b) = Ly>o)linx,p)>0) + Ly <o) Linx,p)<0)s (8.29)

which is discontinuous at values of b such that h(X,b) = 0.

8.5.4 Consistent Estimators of Parameters
Appearing in the Conditional Median

In Section 8.4.2 we have characterized the pseudo maximum likelihood
estimators that are consistent for the parameters appearing in the con-
ditional mean of Y given X. A similar analysis can be followed to char-
acterize the estimators that are consistent for the parameters appearing
in the conditional median. As before, we require that consistency holds
for any conditional distribution of the error term, any distribution of the
exogenous variables, and any possible value of the parameters. When b is
identified, the true parameter value by is characterized by the condition

1
Ey (1ygh(x,bo) - 5) =0.

If the M-estimator that is based on the function ¥(Y, h(X, b)) is con-
sistent, then by must be a solution to the first-order conditions associated
with the corresponding asymptotic problem. That is, by must satisfy

ExEy

U (X, b)) _
ob S
In the special case where there are no exogenous variables and the

parameter of interest is the median itself, it is readily seen that the
functions ¥ leading to consistent M-estimators must satisfy the property

. 1 8+ (Y, b
Ep <1Y5bo - 5) =0=>E"-_§7;—9)“ =0,
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for every continuous distribution with median by. From Lemma 8.1 it
follows that there must exists a function A of the parameter b such that

atu(y,b 1
_Z’?_(B——l = A(b) (1Y$b - -2*) Y y,b.

In addition, note that the first derivative of the objective function is
given asymptotically by

L2 LAY R LD (PO(Y <b) - %) :

Assuming to simplify that A is differentiable in b, the second-order con-
ditions associated with an extremum imply that

2
d EO(;I;,(zx ) - 6}\6(20) (PO(Y < bo) — %) + Abo) fo(0)

= Abo)jo(0) 20,

where fo is the density of the error term Y — by. This second partial
derivative is nonnegative when the function ) is. To summarize, we have
obtained a neccessary form for the objective function.

Property 8.23: Under suitable regularity conditions, criterion func-
tions U leading to M-estimators that are consistent for the parameters
appearing in the conditional median must be of the form

8t¥(y, h 1
T =20 (- 3).

where A(h) = 0.

Integrating both sides of the preceding equality, we can obtain an
equivalent condition on the criterion function ¥ itself. Specifically, being
nonnegative, the function A can be interpreted as a density with respect
to Lebesgue measure of a nonnegative measure with cumulative function
A. Then we can write

OrU(y,h) [ —IXR), ifh<y,
oh 1Nk, k>

Integrating with respect to h gives

_ | =iAR)+C), if h<y,
Y h) = { AR~ A(W) +Cl), ik,
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where C(y) denotes an integration constant which is a function of y but
independent of h. Changing this integration constant gives

~L(A(R) - A@) +C*(y), ifh<y,
Tk = [ row,  ns

where C*(y) = C(y) — A(y)/2-
The function A is nondecreasing. Thus the criterion function ¥ can
be written as

¥(y, ) = A () — Aw)| + C"(@). (5:30)

It is easily verified that these forms for ¥ are sufficient in the sense that
they lead to M-estimators that are consistent. To summarize, we have
established the following property.

Property 8.24: M-estimators that are consistent for the parameter b
appearing in the conditional median h(X,b) are obtained as solutions to

min Y |A(Y:) = A(R(X, b)),

=1
where A is the cumulative function of a nonnegative measure on IR.

Remark 8.4: If the median of Y; is h(X;, bo), it follows from B.15 that
the median of A(Y;) is A(R(X;,bo)) because A is nondecreasing. Hence
the consistent M-estimators are the least absolute deviations estimators
applied to the variables A(Y;).

Example 8.23: When the measure associated to A is the Lebesgue
measure, the criterion function is Y .-, |¥; — h(Xj, b)|. Thus we obtain
the usual LAD estimator.

Example 8.24: In the limiting case where the measure associated with
A is the distribution with mass point at zero, then the criterion function
is

n
> w20 = Ynexipyzo)l
i=1
n

= > (lwzolnx.s<o + Iyico L(h(x:,5)20))

i=1

]

n
1= (A0 Lnxn20) + Irico) bin(xi by<o))

d==1

n — S(b).
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Hence minimizing this criterion function is equivalent to maximizing the
score function. Thus we obtain the maximum score estimator.

8.6 Appendix

Proor or LEMmA 8.1:

Step 1: Let Q be a probability distribution on RS such that Eogr, =
[ 9xdQ exists for every k = 1,...,K. Let e = +1 if Eggr < 0 and
£ = +2 otherwise. Consider the probability distribution defined by

K K .
M=aoQ+Y oxPek, » ox=1 0,20, k=0,... K
=1 k=0

Given the definition of the probability distributions F,  (Lemma 8.1-
(1)), we have

Engr = aoEqgr + ox Ep, 9k
Thus we can choose oy, such that

k
Qg EqQgk
o __ _Bogk 4y K and Sar=1
Gp E.Pck,kgk ]CZ__,Q g

With this choice of ay’s, we obtain
Engr =0, k=1,...,K,
and from assumption (ii) of Lemma 8.1
Eqh =0.
The latter equality can be written as
K
Eoh + ; o PP h=0,

or equivalently as

= EQgx
Eqgh-Y == Ep

gk

h =0,
k=1 ek
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or equivalently as
K
Eq (h - Akgk> =0,
k=1

where
_ Ep., . h

Ap = .
Ep,, .9k

Step 2: We shall show that every A\ does not depend on the value taken
by £x. Consider a convex combination of Py and Pog

P=aPy+(1—-a)Py, 0<a<l.
By definition of P, ¢ = 1,2, we have

Epgj:-‘o, Vj#k.
But
Epgy = O‘Ekagk + (1 - a)Epzkgk

is equal to zero by choosing « such that

a __Eszgk

11—« Eplkgk'

Hence, with this choice of «, we have
Eph = 0.
ie.
' aEp,h+ (1 —a)Ep,h=0.
This implies
Ep,.h —__* _ Ep,. 9k
Ep, h l1—a Ep,gk

It follows immediately that the two possible values for A are equal for
every k=1,..., K.

Step 3: Steps 1 and 2 imply that for every probability distribution @
such that the expectations Eqg, k£ = 1,..., K exist, we have

K
Eq (h ~ Z,\kgk) =0,

k=1
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where the \;’'s are some constants independent of Q. Considering Dirac
mass distributions for instance, it follows that

K
h(y) = Mege(y)

k=1

for every y.

8.7 Exercises

EXERCISE 8.1: Let f(y;m) = exp(A(m) + B(y) + C(m)y) be a linear.
exponential density with mean m. Differentiating with respect to m
the equalities [ f(y;m)du(y) = 1 and [ yf(y; m)du(y) = m, prove that
dC/dm = £71(m), where 3(m) is the variance covariance matrix of the
probability density f(y;m).

ExERCISE 8.2: Consider a Poisson model of the form
Y; ~ P(exp(ao + X7b5 +€i)),

where Eexpe; = 1, Vexpe; = 13, and X} is a.row vector. Suppose that
the variables X} are independent and identically normally distributed
N(0,I).

a) Compute the matrix A defined by

A=EFE (( )g*’ ) (1,X*)expb(ap + X* 8)) )
and show that

2 (k%112 D21R*2 A
A =exp (—Gao _ sl “;’o” ) ( 1+_?92§°” 91b0 >

b) Find the asymptotic variance covariance matrices of the PML esti-
mators of b} based on (i) the normal distribution, (ii) the Poisson
distribution, and (iii) the Gamma distribution.

¢) Conclude that the nonlinear least squares estimator is dominated
by PML estimators of the type (ii) or (iii). Give a necessary and
sufficient condition on ay, b, and 7 for the PML estimator based
on the Poisson distribution to be asymptotically more efficient than
the PML estimator based on the Gamma distribution.
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8.7. EXERCISES

EXERCISE 8.3: Consider the model
Y; = h(X;, b) + u;,
E(u,; l X,) == 0,
V(ui I Xi) = wz(Xi,b)’y.
Prove that if w?(X;,b) = 1 or w?(X;,b) = h%(X;,b), then a quasi gen-

eralized PML estimator can be obtained as an appropriate (one step)
PML estimator.

EXERCISE 8.4: Consider an econometric model defined by its first two
moments
Y; = h(X;,bo) +u;, with Eu; =0, and Vu; =w?(X;,B)-

The parameters are estimated by a PML method based on the family of
densities
f(y; m, 0'2) = exp(A(m, 02) + B(y) + C(m7 az)y + D(m’ 0'2)'.1/2),

with mean m and variance o2.

a) Determine the limit of the objective function

% zn: f(Y;; h(X«,,, b), wz(Xiv IB)),

i==1
when 7 increases to infinity.

b) Find conditions on the functions A4, C, and D for m and o2 to be
the mean and variance of the density f(y;m,c?).

c) Show that the limit objective function is maximized when we have
h(X,b) = h(X,bp) and w?(X, B) = w?(X, Bo). Conclude.

EXERCISE 8.5: Give a sufficient condition for a quasi generalized PML
estimator to be asymptotically efficient. '

EXERCISE 8.6: Let 0 be a real number between zero and one. Let Y;,
i =1,...,n, be independent and identically distributed random variables
with an absolutely continuous distribution Fy on IR and a strictly positive
density. )

Consider a solution b,, to the problem

- min Y (%~ ) (oo - (1 - )lico).

g==1
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a) Verify that, under suitable regularity conditions, such an estimator
is consistent for the quantile of the distribution Fy associated with
8, i.e., for F51(8).

b) What can be said in the special case § = 1/2 7
c) Verify that the asymptotic distribution of this estimator is normal

and find its asymptotic variance.

EXERCISE 8.7: Consider a regression model Y; = h(X;,bo) + w;, © =
1,...,n, where the variables (X;,Y;) are independent and identically
distributed and the distribution of u; is symmetric about zero.

a) Let ¥ be an even function. Find conditions on ¥ which ensure
that an estimator which is a solution to
n
mbinZ\Il(Y; — h(X;, b)),
g==1
is consistent.

b) Discuss the use of a PML estimator of b based on a (misspecified)
distribution of the error term that belongs to the family of Sargan
distributions. These distributions are absolutely continuous on IR
with densities of the form

F(u) = Z(1+ aful) exp(~alul).

Study how the asymptotic variance of such an estimator varies as
the nuisance parameter « varies.
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CHAPTER 9

Methods of Moments and
Their Generalizations

It is frequently difficult to estimate directly the parameters of interest.
An alternative method consists in:

e finding functions of the parameters, i.e., auziliary parameters that
can be easily estimated consistently,

e combining appropriately the estimates of the auxiliary parameters
to approximate the parameters of interest.

This method is illustrated in the next examples, which concern sampling
models, i.e., models where the observations Y3,...,Y, are independent
and identically distributed Py, § € © C IRP. To estimate 0, the aux-
iliary parameters are typically chosen to be the first moments of the
observations. This explains the name of the method.

Specifically, if the first p moments b;,(8) = Ep Y,...,b,(8) = Eg(Y?)
are in a bijective relationship with 6, then, in a first step, we can estimate

the auxiliary parameters by,...,b, by the sample moments
1o . 1
bln = ﬁ'zy;'y---vbpn = ;’z‘zy;p
i=1 i=1

Then, in a second step, we can obtain a consistent estimator of § by

b, = b1 ().
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Methods of Moments and Their Generalizations

Such a method is a method of moments.

Example 9.1: Consider the logistic distribution Pp with density

exp —(y — 6)
(1+exp—(y—6))%

The maximum likelihood estimator of 6 cannot be determined explicitly.
An alternative estimation method consists in using the first-order mo-
ment which is b; = E3Y = 6. Thus the method of moments estimator
based on b; is

b = bin =Y,
Example 9.2: Let Fy be the uniform distribution Ulg, ¢,. Its first two
moments are

by = EgY = 91—‘5-9?-,
and 02 +0246,0
by = E(Y?) = ._2_+_1_:F_2
The method of moments estimators are by solving
Bln = Yn = eln ;— 02"1
. _ j2 L p2 LB P
b = (%)= 20t Cint fin O

3 ?
where éln < 92,,. They are given by

é\111. = Bln Y, 3(5251 - B%n)a
égn = B]_n -+ v 3(82,-, - an)

Consideration of the first p moments may lead to a substantial loss
of information and hence to estimators of 6 that are relatively ineffi-
cient asymptotically. Thus it may be preferable to retain a number H
of moments that is larger than the number p of parameters of interest.
Then the main difficulty is to find a suitable method for solving approx-
imately the system of equations relating the parameters of interest to
the estimates b, of the auxiliary parameters since this system has more
equations (H) than unknowns (p).

In the following sections, we shall propose two methods that extend
the method of moments. These are the asymptotic least squares method
and the generalized method of moments.
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9.1. ASYMPTOTIC LEAST SQUARES

9.1 Asymptotic Least Squares

9.1.1 Parameters of Interest and Auxiliary
Parameters

Let Y3,...,Y, be n observations of which the distribution belongs to a
family indexed by a parameter vector § € © C IRP. We are interested in
estimating a K-dimensional function of the parameter vector

a=a(f) € A=a(®) c RX. (9.1)
To do so, we introduce the H auxiliary parameters
b=0b(6) € B=0b(©) c RE. (9.2)

The latter parameters are related to the parameters of interest through
a system of implicit equations. This system is of the form

g(b,a) =0, (93)
and contains G equations satisfying
g(b(6),a) =0=>a=10a(f), V6 O. (9.4)

The latter condition simply means that the parameters of interest a must
be determined without ambiguity from the auxiliary parameters b. The
system (9.3) is sometimes called the system of estimating equations.

Estimators of the auxiliary parameters are assumed to exist and to be
consistent and asymptotically normally distributed. That is, we assume
that there exists a sequence of estimators b,, of b such that

by, "= by = b(6y) Py, —almost surely
(9.5)
Vi(bn = b(60)) 5 N(0,2(60)),

as n — 0o, where 6y denotes the true parameter value.

9.1.2 The Estimation Principle

The estimation principle consists in estimating the parameters of interest
a by forcing the G constraints

g(i)m CL) =0,
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Methods of Moments and Their Generalizations

to be satisfied approximately.

Definition 9.1: Let S, be a symmetric positive definite matriz that pos-
sibly depends on the observations. An asymptotic least squares estimator
associated with S,, is a solution G,(Sy) to the problem

ggﬁ g(ama), Sn g(i’ma)'

Thus the asymptotic least squares estimator &, (S,) renders the con-

straints g(En, a) closest to zero in the metric associated with the scalar
product defined by S,,.

Theorem 9.1: Under the following conditions:
H1: A is a compact set,

H2: as'm — oo, S, — Sp, FPy,—almost surely, where Sg is a non-
stochastic positive definite matriz,

H3: a(Bo) satisfies
9(b(8o), a)'Sog(b(fo), a) = 0 = a = a(fo),

Hj: the function g is continuous;

then the asymptotic least squares estimator G,(S,) exists and strongly
converges to a(fy).

PROOF: Under the assumptions of the theorem the function a— g(b,, a)’
Sng(l;n, a) is continuous on the compact set A. It follows that the esti-
mator @,(S,) exists because the associated optimization problem has a
solution.

Next, consider the sequence @,(S,) for a given sequence of observa-
tions y1,...,%n. Since the sequence &,(S,) belongs to the compact set
A, there exists a subsequence @, (S,;) converging to a value a(y) € A.
Since

9(bn;, @n, (Sn,))'Sn, 9(bns Gn, (Sn;)) < glbny, a(B0))'Sn, (b, a(60))

because Gy, (Sy;) is-a solution to the minimization problem, taking the
limit, it follows that

9(b(00), 8co)'S0g(b(Bo), aco) < 9(b(60), a(60))'Sog(b(60), a(60)).
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0.1. ASYMPTOTIC LEAST SQUARES

Because the right-hand side of the latter inequality is zero, it follows
that the left-hand side must also be equal to zero. Then Assumption H3
implies that as, = a(fp). In particular, ac(y) is nonrandom. Finally, it
suffices to note that every converging subsequence of @, (S, ) converges to
the same limit a(fg). Because A is compact, it follows that the sequence
Gn(Sy) itself converges to a(fp). O

Theorem 9.2: If in addition to the conditions of Theorem 9.1, it is
assumed that

H5: g is twice continuously differentiable,
H6: the true value 8y is such that a(fp) belongs to the interior of A,

H7: the matriz 8g' (b(60), a(60))/0a Sodg(b(fo), a(60))/0a’ is nonsingu-
lar, which implies that K < G,

then the estimator @n(Sy) is asymptotically normally distributed with

V(n(Sn) — a(80)) = N(0, =(So)),

as n — 0o, where

_(0d . 89\ 8¢ o 89 00 o B9 (9¢ ¢ O\
E(SO)—<BLLSO_6_&7>' aas"b'ﬁﬂabs"aa' Baso—é—c? ’

and the various matrices are evaluated at 6y, a(fo) and b(fo).

PROOF: When the number of observations n is sufficiently large, the
estimator @,(S,) satisfies the first-order conditions

=0,

ag(i)m a)lsng(i)m a)
da

:l a=iin (Sn)
ie.

ag'(z’m n(Sn))
Oa

Now we can take a Taylor expansion of these equations because S, bns
and @,(Sn) converge to

Sng(bny @n(Sn)) = 0.

So, bo = b(90), Qg = a(eo),
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respectively, as n increases to infinity. Using the fact that g(b{6,), a(6s))
= (), we obtain

99« 99 . _ 99 o 99 5 ‘
Vi (S S0 gL (an(Sn) ~ a0) + 250285, b)) 0,

or equivalently

%'

dg -t 8qg .. Bg -
7 So—-—) TSZL—S ==+/1(by, — byp).

V1 (8,(Sn) — ag) # — ( 5d 0 5y

Then it suffices to use the asymptotic normality of \/ﬁ(fzn —bp) to estab-
lish that +/n(@n(Sn) — ao) is asymptotically normally distributed with -
mean zero and variance covariance matrix (Sg). O

The preceding results show that there is a large number of consis-
tent and asymptotically normally distributed estimators, each one cor-
responding to a particular sequence of matrices S,. It is interesting to
know whether there exists an optimal sequence of matrices S..

9.1.3 Best Asymptotic Least Squares Estimators
Property 9.1 Under Assumptions H1-H7, if ‘

HS8: the matrices

/ ! N\ —1
99099 g & (9-‘19‘-@-) %

o ob "¢ B \v o) Ba

are nonsingular where 2, 89’ /0a, and 8¢’ /0b are evaluated at 6,
(this implies that K < G < H),

then best asymptotic least squares estimators erist. They correspond to
sequences of matrices S}, converging to

._ (089,09 \7"
- (2a2)”

Their asymptotic variance covariance matrices are equal and given by

-1
o _ (089 (89 .09\"" 8g
w0 - (3 (20%) " 2)
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9.1. ASYMPTOTIC LEAST SQUARES

PROOF: We need to prove that X(Sg) < X(Sp) for every other symmet-
ric positive matrix Sg. This condition can be written as

8¢ (99,00\™ 80 )"
Oa \ OV 0Ob a’
dg _, Og 8¢’ ., 8g _8g 99 8¢ ., 0Og -1
= (aa S°aa') Ba S"ab'nabs Bd’ ('éZZSOaa'
Let

dg 8¢\ "V/* 8y
A= (Bb'ﬂab) Ba’’

and
) 08¢’
The above condition becomes

(A’A)"! < (A'B)"'B'B(A'B) !,

1/2
B= (69 ag> 5020

i.e.
A'A - A’B(B'B)“lB’A
ie.
A'(I - B(B'B)"IB')A = 0.

The latter inequality is satisfied because I-B(B/B) !B/ is an orthogonal
projection matrix. O

Remark 9.1: When b is estimated, the equations g(bo, ag) = 0 linking
the two types of parameters a and b can be replaced by

" 0.= g(bn, ag) + un.
The error term u, is asymptotically normally distributed with

Vit = —v/nig(ba, ao) % N(0, (S3)~1).

Thus the optimal asymptotic least squares estimation method reduces
to a quasi generalized least squares method applied to the approzimate
model .

0=g(bp,a) + un, Eun=0, Vu,=(S:)"/n.

Indeed, the minimization of the objective function

nul,Shu, with S% — S§
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is identical to the minimization of
g(Bm a)[S:z.g(i)m a) .

This interpretation motivates the name of asymptotic least squares given
to the estimation method.

9.2 Examples

9.2.1 Relations of the Form b= h(a)

Since g(b, a) = —b + h(a), the partial derivatives 8g/8b' and 8g/da’ are
given by '

O0g 89 _ Oh
oy I and da!.” Oa'

Then best asymptotic least squares estimators &, are obtained by mini-
mizing . .
(h(a) — bn)' Q7 (h(a) = ba)

since S§ = 02~!. Their asymptotic variance covariance matrices are

) _ (0K _ 6r\?
VasVn(én — ag) = (’5‘;9 5&7) . (9.6)
9.2.2 Estimation Using the Laplace Transform

Consider a random sample Y3,...,Y, drawn from a distribution Py, 8¢
© C RP. It is assumed that this distribution has a Laplace transform

U(t,0) = Eg(exptY),

where ¢ belongs to an interval of IR containing zero.
Clearly, every value of the Laplace transform can be consistently
estimated by the corresponding sample moment

b(t) = = exp(t).

gz=]

Then, select H points t3,...,t5 and take as auxiliary parameters the
quantities.
by = ‘I’(th,G), h=1,...,H.
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9.2. EXAMPLES

The corresponding estimators by, = @(ty), h = 1,...,H, are consistent
and asymptotically normally distributed. The (h, £)-th element of their
asymptotic variance covariance matrix €2 is

Qne = EglexptrY expteY) — Eg(exptrY)Eeg (expteY)
U (th + te,0) — U(tn, 0)T(te, 0)-

]

An optimal asymptotic least squares estimator of 8 is obtained as a
solution 8*(t1,...,tx) to the problem

B (ty) — ©(ts,0) B (ty) — T(t1,0)
. Q—-1 .

: : ) (9.7)
U(tn) - ¥(tm,0) ¥(ty) - T(ta,0)

where Qhe = \i'(th +tg) — \il(th)\i’(te). .
The method only requires the estimated values ¥(t). The asymptotic
variance covariance matrix of the resulting estimator is

’ -1
VialdilBatt, ) -0 = (P L@ L) 09

where

ou(t,0) [0U(t,6) 8V (ty,0)]
o0 86 7 08 )

9.2.3 Exponential Families

Consider a random sample Yi,. .., Y, drawn from an exponential family

with densities
F(y;8) = C(6)h(y) exp(Q(O)T(v)),
where 8 € © C RP.
The (row) function Q takes its values in IR Tt is also assumed that
6 is identified. To estimate the parameter vector of interest 6, we can
choose the means of the canonical statistics, i.e.

by = EGTl (Y)’ seey bH(g) = EGTH(Y)r

as auxiliary parameters. These auxiliary parameters can be estimated
consistently by

N 1

gzl
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Moreover, b, is asymptotically normally distributed with
Vb, - b(8)) S N (0, VaT(Y)).
We can- invoke the properties of exponential families to determine

0b'(0)/66 and VyT(Y). Specifically, since fy Of(y;0)/06 du(y) = 0 we

have 8Q(6) 8log C(6)
Q( )ET(Y) —"%g-(—.'-:o.

It follows that

1 0f(y;0) aQ((’)

Taking the variance of each side, we obtain the Fisher information matrix

0 = V [alogf(Y 9)]

o9
_ aQ(g)VT(Y) acg;(,e)_
On the other hand
OE,T(Y) af(y, 0) i vt
—e = ———T(y)"du(y)

- & (6Q<") (T(Y) - EeT(Y))T(Y)')
8Q(6)
a0

VB T(Y).

Therefore the asymptotic variance covariance matrix of the best asymp-
totic least squares estimator of 4 is

<8E9T(Y)'

Vas V(6 (Y) - 6) (VeT(Y))~

_ (aQ(o)V - (Y)ac;;(,e) ) -1

10ET(Y)\
olid

= (Z(O)™
We have established the following property.

Property 9.2: Best asymptotic least squares estimators of 6 based on
the means of the canonical statistics are asymptotically efficient, i.e.

Vas [VA(Ba(¥) - 0)] = (Z(0)).
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In particular, Property 9.2 says that, asymptotically, all relevant in-
formation is contained in the mean EoT'(Y).

Example 9.3: One has available repeated observations Yig, ¢ =1,...,
n, k = 1,...,K, on a binary (0 — 1) variable, where K denotes the

number of experimental designs =, = (zg1,...,%kp), k=1,..., K.
It is assumed that the observations are mutually independent with
1
PlYy =1]= = pi(6),

14 exp —(zx6)

where 8 is a p-dimensional vector, with p < K. The distribution of
Yi=(Yi1,...,Yi) has density

Fly:0) = i[l[ ! r”[ exp —(zx0) ]1"”‘

1+ exp —(zx0) 1+ exp(—z0)
= C(6)h(y) exp QAT (v),

where

Q) = (@:(0),...,Qk(9))
(11:19, e ,.’I)KH)
X/,

= (z},...,2%) and T(y) = (y1,...,Yx) = ¥.
‘We have

ET(Y) = EoY
(pl(g)a v ’pK(e))/
= p(9),

VeT(Y) = diag [px(6)(1 — px(6))]-

For every k =1,..., K, the auxiliary parameter px(0) can be estimated
by the observed relative frequency pr = (1/n) Y i, Yik, which is the
relative number of observations equal to 1 in the kth cell.

Thus a best asymptotic least squares estimator is a solution to

min (p ~ p(8))' (VT(¥))™ (5~ p(6)),

and

i.e.

Z(pk—-pkwnz f{(m—m(ﬂ))z (1- pk—-1+pk<9)>2}

= Pe(l—5r) 1— P
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The objective function is identical to a sum of usual chi-square measures.
Thus, in this example, the method reduces to finding the value of the
parameter @ for which the distributions [px(8),1 — pi(6)] are closest to
the empirical distributions [fy, 1 —$x] according to the usual chi-square
measure.- The latter method is known as the minimum chi-square
method. From Property 9.2; this method gives an asymptotically efficient
estimator.

Example 9.4: Berkson Method
Instead of using the auxiliary parameters pi(6) = 1/(1+exp —(z26)),
one can base an asymptotic least squares method on bi(f) = 36 =

log (px(8)/(1 — px(6)))-
Consistent estimators of (bc(6)) are

Dr
1— Pk

by = log

These estimators are mutually independent and asymptotically normally
distributed with asymptotic variances

2
Vool - 0u(8))] = (51°g(p’j9/1f:"p’“))> Vas (ViA(k ~ 1))
1
(1 —p)’

See Property B.69.
A best asymptotic least squares estimator based on b(6) can be ob-
tained as a solution to

K . 2
. - . Pk
Irgnl;lpk(l Pr) (log T2 a:kH) .

It is equal to the weighted least squares estimator in a regression of
log(Pr/(1 —Pr)) on zy, with weights py(1 — p). Its explicit expression is

. K -1 g .
bn = | D pi(l—p)aion | > pr(l— pr)ellog —Ho.  (9.10)
k=1 k=1 1—px

The reader may verify that this estimator is asymptotically efficient. See
Exercises 9.1 and 9.2.
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9.2.4 Estimating Equations Linear in the
Parameters of Interest

Suppose that the estimating equations are of the form by = bya, where
b; and b, are a G-dimensional vector and a G x K matrix of auxiliary
parameters, respectively. Substituting the estimator b, for b, we obtain
the approximate system

bin = bana + Un,

where Vo (vtn) = Vo [R(b1n — bana)].
A best asymptotic least squares estimator can be obtained as a quasi
generalized least squares estimator applied to this approximate system.

Example 9.5: Consider the linear model
Yi=Xia+u;, i=1,...,n,

where E(u; | X;) = 0 and V(u; | X;) = 2. The parameter a is inter-
preted as the coefficient vector in the population regression of Y on X.
Suppose that the variables (X;,Y;), i = 1,...,n, are independent and
identically distributed. Then the parameter vector a is given by

E(X'Y) = E(X'X)a.

The cross moments between X and Y can be used as auxiliary parame-
ters. They are estimated consistently by

1o, 1,
EZX,.Y; and -T-LZX,-Xi.

=1 =1

A best asymptotic least squares estimator of a is

18 T
an = (;,;ZX{Xz) EzXz{Y%

g==1 q=1
n -1 5
= (Z X;Xi) > X
g=1 i==1

It is equal to the ordinary least squares estimator of a.

Example 9.6: Consider a stationary process {Y;} with an autoregres-
sive representation of order two, i.e.

Yi = 1Y + d2Yio + ¢4,
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where {e:} is a sequence of uncorrelated random variables with mean
zero and identical variance. The coefficients ¢; and ¢, are such that the
polynomial 1 — ¢;z — ¢ho2? has its roots outside the unit circle. The co-
efficients ¢; and ¢> can be interpreted as the coefficients in a population
regression. They satisfy the system of normal equations

E(YiYio1) = EYZ, + ¢E(Yi-1Yi2),
E(VYi2) = ¢1EYi-1Yios) + $2E(YE,).

Let p(1) and p(2) denote the first two values of the autocorrelation
function of the process Y;

E(Y}Y:1)

p(l) = —Evz Vb
_ EWYi-o)

The parameters of interest ¢; and ¢. are related to the auxiliary param-
eters p(1) and p{2) through the system

p(l) = ¢1+¢ap(1),

p(2) = ¢1p(1) + ¢o.

Let (1) and p(2) be consistent estimators of p(1) and p(2) respec-
tively. For instance

o) = Zalia
X Y
DY R4

Then consistent estimators of ¢; and ¢, can be obtained by solving the
so-called Yule-Walker equations

A1) = &1+ dep(1),
(2 = ¢1p(1) + o

This gives
5 = P =p1H2)
" 1-p(1)7
5, = @ -py
: T-pap
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Clearly it is possible to improve upon these estimates by considering
higher-order autocorrelations. See Exercise 9.3.

9.3 Seemingly Linear Models

One may be tempted to apply ordinary least squares as soon as the re-
lationship between the explained variable and the explanatory variables
is linear, i.e., of the form

K
Y, = Y Xubro+u
k=1
= Xibop+u;, FEu;=0,i=1,...,n, (9.11)

where Y; and X;; denote the ith observations on the explained vari-
able and the kth explanatory variable, respectively, by denotes the “true
value” of the parameter vector of interest, and the error term u; associ-
ated with the ith observation has mean zero unconditionally on X.

Ordinary least squares methods, however, can lead to bad estimators,
in particular to inconsistent estimators, even if the relationship between
Y and X is of the preceding type. The purpose of this section is to study
conditions under which ordinary least squares (OLS) estimators are con-
sistent. In addition, some examples are given where these conditions are
not satisfied. In Section 9.4, we shall apply the method of asymptotic
least squares estimators to these examples so as to obtain appropriate
estimation methods.

9.3.1 Consistency of OLS Estimators

The OLS estimator of bg, which it is natural to consider in this case, is
obtained by regressing Y on X using the n available observations. It is
given by

by = (X X,)"1X! Yy,
where the subscript n indicates that the matrix X, and the vector ¥,

are based on the first n observations. This estimator can also be written
as

n -1 5
- (zx;xi) S x

i=1 i=1
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1& B
= (;Z-ZX{Xi) HZX{Y“
iz=]

q=1

where X; is a row vector. i

To simplify, suppose that the observations (X;,Y;), i = 1,...,n,
are independent and identically distributed with finite second-order mo-
ments EX'X and EX'Y. Suppose also that EX'X is nonsingular. Then
it is readily seen that the OLS estimator converges to

beo = (E(X' X)) LE(X'Y). (9.12)

That is, by, which is the empirical linear regression coefficient vector of
Y; on X, converges to the population linear regression coefficient vector
boo f Y on X. '

Therefore consistency of the OLS estimator obtains if and only if

boo = bo. (9.13)
Substituting Xbp + u for Y in the expression for b, gives
boo = (E(X'X))'EX'(Xbo+u)
= by+ (E(X'X)) E(X'u).
Thus the consistency condition (9.13) is equivalent to
E(X'u) =0, (9.14)

which is interpreted as the orthogonality between the errors and the
explanatory variables. Since u has mean zero, the latter condition can
also be written as

Cov(X,u) =0. (9.15)
It is satisfied when Xbp is the population linear regression of Y on X.
Thus we have the next property.

Property 9.3: When the error term has mean zero, the OLS estima-
tor is consistent if and only if the error term is uncorrelated with the
explanatory variables.
Definition 9.2: A model of the form Y; = X;bg + u; with Fu; = 0 is
said to be seemingly linear if Cov(X,u) # 0.

In the following subsection we give some examples of seemingly linear
models.
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9.3.2 Autoregressive Models With Autocorrelated
Errors

Typically, the dynamic feature of an econometric model arises from tem-

poral correlation among the disturbances or inclusion of some lagged en-

dogenous variables among the explanatory variables. In this subsection

we consider a model of which the dynamic feature is due to both reasons.
The original model is

Y; =bYi1+1, |bol <1, (9.16)

where the error term v; has an autoregressive representation of order
one, namely -

vt = pots—1 + &, |pol <1, (9.17)

and {e;} is a sequence of uncorrelated random variables with mean zero
and identical variance o3 # 0. Thus the error term v; has mean zero.

The OLS estimator of by is obtained by regressing Y; on Y;_;. It is
given by
b o S Be¥os

= .
Zt:z Y;‘:Z—-l

Although the pairs of variables (Y;—1,Y;) are not independent, it is
easy to see that a necessary and sufficient condition for consistency of
the ordinary least square estimator is still of the following form:

COV(Y;..l, Vt) == E(n_th) = 0.

This is because

br = bo + Timp Ve
T 0 ZT vz )
te=2 < i1
which converges to
» E(Y;_1v)
bo =W+ TFyz )

by Property B.67.
. We need to compute the covariance between Y;_; and v;. Since the
parameters by and pg are less than one in absolute value, we can write

Y; = boYi-1+u
w -
= Z(bO)th——i-

§=0
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Hence

E(Yt—th)

E (i(bo)in-—l—in>

i=0

m .
= E‘(bo)ZCOV(Vt__l_.i,Ug).
i=0
Since
o2
Cov(¥pp, i) = I?—Q—_

TSE (po)* for b >0,
we obtain

e o]

2
E(Yi1y) = Z(bo)i‘l”:%;)‘g(l?o)lﬁ

i=0
Poog
(L= (p0)?)(1 — pobo)”
Thus the above consistency condition is satisfied if and only if the
error terms are uncorrelated, i.e.

br — by < po = 0. (9:18)

This result shows that, as far as the consistency of the OLS estimator
in the linear model is concerned, the lagged endogenous variables can be
treated in the same way as the exogenous variables as soon as the error
terms are not correlated.

9.3.3 Measurement Errors in the Variables
a) The Problem

We consider a linear model with the usual assumptions. Specifically, let
Y; = boo + Xibo + vi, (9.19)

where the errors are uncorrelated, have mean zero and identical variance,
and are uncorrelated with the explanatory variables, i.e., Cov(X,v) = 0.
The variables Y and X are measured with errors. The observations
Y;* and X satisfy
Y? = 1/2 + &4,
X : = Xi + s
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where £ and 7 denote measurement errors on Y and X. It is natural

to replace the estimation of the original model by the estimation of the
model

Y = bgo + X[ bo + us, (9.20)

where the variables Y and X have been replaced by their observable
counterparts.

Suppose that the measurement errors ¢; and 7; are independent of the
variables v; and X for j =1,...,n. Suppose also that the pairs (&;,7;),
i =1,...,n, are mutually independent and identically distributed with
mean zero. Then the error term u; = v; + &; — 7;b0 has mean zero.

The OLS estimator of by is consistent if and only if the estimator of
(boo, bo) is consistent (see Exercise 9.4). That is, the OLS estimator of
bo is consistent if and only if the condition Cov(X*,u) = 0 is satisfied.
The latter condition can be written as

Cov(X +n,v+e—mnb) =0,

or equivalently as
Cov(n,e —n bg) = 0.

Two special cases are of interest:

(i) Only the endogenous variable is measured with errors in which case
we have n = 0 and

Cov(n,e — 7 bg) = Cov(0,€) = 0.

Thus the preceding necessary and sufficient condition for consis-
tency of the OLS estimator is satisfied.

(ii) Only the exogenous variables are measured with errors in which
case we have € = 0 and

Cov(n,e — 7 bp) = —boV'(n),

which is, in general, different from zero. Hence OLS estimation
leads to an inconsistent estimator of bg.

b) Consumption Model and Permanent Income Hypothesis

To illustrate the problem of incounsistency discussed above, we consider a
consumption model where consumption at time ¢, denoted C;, depends
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on permanent income, denoted RY, which is defined as some expectation
of income R; at time £ — 1. The.model is

C; = aoRf + bg + v, (9.21)

where v, is assumed to be independent of RY, Ry, Ry .. ..

‘We consider two cases: :

(i) Being unobservable, permanent income may be replaced by in-
come R; which can be viewed as an approximation to permanent income.
Then the estimated model is

C; = agRy + by + uy,

where u; = v; + ao(RY — Ry).
The above necessary and sufficient condition for consistency is

Cov(R,u) =0,
ie.
Cov(R,R - RP) =0.

Here, we suppose that expectations are optimal and given by
Rf = E(Rf ; Rt—liRt—27 . )

That is, R} is the best approximation to future income given past ob-
servations on income. The corresponding prediction error is orthogonal
to the prediction, i.e.

Cov(RP,R — RP) = 0.
Then the consistency condition is not satisfied because
Cov(R,R~— RP) =V(R - RF) >0,
which holds as soon as predictions are not perfect, i.e., as soon as RP # R.

(ii) Another possibility consists in replacing the unknown value of RY
by R} = arR:—1 + ET, where @r and br are the estimated coefficients
in a linear regression of R; on R;.; and the constant term. Under weak
regularity conditions, when T increases to infinity, dr and by converge
to the true values of the coefficients in this linear regression and R}
converges to the best prediction of R; in the class of linear predictors
based on past income-R;_; only

R: I3 EL(Rt ! Rt._]_).
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After substituting R} for RY in equation (9.21), the condition for con-
sistency of the OLS estimator becomes

Cov(R;,R; — R}) =0.

This condition is trivially satisfied because the best prediction of R?,
which is a linear function of Rs..1, is equal to R} so that the correspond-
ing prediction error R} — R} is orthogonal to R;.

9.3.4 Simultaneous Equation Models
a) An Equilibrium Model

In equilibrium, the quantity exchanged on a market at every instant and
the price of these exchanges are such that demand equals supply. To
simplify, we consider some demand and supply functions that are linear
in prices
D; = aoPi+ Xibo+us, ao <0 (Demand)
(9.22)
S; = aoPi+ Zyfo+uv, co>0 (Supply).

It is assumed that the error terms u; and v; are uncorrelated with means
zero and variance covariance matrix

vlim]o] o ow
vy Ouww 02 |’
The explanatory variables X; and Z; possibly include a constant term.
The equilibrium condition
Dt = St, (923)
and the definition of the quantity exchanged
Q¢ = Dy, (9.24)

can be used to obtain the equilibrium quantity and price at time ¢ as a
solution to

Q: = ang + thO + Ut,
(9.25)
Qi = ooPf+ Zifo+ vt
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This system determines simultaneously the two endogenous variables Qf
and Pf. The solution is

pe = Ziffo — Xibo LU ,
ag — Qg ag - Qg
(9.26)
Q° agZsPo — 0o Xebo | agur — ous
t .

ag — G ag — Qg

b) OLS Estimation of the Demand Equation
The first equation of the system (9.25), i.e.
Qf = aoPf + Xgbo +us
is linear. Thus it may seem natural to estimate the coefficient gy by
ordinary least squares.

In general, however, the OLS estimator d¢ is inconsistent. The con-
sistency condition Cov(P§, us) = 0 of this estimator is equivalent to

Cov(vy — ug, ug) = 0.

Thus, even if the errors u; and v, are uncorrelated so that Cov(v;, us) =
0, the above condition is not satisfied since

Cov(vy — ug, u) = =V = —02 < 0.

When X;by = bp, the asymptotic bias can be easily determined. It is
equal to

Cov{Q%, P¢
Qoo — p = ———%—t—)- —ag
t
COV(ut, ‘Pte)
VPE
1 Vut
ap—ap VP

It is positive. Hence ag is overestimated.

c) OLS Estimation of the Inverse Demand Function

The demand equation can be written with price as a function of quantity
exchanged. This gives the inverse demand function. Specifically, from

Qf = CL()})I{e -+ thO -+ Ut,
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we obtain
1 tho Ut
Pe — —_— e —_—t
t p” Qf w0 oo
= BoQf + Xibo + U,
where dg = 1/ag, bo = —(bo/ao) and % = —(us/ag)-

The OLS estimator of @g, which is obtained by regressing Py on
(Qg, X+), is consistent if and only if

Cov(Q5,4t) =0,
i.e., if and only if
Cov(agus — ague, uz) = 0.
If the error terms u; and v; are uncorrelated, this condition reduces

to
Cov(—apus, ut) = 0,
ie.
aodﬁ = O,

ie.
ag = 0. (9.27)
Therefore the OLS estimator is consistent if the system can be written

as

P = aoQf + Xibo + s,
(9.28)
Qi = Zifbo+m,

i.e., if the supply equation determines the quantity exchanged and the
demand function determines the equilibrium price. Note that the simul-
taneous determination of P and Qf is no longer present. Such a system
is said to be recursive.

9.4 Instrumental Variable Estimation

9.4.1 Imstrumental Variables

We consider a linear relation between the explained variable Y and the
explanatory variables X3, ..., Xk of the form

K
Y:i-":ZXikbOk"'ui’ ?:=1,...,TL,
k=1
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where by = (bgs, ..., box)’ denotes the true value of the parameter vector.

We also assume that observations on H variables Zi,..., Zy are avail-

able. These variables may include some variables among X1,..., Xk.
To simplify, we assume that the variables

(ui,Xﬂ, .. .,Xi}(, Zi]_,...,ZiH),, g = 1,...,71.
are independent and identically distributed and that the first two
moments of their common distribution exist.

Definition 9.3:
(i) A variable Zy, is an instrumental variable (IV) or an instrument
if B(Zyu) = 0.

(it) The system Zi,...,Zg is a system of instrumental variables if
every variable Zy, h = 1,...,H, is an instrument and if these
variables are linearly independent.

Let Z = (Z;,...,Zy) denote the row vector of the system of instru-
ments. The condition of linear independence means that

E(Z'Z) is nonsingular. (9.29)

Note that the instruments have the desirable property of being uncorre-
lated with the error terms.

The model that was just described requires observations on the in-
strumental variables Z;,, h = 1,..., H. How can such variables be found
in practice? The search for instrumental variables is illustrated in the
next examples,

Example 9.7: Consider a relation of the form
Y; = Xi1bor + Xiaboz + u;,

where « is an error term with mean zero, independent of the first
explanatory variable Xj;;, but possibly correlated with the second one
Xio. Every function Z = g(X;) of X; is an instrument since

E(g(X1)u) = E(g(X1))Eu = 0.

Example 9.8: Consider a model where the endogenous variable is
explained by the expectation of its future value

Yi = aoE(Yer | Y2, Yien, .. ) 4+ uy,
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where u; is an error term satisfying the usual conditions. Narmely, u:
has mean zero, is homoscedastic, and is uncorrelated over time. The
optimal prediction , which is unknown, can be replaced by its observable
realization Y;,;. This leads to the linear relation

Y: = agYi41 + Uty

where v; = us — ag(Yit1 — E(Yes1 | Y2, Yi1,.. ). Clearly, the error term
v, is correlated with the “explanatory” variable Yi.i.

The lagged values of Y;, namely Y;_1, Y;—2,..., are instrumental vari-
ables since they are orthogonal to u; and the prediction error

Yir1 — B(Ye1 | Y2, Yie1y - )

Example 9.9: Consider the equilibrium model

Dy = apP;+ wisbor + e,
S; = aoeP; + Tatboz + uat,
Dy = S8 = G

Many instrumental variables are available for the demand equation
Q: = a1 Py + z1tboy + vae-

For instance, the exogenous variables z; in the demand equation and x5
in the supply equation are possible instruments. When u;; and ug; are
uncorrelated and when there exist consistent estimators @9 and bs of ago
and boz, the residual in the supply equation

Q: — G2 P, — Tatbe = Ut

can also play the role of an instrument.

9.4.2 Instrumental Variable Estimators
Let Z,...,Zx be H instruments. The orthogonality conditions E(Zpu)

=0,h=1,...,H, can be expressed in terms of the observable variables.
Namely
E(Zpu)=0
is equivalent to
‘ K
E(ZyY) =Y, B(ZnXi)bor, h=1,....H. (9.30)
k=1
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We have a linear system of H equations in the K unknowns byg, k =
1,..., K. The quantities £(Z,Y) and E(Z, X)) are unknown and play
the role of auxiliary parameters. They can be estimated consistently by
the corresponding sample moments. Then it is natural to find an esti-
mate of by by solving the system (9.30) where the population moments
are replaced by their corresponding sample quantities. Three cases must
be distinguished:

a) If H < K, i.e., if there are fewer instruments than explanatory
variables, then the preceding system does not have enough equations.
The method cannot be used.

b) If H = K, the method leads, in general, to a unique solution, Let
Z = (Zy,...,2k) and X = (X1,...,Xk). The system (9.30) can be
written as

E(Z'Y) = E(Z'X)b.

If the matrix F(Z’X) is nonsingular, this gives
bo = (E(Z'X))*ELZ'Y).

Thus the instrumental variable (IV) estimator of by, denoted by, is
given by

1 n -1 1 n
i — y / . i —— I .
by = (E ;:1: ziX,> = Zl‘ Z'y;,

ie.

n -1 5
brv = (Z Z,in) >z, (9.31)
i=1

i=1

A more compact expression is obtained by introducing the n x K ma-
trices of observations on the explanatory variables and the instrumental
variables. These matrices are denoted X and Z, respectively. The vec-
tor of n observations on the endogenous variable is denoted Y. Then we
have

brv = (Z'X)"12'Y. (9.32)

Remark 9.2: In the classical linear model Y; = X;bg + u; where u; has
mean zero and is uncorrelated with the explanatory variables, the latter
variables can be chosen as instruments. For this particular choice we
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have Z = X. Thus the corresponding instrumental variable estimator is
the ordinary least square estimator

bors = (X'X)"1X'Y.

¢) If H > K, the method leads to a system in which there are more
equations than unknowns. After substitution of the sample moments for
the population moments, the resulting system is, in general, inconsistent.
A possible solution is to select only K instruments among the H available

instruments Z;,..., Zy. Formally, this consists in choosing instruments
defined by

7 = ZA, (9.33)

where A is a nonrandom matrix of size H x K. The components of Z}‘&
are valid instruments since

E(uZ})=E(uZA) = E(uZ)A =0.

In addition, because Z is a system of H instruments and the matrix A
is assumed to be of full column rank K, then it is easy to see that Z’A
constitutes a valid system of K instruments.

Note that there are as many instrumental variable estimators as pos-
sible matrices A, i.e., an infinity. Each instrumental variable estimator
is given by

brv(A) = (ZE X)"H(ZRY),
ie.
brv(A) =[A'Z'X]*A'Z'Y. (9.34)

By construction, every instrumental variable estimator that has been
introduced is a consistent estimator of by.

9.4.3 Asymptotic Distributions of IV Estimators

The study of the asymptotic properties of instrumental variable estima-
tors requires additional hypotheses on the error term u. It is assumed
that, conditionally on Z, the error term u has mean zero and is homo-
scedastic. Thus

Ex|2)=0, V(u|Z)=od2 (9.35)
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First, we consider instrumental variable estimation when H = K.
The instrumental variables estimator is

EIV — (le)—l ZI},
(Z'X) 12/ (Xbo + u)
= by+ (ZlX)—IZ"u..

Thus

vn

From the Strong Law of Large Numbers we have

-1
n

ity =)= (2320 Tzt
i=1

-71; S ZiX; - B(Z'X).

=1
From the Central Limit Theorem we have
1

n
= 3" Zlu & N (0,02E(2'Z)),

f==1

since
E(Z'u)=0

E(Z'u)(Z'v) = E*Z'Z)
= E(E(*®|2)Z'Z)
= 0iE(Z'Z).
Collecting results, we obtain the following property.

Property 9.4: When H = K, the instrumental variables estimator is
consistent and asymptotically normally distributed with

VA —bo) % N (0,63(EZ'X)"E(Z'2)(EX'2)™Y).

Next, we consider the general case where H > K. It suffices to
replace Z by ZA where A is an H x K matrix. We obtain

Corollary 9.1: If H > K

Valbrv(A) = bo) % N(0,2(A)),
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where
Q(A) =02(A'E(Z'X))*A'E(Z'Z)A(E(X'Z)A) L.
Remark 9.3: The consistency of the instrumental variable estimator
brv(A) implies that the residual %; = Y; — X;brv(A) is a good approx-
imation to u;. In particular, 62 = (1/n) Y i, #2(A) is a consistent
estimator of 52 and
Q(A) =ns*(A'Z'X)'A'Z'ZA(X'ZA) T

is a consistent estimator of £2(A).

9.4.4 Best Instrumental Variable Estimation

In the general case where H > K, there is an infinity of instrumental
variable estimators. It is natural to ask whether there exists an esti-
mator that dominates asymptotically any other instrumental variable
estimator. The problem reduces to finding a matrix A* such that

Q(A") 2 2(4),
for any other matrix A and for every parameter value.
Property 9.5: There erists an optimal matriz A*. It is given by
A* = E(Z'2)\E(Z'X).
Then we have

QAY) = d2|E(X'Z2)E(Z'2)"*E(Z' X))~

Proor: We need to prove that

[A’E(Z'X)|A'E(Z'Z2)A[E(X'Z)A] !
= |BE(X'2)E(Z'2)"'E(Z'X)|},

or equivalently that
E(X'Z)EZ'Z)'E(Z'X) = E(X'Z)A[A'E(Z'Z)A|*A’E(Z'X).
The latter inequality is equivalent to
B'(I1-A(A’A)"*A")B 0,
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where B = E(Z'Z)"/*E(Z'X) and A = E(Z'Z)**/2A. This is clearly
verified since A(A’A)~1A’ is an orthogonal projection matrix and hence
smaller than I in the positive definite matrix sense. O

From Property 9.5 it follows that the best instrumental variables are
given by
Z* = ZE(Z'Z)*E(Z'X).

These instruments are simply-the predictors of X in the population linear
regression of X on Z. Thus we obtain a simple interpretation of the best
instrumental variable estimation method. Namely, the method consists
in obtaining the best approximation to the variables X, which cause
problems, using the variables Z which have good properties.

The original model Y = Xbg + u, which is a seemingly linear regres-
sion model (see Definition 9.2), can be rewritten as

Y = ZE(Z'Z)"1E(Z' X )bo + v, (9.36)

where
v=u+ (X -ZE(Z'Z)"'EZ'X)bo

is orthogonal to Z. This is so because Z is orthogonal to u, i.e., E(Z'u) =
0, which follows from the fact that Z are instruments, and because Z is
orthogonal to the residual in the population regression of X on Z, i.e.,
to

X -ZE(Z'Z)'EZ'X.

The optimal selection matrix A* = E(Z'Z)"1E(Z'X) cannot be
used directly since it depends on the population moments E(Z’'Z) and
E(Z'X) which are unknown. It can, however, be estimated consistently
by A* = (Z'Z)"1Z'X, i.e., by the matrix of estimated coefficients in the
sample regression of X on Z.

Therefore the best instrumental variable estimator is

bry = brv(AY)

= (A*IZIX)—lA*/Z/Y
[(X'Z(2'2)*2'X])'X'Z(Z'Z2)'Z'Y
(X'PzX) 'X'PzY,

where Pz = Z(Z'Z)~1Z' is the matrix associated with the orthogonal
projection on the subspace generated by the instruments. The substi-
tution of A* for A* does not modify the properties of consistency and
asymptotic normality of the estimator.
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Property 9.6:

(i) The best instrumental variable (IV) estimator is given by
BIV = (X'PzX)_IX'PzY,

where Pz is the orthogonal projection matriz on the subspace gen-
erated by the columns Z1,...,Zg of Z.

(it) The best IV estimator is consistent and asymptotically normally
distributed with

Valbry — bo) % N(0,03(E(X'Z)(EZ'2) " E(Z'X))™Y).

(iii) The best IV estimator dominates asymptotically any other instru-
mental variable estimator.

(i) The asymptotic variance covariance matriz of the best IV estimator
can be estimated consistently by

Vsv/m(bry —bo) = né*(X'Z(Z'Z)7'Z'X)™*
= n&z(X/PzX)'_l,

where N n
- 1 - 1 -
52 = = > (Y- Xibrv)® = = S iz

g=1 i=1

The best instrumental variable estimator is readily computed:

a) In a first step, we regress the different explanatory variables X,
k=1,...,K, on the set of instrumental variables Z1,...,Zg. The OLS
coefficient estimators obtained from these K regressions are given by
(Z'2)1Z' X.

b) Then the predicted values X obtained from these regressions are
given by

X = 7Z(Z2'2)"'Z'X.

¢) In a second step, we consider the approximate linear regression

model
Y = Z(Z'Z)"1Z'Xbo + 9, (9.37)

ie.
Y = Xbg + D.

307



Methods of Moments and Their Generalizations

Because the usual assumptions are satisfied asymptotically in this model,
we can apply ordinary least squares. This gives the estimator

XX)'X'Y = (X'P,PzX)"'X'PLY
= (X'PzX)"'X'PzY
= by.

Therefore the best instrumental variable estimator can be determined
by applying ordinary least squares to two successive models. For this
reason, and especially when considering simultaneous equation models,
this estimator is frequently called the two-stage least squares estimator.

Remark 9.4: Computation of the best instrumental variable estimator
requires at most K -+ 1 OLS regressions. In general, however, the set of
instruments contains-some explanatory variables of the original model:
In this case, the corresponding first step OLS regression produces a vec-
tor X , of estimated values that is identical to Xj.

Remark 9.5: Note that the residuals, the estimate of the variance of the
error term, and the estimate of the variance covariance matrix obtained
from the OLS regression of Y on X in the second step do not coincide
with the residuals ;, the estimated variance 52, and

1 Y, X pud —
“T;Vas[\/ﬁ(bIV — b)) = [X'PzX] !

respectively, since the vector of residuals in the second step OLS regres-
sionis Y — XbIV, which is different from Y — Xva

Example 9.10: Consider a linear model satisfying the usual assumption
of zero correlation between the error term and the explanatory variables.
Then the explanatory variables X, ..., X can be taken as instruments.
The best instrumental variable estimator reduces to the OLS estimator

bors = (X'X)"'X'Y,

since Pz)g = X. Hence there is no need to improve upon the OLS
estimator bors by introducing additional instruments Zg1,...,ZH.

The latter property can be viewed as a consequence of the Gauss-
Markov Theorem. Specifically, the other instrumental variable estima-
tors are linear in Y and are unbiased when Eu = 0 since

E(Z'X)'Z'Y = (Z'X)~'Z'EY = b,.
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Thus they are dominated by the OLS estimator boLs.

Example 9.11: Consider a simultaneous equation model. Specifically,
consider the equilibrium model

D; = a1 P+ zhy + v,
S; = agP; + Totbs + uge,
Qt = Dt = St.

Instrumental variables are often chosen to be various exogenous variables
appearing in the demand and supply equations.

Let K denote the number of exogenous variables x; appearing in
the demand equation and Ly denote the number of exogenous variables
T in the supply equation that are not linearly related with z;. We are
interested in the estimation of a; and b;. Then

K=K1+1, H=K1+L2
Three cases can be distinguished:

(i) If H < K, i.e, if L, = 0, then the instrumental variable procedure
is not applicable. The parameters of the demand equation are
said to be underidentified and there does not exist a consistent
estimation procedure.

(i) If H = K, i.e., if Ly = 1, then there exists a unique instrumental
variable estimator. This case corresponds to a demand equation
that is just identified.

(iii) In the overidentified case H > K, i.e., L > 1, there exists an
infinity of instrumental variable estimators. The best instrumental
variable estimator known as the two-stage least squares estimator is
obtained by regressing Q: on P; and x4, where F is the estimated
value of P, obtained from the OLS regression of P; on x1; and Za:.
(The variables Z; denote the Ly variables of = that are not related
to the variables z;.)

Example 9.12: In Example 9.8, we considered replacing the model with
optimal predictions

y’t =aE(.-Yt+1 l 'y‘;,},t——-la'-')'"ut

by the model -
Y: = aYiq1 + vt
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There we noted that the lagged variable Y;.; could play the role of
an instrument. The corresponding instrumental variable estimator is
obtained by regressing-Y; on h.H, where Yt+1 is the “best” prediction
of Y;,1 obtained from the auxiliary regression

Yt+1 = a},t—l + W,

ie.
-1
YVie1 =Y 1_—.«1—_1_1’;1&“_1

T
Zt=1 1 t=-1

9.4.5 Two-Stage Least Squares as Best Asymptotic
Least Squares

We have F(Z'Y) = E(Z'X)bs. Let the auxiliary-parameters be the
elements of E(Z'Y) and E(Z'X). Note that the relationship between
the parameters of interest b and these auxiliary parameters are linear in
both types of parameters.

The auxiliary parameters are estimated consistently by

- 1<
bin= =) 7Y,
i==1

and

= 1
Bon =23 ZiXs
ge=]1
The asymptotic variance covariance matrix of u, = ﬁln - ﬁgnbo is

lim V(vnu,) = 02E(Z'Z).

This matrix is estimated consistently by

00 Zzl

i=1

Thus a consistent estimator of V,5(v/7 u,) is readily available up to a
multiplicative constant. It follows that the best asymptotic least squares
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estimator can be obtained directly without having to estimate consis-
tently the parameter vector b in a first step. Specifically, the best asymp-
totic least squares estimator is

-1 5,
}E‘_d X}2; (zn: Z zi) > ZX;

i=1 f=1 g==1

-1 n
ixgzi (znjzwi) > _ZiYs
=] i=1

il
= (X'PzX)"'X'PY.

-1

S
I

Hence b= V.
Moreover, from the optimality property of the best asymptotic least
squares estimator we obtain the following result.

Property 9.7: Because it is identical to the best asymptotic least squares
estimator, the two-stage least squares estimator is best in the class of
estimators that are solutions to optimization problems of the form

mbin(Z'Y — Z'Xb)'Sn(Z'Y — Z'XD).
The two-stage least squares estimator corresponds to the optimal choice
S, = (Z2'Z)~1.

An instrumental variable estimator associated with an H x K selec-
tion matrix A (see equation (9.33)) corresponds to S, = AA’. Such
a matrix S, is necessarily of rank K with K < H. This shows that
Property 9.7 is stronger than Property 9.5.

9.5 Generalized Methods of Moments

In the previous section, the orthogonality conditions between the error
terms and the instrumental variables were written as

EZ'(Y — Xby) =0
so as to emphasize the relation
E(Z'Y) = E(Z'X)bo

between the cross moments and the parameter vector by of interest.
However, it is not always possible to separate the parameters of interest
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in this fashion. For instance, consider a nonlinear regression model of
the form
= g(Xi, be) + g, i=1,...,m,

where the explanatory variables X are uncorrelated with the error term
u. If Z denotes the set of instrumental variables then the orthogonality
conditions can be written as

EZ'[Y — g(X, bg)] = 0.

Hence it is not possible to express the parameters of interest by as func-
tions of the moments of X, Y, and Z. .

In this section we consider an estimation method based on estimating
equations that impose the nullity of the expectation of a vector function
of the observations and the parameters of interest a

Esh(Y, X; a0) = 0. (9.38)

The function h is H-dimensional and the parameter a is of size K. This
method is a generalized method of moments. As for the asymptotic
least squares method, this method is a generalization of the method of
moments. Note, however, that every asymptotic least squares estimator
is not necessarily a generalized method of moments estimator, and vice
versa.

9.5.1 Definition

The basic idea of a generalized method of moments is to choose a value
for a such that the sample mean

1 E h(Y;, X;;a)
n-«
i==1

is closest to zero.

Definition 9.4: Let S, be an H x H symmetric positive definite matriz
that may depend on the observations. The generalized method of mo-
ments (GMM) estimator associated with S,, is a solution G,(S,) to the

problem
n 4 n
min [}_: h(Y;, X a)] S, {Z h(Y;, X a)] )
i=1

i=]1
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The study of the existence, consistency, and asymptotic normality of
a GMM estimator is analogous to that of an ALS estimator. Thus we
can be brief.

We make the following assumptions:
H1: The variables (¥;, X;) are independent and identically distributed.

H2: The expectation Egh(Y, X;a) exists and is zero when a is equal to
the true value ag of the parameter of interest.

H3: The matrix S,, converges almost surely to a nonrandom matrix So.

H4: The parameter ag is identified from the constraints (9.38), ie.,
E()h(}./, X; a)'Soth(Y, X; a) =0 = a=ap.

H5: The parameter value ag is known to belong to a compact set .A.

H6: The quantity (1/n) Y 5, h(Yi, Xi;a) converges almost surely and
uniformly in a to Eoh(Y, X;a).

HT7: The function h(y, z;a) is continuous in a.
Property 9.8: Under assumptions H1-H7, the GMM estimator assoc-
iated with S, exists asymptotically and strongly converges to ap.
PROOF: As for the ALS method, it suffices to consider the limit problem
1 n 4 1 k13 ‘
min lim [-ﬁ ;h(Yi,Xﬁa):l Sn [ﬁ ; h(Y;hXi;a)] ,

ie.
min [Eoh(Y; X; a)]' So [Boh(Y, X; a)]

Then it suffices to note that the unique solution to this problem is ag in
view of Assumption H4. O

In addition to the previous assumptions, we assume:
H8: The parameter value ag belongs to the interior of A,

H9: The function h(y, z;a) is continuously differentiable in a.
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Then the GMM estimator @,(S,) belongs asymptotically to a neigh-
borhood of the true parameter value ag. In particular, it satisfies the
first-order conditions

1 O 01 (Y3, Xi; ) RSN
{n—;———g&——] Sn [n gh(K,XL,an)] =0. (9.39)

To establish the asymptotic normality of a GMM estimator, it suffices to
_ take a Taylor expansion of the first-order conditions. To do so we make
the next assumptions:

H10: The quantity (1/n) Y ., 8h'(Yi, Xi; a)/Oa converges almost surely
and uniformly in a to Epdh'(Y, X;a)/da.

H11: Ep|lh(Y, X;a0)||? < +oc.
H12: The matrix

O’ (Y, X: ag: oh(Y, X;
(2059

is nonsingular, which implies that H > K.

Property 9.9: Under Assumptions H1-H12, the GMM estimator
@(Sy) is asymptotically normally distributed with

V1i(@n(Sn) = ag) % N(0,=(So)),

where
N (Y, X; On(Y, X; -t
On'(Y,X;a . Oh(Y,X;a
[Eo—-(—é-&———ol] SoVoh(Y, X ag)]So [Eo——i-é?—gl]
Y V. g P L -1
([anh (Y:A,ao)] So [anh(} ,‘J\‘,'ao)]) _
fa da’

Proor: We have
On' (Y, X; a) 1 & -
Eq [-—-—5;—-—— so—ﬁZh(x,Xz,an) # 0.

i=1
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This implies
E, [6h’(lgif;ao)] S
(‘\/—Zh(YHXhaO) + = ZM\/—(G‘ —a‘0)>
i==1 z-—l
Hence
E, [ahl(yéf;ao)] S
(% gh(Yi,Xi;ao) + { M] Vn(an “ao))
Therefore
Vil —a0) # - <Eo [-———————Bhl(};f ; “°)] So [ ——_————ah(l;"f “°)D
[Eo——————-——ah'(l';;f ; “")] Z 1(Yi, X ao)-

z—'l

From the Central Limit Theorem we have

N Z h(Y;, Xi; ag) > N(0; Voh(Y, X; ao)).
i=1

The desired result follows. O

9.5.2 Best GMM Estimation

Does there exist an optimal choice for the sequence of matrices S,?
Since the asymptotic variance covariance matrix of a GMM estimator
depends only on the nonrandom limit matrix S, this question reduces
to knowing whether there exists an optimal matrix Sg.

A proof similar to the proof of Property 9.1 gives the following prop-
erty.

Property 9.10: There exists a best GMM estimator. It is obtained
when the limit matriz is

S5 = [Voh(Y, X;a0)] ™
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Its asymptotic variance covariance matriz 3(S}) is equal to

AK' (Y, X; ap) , —1 [ @h(Y, X;00) 1\
([Eo*“—éz“*—‘ [Voh(Y, X; ag)] ™ E‘JT .

Using an argument similar to that used for instrumental variable
estimators, it is easy to verify that the lower bound £(S}) can also be
attained by estimators that are solutions to

min {An%ihm,xﬁa)} [An%ihm,xi;a)] . o)

d==] i=1

where A, is a K x H matrix converging almost surely to a nonrandom
matrix Ag.

An alternative way to verify the latter result is as follows. Choose a
sequence of matrices A’ converging to

. OW(Y. X;a0)]
Rk

2 X gy, X )

An estimator that is a solution to the problem (9.40) associated with
such a sequence A}, has an asymptotic variance covariance matrix equal
to Z(AGAg).

To simplify the notation, let Cp = Ey8h({Y, X;a0)/0a’. Noting that
C4S5Co is a nonsingular matrix, we have

Z(AFAL) = 2(S5CoCqS5)
(CoS5C0C;S5Co) "1 CyS5CoChSyCaChSECo
(CoS5C0CuS5C0) ™!

= (CgS5Co)™"

= 3(S}).

]

Note also that a consistent estimator (S})~? of Voh(Y, X:ao) is (1/n)
Sy h(Yi, Xi;d,) h(Y;, Xi; @), where &, is a generalized method of
moments estimator of a obtained using an arbitrary sequence of matrices
S, such as S,, =L
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9.5.3 GMM Estimation After Linearization of the
Estimating Equations

The function h appearing in the estimating equations is, in general, non-
linear in the parameters a of interest. In this subsection, we shall show
that every GMM estimator is asymptotically equivalent to a two-step
estimator obtained by a method of moments applied to some estimating
equations that have been linearized approprxately

We assume the existence of an estimator a}, that is consistent and
asymptotically normally distributed for a with

A, — ao) 5 N(0, Qo).

In the neighborhood of a}, and asymptotically in the nelghborhood of
ao, the function h(y, z;a) can be approximated by

3h(y,

(g, aia3) + 2T o _3),

This suggests the study of the behavior of the estimator @ (Sy) that is
a solution to

n

min) [h(y;,X,-;a;) +

i==1

ah(Y,,X“ ak) (a- )}'

n

Sn) [h(Yi,Xi; a}) +

i=1

W( a;)] . o)

The objective function is quadratic in a. Thus the estimator @ (Sn)
can be written explicitly as a function of the observations Y;, X5, i =
1,...,n, and the first-step estimator. a;, . Specifically, we have

-1
x o' (Y;, Xi; al, " Oh(Y;, X;; ah,
an(5)=([2—————-———-( 2 “)} n[Z—-———————( X )D

i==1 i==1

"L O (Y, Xinal) o o, ORY:, Xisa7) .
> s, s [t e + L) os] . (09

Note that this estimator is obtained from the first-step estimator ay, by
substracting a correction term c,, namely

@n(Sy) = al — cn, (9.44)
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where

-1
Bh’(Y;,X,,a dh(Y Xiar)
b = (Z S Z Ba’

q=1 i==]

O (Vi Xird) o .
DTS Y k(Y Xial)-

1=1 i=1

Property 9.11: The two-step estimator a,(S,) is asymptotically equiv-
alent to the generalized method of moments estimator.a(S,).

PROOF: From equation (9.43).it follows that

\/ﬁ(an(sn) - aO)
-1
1 | 0K/ (Y, Xisa%) 1 & Oh(Y;, X3 a%)
(7 5 st s. [r5 2]

f=]1 i=1

1 &~ O (Y3, Xiyal) 1 & Lo
’ ([Hz_—‘éa_*} > [" 7 2 P X 0h)

izl i=1

_Zah'(y Xid3) oo __ao)D

CL
je=]

oM (Y, X;a0) o ., OR(Y, X;a0)\ "
# (EO Ja SOEO Sa’

[Eo_a_@'_(_yé_gi@] [ Z:lh(y X; ao)]
# \/ﬁ(a’n(sn) - aO):

where we have used the proof of Property 9.9. O

9.5.4 Nonlinear Two-Stage Least Squares

‘We consider the nonlinear model
Y; =m(Xia0) +uw, i=1,...,n, (9.45)

where the systematic part m(Xj, ag) is not the population regression of ¥;
on X;. In this case; nonlinear least squares estimation of equation (9.45)
leads to an inconsistent estimator. The method, however, can be readily
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modified when there exist instrumental variables Z = (Z1,...,Zy) that
are uncorrelated with the error term u;. Specifically, we assume

EyZ' (Y —m(X,ap)) =0.

From Property 9.10, the best GMM estimator corresponds to the
limit matrix

S; = [z (Y —m(X,a0)] "
= [W(Zw)] .
Suppose that the error u; satisfies Eo(u? | Z) = 0. We have
sy = [3E02'Z) .
Thus the best GMM estimator is obtained as a solution to

min (Z Zi(¥; = m(X, a»)

i=1

n -1 n
7 (-}; > Z;Zz-) (Z Zi(Y; - m(Xi,a») .

il i=1

(9.46)

Equivalently, using matrix notation, this estimator is obtained as a sol-
ution to

min (Y —m(X,a))Z(Z'2)'Z (Y - m(X,a)), (9.47)

where m(X,a), Y and Z denote the vectors (m(X1,a),m(Xz,a),...,
m(Xn,a)), (Y1,...,Y,) and the n x H matrix of which the ith row is
Z;, respectively.

Definition 9.5: The nonlinear two-stage least squares estimator is a
solution to

%nW-m@ﬂWﬂﬂEAZW;m@ﬂ»

From Property 9.10 the asymptotic variance covariance matrix can
be estimated consistently by

19m/ am\ !
=2 [ Iry\=—1lry!
In (n da Z(Z7)"2 6&') ’

where a is replaced by its estimator 4, and where 62 = (1/n) 37, [¥i -
m(X-;, dn)]z .
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9.6 Exercises
EXERCISE 9.1: Consider Example 9.4.
a) Verify that the estimator én defined by equation (9.10) is asymp-
totically equivalent to
5 2 & Dr
6= Zpk(l ~ Di)TH Tk Zpk(l ~ pi)T}, log ———.
k=1 k=1 1P

b) Find the asymptotic distribution of the vector (py,...,px). Then
find the asymptotic distribution of

~ ~ !
2l DK
J! ol .
<0g1____ﬁ17 aOgl_ﬁ )

c) Find the asymptotic distribution of §, Discuss the asymptotic
efficiency of this estimator.

EXERCISE 9.2: Consider Example 9.3. Show that the OLS estimator,
based on

(i) an auxiliary parameter vector b(8) = h(p(#)), where h is a bijective
function of pi(8), k=1,...,K, and

(ii) the estimator b = h(p),
is asymptotically efficient for 6.
EXERCISE 9.3: Consider an autoregressive model of order 2
Y: = ¢1Yio1 + d2Yio + 6y,

where {;} is a sequence of random variables independently and identi-
cally distributed with mean.zero.

a) Find the asymptotic distribution of the sample correlations coeffi-
cients (1), 5(2) and 5(3). Hint: see Property B.67.

b) Find the asymptotic distribution of g?n and 652 defined in Example
9.6.

c¢) Compute E(Y;Y;_3). Then find a relation between ¢,, ¢o, p(1),
p(2), and p(3), where p(3) appears explicitly.
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d) Study the behavior of the ALS estimator based on the three in-
dependent relations between p(1), p(2), p(3), ¢1, ¢2 and on the
sample correlation estimators 5(1), 5(2), and 5(3).

EXERCISE 9.4: Consider the seemingly linear model
Y = boo + X} bo + us,
where Eu; = 0.
a) Show that the OLS estimator of by is given by
Bo = (VempX™) 1 CoVemp (X*, Y*).
b) Derive a necessary and sufficient condition for the consistency of

this estimator as an estimator of the true value bg.

¢) Compare this condition to the condition obtained in Property 9.3.

EXERCISE 9.5: Using n observations one estimates the coefficients 6y,
03, ¢1, and ¢, of the second-order polynomials

O(2) =1+ 012 + 622°

and
®(2) =1+ ¢rz + p22°.

The estimators used are assumed to be consistent and asymptotically
normally distributed with

VR(Bin — 01,020 — 02, B1n — b1, Pon — 2)’ 4 N(0, Q).

One knows that the two polynomials have a common root pg. Let pg
and uo denote the other two roots. Thus

O(2) = (1 - -}-—z) (1 - iz)
Ho 1551
O(2) = (1 - iz) (1 - lz) .
Ho M2
a) Express the parameters 6, 02, ¢, and ¢, as functions of the in-

verses of the roots, i.e., as functions of fi; = 1/p;, j = 0,1,2. Then
suggest a method for estimating the three roots.
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b) One is mainly interested.in the roots y; and ps. Show that there
exists a relation between the auxiliary parameters 81, 85, ¢;, and
¢2, on the one hand, and the parameters of interest i; and iy, on
the other hand. Note that this relation is linear in the latter two
parameters. Then propose an estimation method for u; and ps
that is different from that obtained in a).

EXERCISE 9.6: Consider a generalized method of moments estimator
of a, denoted a}, based on the estimating equations Eqh(Y, X;ag) = 0.
Consider another generalized method of moments.estimator of a, denoted
Gp, based on a subsystem of the available estimating equations. It is
assumed that the number of equations in the subsystem-is equal to the
dimension of a. Show that &, — a}, is asymptotically uncorrelated with
ay.

EXERCISE 9.7: Suppose that some auxiliary perameters b and some
parameters of interest a are related through a system of estimating
equations that can be partitioned into two subsystems g;(b,a) = 0 and
g2(b,a) = 0. Suppose also that a is identified from the first subsystem,
i.e., the one associated with g;. Are the ALS estimators based on g; and
(91, 92) asymptotically comparable?

EXERCISE 9.8: Compare the ALS estimators based on the systems
g(b,a) = 0 and h(g(b, a)) = 0, where h is a bijective mapping.

EXERCISE 9.9: Propose a linearized ALS estimation method that is
analogous to the linearized generalized method of moments discussed in
Section 9.5.3.
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CHAPTER 10

Estimation Under Equality
Constraints

In the preceding three chapters, we established the asymptotic normal-
ity of maximum likelihood estimators, M-estimators, asymptotic least
squares estimators, and generalized method of moments estimators. The
asymptotic variance covariance matrices of these estimators were derived
under the assumption that the true parameter value belongs to the in-
terior of the parameter space. In practice, the latter assumption may
not be satisfied. For instance, this arises when the parameters are sub-
ject to some equality constraints. These constraints can arise in explicit,
implicit, or mixed forms. These various cases are studied in the next
sections. To simplify the notation, we let § denote the function of the
parameter that we wish to estimate.

10.1 Constraints

10.1.1 Explicit, Implicit, and Mixed Forms

In Chapter 1 we saw that, in some situations, a priori information
could be translated in terms of equality constraints on the parameters of
interest. Depending on the problem studied, such constraints can arise
in various forms.

Frequently, the p-dimensional parameter vector @ of interest can be
expressed as a function of a lower dimensional parameter vectora € A C
IRY, where g < p. In this case, the constraints are said to be written in
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an explicit or parametric form. Specifically, we have
8 = h(a), (10.1)

where & is a function from R? to IRP.
In other cases, equality constraints arise in an implicit form. That
is, we have

g7 (6) =0, (10.2)

where g* is a function from IRP to IR".

The preceding two formulations can be viewed as extreme cases of
a more general form called the mized form. Specifically, equality ‘con-
straints arise in a mixed form when the components of § satisfy some
relations implying other parameters, which are called auxiliary parame-
ters. That is, we have

9(6,a) =0, (10.3)

where @ is a g-dimensional parameter vector and g is a function taking
its values in IR".

Remark 10.1: The explicit form is obtained when g(6,e) = 6 — h(a).
The implicit form corresponds to an auxiliary parameter vector of di-
mension zero. By convention, the latter vector is taken to be equal to
zero. Thus we have g(d,0) = g*(8) = 0.

Clearly, it is desirable not to impose on the parameters of interest
redundant constraints, i.e., constraints that can be obtained from others.
This “minimality” condition on the set of constraints can be expressed
in terms of the Jacobian matrix.

For the mixed form, this condition is given by

8g/08" is of rank r,
(10.4)
8g/8a’ is of rank q.

For the special cases of the explicit and implicit forms, this condition
reduces to

explicit form : 6h/da’ is of rank q,
(10.5)
implicit form : Jg*(6)/08' = dg(6,0)/8¢ is of rank r.
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10.1.2 Examples

Example 10.1: Independence Constrainis in a 3x2 Contingency
Table

Suppose that n observations are available on two qualitative vari-
ables X and Y with three and two categories, respectively. These ob-
servations can be summarized in a 3 x 2 contingency table of which the
ni; element, ¢ = 1,2,3, j = 1,2, gives the number of observations for
which the variables X and Y take the value of the ith category and
jth category, respectively. Suppose that the n observations are indepen-
dent and identically distributed. Then the variables (n;;) follow a multi-
nomial distribution M (n, (pi;)), where p;; is the probability that the pair
(X,Y) takes the value (i, 7). Let 6 be the vector of p;;.

Now suppose that the variables X and Y are thought to be inde-
pendent. Then it is necessary to impose some constraints on §. These
constraints can be written in an explicit form by expressing the joint
probabilities p;; in terms of the marginal probabilities, denoted a; and
a.j, of the variables X and Y. Specifically, we have

P11 = 01.Q.1, pa1 = (1 — a1.)a.1 = (az.0.1),
P12 = 01.G.2, pa2 = (1 — a1.)a.2 = (az.a.2),
D1z = a,l.(l bl 725 Mian a.2), Paz = (1 - al.)(l bl /8 il a.z).

There are three independent parameters, namely, a;., a.1, and a.2, which
can be used to express every parameter of interest as a function of them.

Alternatively, the independence constraint between X and Y can be
expressed in an implicit form by requiring that the matrix

P11 P21
P12 P22 |
P13 P23

is of rank one. Using determinants, this condition reduces to

p11 Paz — P21 P12 =0,
p11 P23 — P21 P13 =0.

Lastly, the linear relation between the two column vectors of the above
matrix can be written as

Jda: pun = apan,
D12 = ap2z,
Pi3 = Gpas.
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That is, we have a mixed form.

Example 10.1 shows that a same constraint, which is the indepen-
dence between X and Y, can be expressed in various equivalent forms.
When this arises, the choice of which form-to use might take into account
the relative computational tractability of subsequent estimators and test
statistics:

Example 10.2: In a dynamic model, the current value y; of the en-
dogenous variable is often expressed as a function of the present and
past values of some exogenous variables. That is, y. is expressed as
a function of z:, z;—, .... Consider the case where there is only one
exogenous variable. Then we have a model of the form

Yt =b+wors +wiTi_1 + ..., WE Tk + U

Suppose that the effect of the exogenous variable is exponentially de-
creasing with time. This suggests that the parameters wy, are constrained
and satisfy

wp =aX*, with [\| <1, k=0,..., K.

These are explicit constraints where the new parameters that determine
the deterministic part of the model are b, a, and \. A mixed form is

wy — AMp—1 =0, k=1,..., K.

Example 10.3: Consider a dynamic model with first-order lagged en-
dogenous and exogenous variables

Yt = Ooys—1 + 012 + Oozy g +uy, t=1,...,T,

where the error terms are independent and identically distributed with
mean zero. It is interesting to study the case where the two polynomials
1— 6oL and 6; + 6L have a common root. For, if there exists a real
number a such that 6; + 6L = a(1 — L), then we can write

Yt — Ooyt—1 = a(x; — Oozp—1) + ur,

i.e.
Yi = azy + vy,

where v; is such that v; — gvy_; = u;. This means that the dynamic
nature of the model arises only from the error term v;.
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There exist various ways for expressing the property that the above
two polynomials have a common root. These are:

in explicit form : 90 = 90, 91 = 91, 92 = -"9100,
in implicit form : 6 + 6160 =0, _
in mixed form: Ja:60; =a and 0 = —aby.

10.1.3 Relation Between Explicit and Implicit Forms

As the few examples of the previous section indicate, in some cases the
constraints on the parameters can be written either in some explicit form
or in some implicit form, in which cases the two forms become equivalent.
This is not always possible and/or easy to do. In this section we shall
consider the case where the constraints are linear. This will allow us to
discuss as thoroughly as possible how these two forms are related and
how one form can be obtained from the other.

a) From an Implicit Form to an Explicit Form

We consider some linear affine constraints written in an implicit form,
namely G = g, where G and g are, respectively, a known 7 X p matrix
of rank r and a known r x 1 vector. Let G~ denote a generalized inverse
of G. Then we have

Gl=g=IBeR:0=Gg+(I-G G)s.

The (-parameterization, however, is not very convenient because the
matrix I — G~ G is singular. Let H be a p x (p —r) matrix of which the
column vectors constitute a basis of

Ker G =Im(I- G™G).

‘We obtain
Gl=g=JacRT:0=G g+ Ha.

Hence we have obtained an equivalent explicit form in which ¢ = p—r
new parameters appear where:

p = number of original parameters,

r = number. of implicit constraints.
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b) From an Explicit Form to an Implicit Form

Conversely, consider now some linear constraints written in an explicit
form, namely, § = Ha + h, where a is a g-dimensional parameter vector.
Hence the vector 6. — h must belong to the subspace generated by the g
column vectors of H, which are assumed to be linearly independent.
This set of constraints can be written in two relatively natural im-
plicit forms. First, since I — H(H'H)~'H' is the orthogonal projection
on to the subspace that is orthogonal to the column space of H, we have

Jac R :0=Ha+hs I-HEHH)H)6-h) =0.

Note, however, that we have an implicit form in which the matrix G =
I - H(H'H)"'H’ is not of full rank.
Second, to satisfy the full rank condition, consider some basis vectors

Gy, ..., G4 of the subspace orthogonal to the subspace generated by
the column vectors of H. We have

JeeR!:0=Ha+h & GLO-h)=0, k=1,...,p—q,
& GO-h=0,
where .
Gy
é/ = .

Gy
We now have an implicit form which satisfies the full rank condition. We
find again the same relation between the number of implicit constraints

and the number of original and auxiliary parameters, namely

T = p - q
number of number of number of
. . . (10.6)
independent original parameters when
implicit parameters the constraints
constraints are satisfied

Remark 10.2: Deriving an implicit form from an explicit form, or
vice versa, is straightforward when the constraints are so-called zero
constraints. Specifically, consider a partition of the parameter vector 8
into two subvectors o and 3 so that 6 = (o/, #')’. Zero constraints on «
are '

a=(.
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This is trivially an implicit form. An explicit form can be readily
obtained by treating the parameters 3 as auxiliary parameters. Specifi-

cally, we have
a=0©0=(2>.

10.2 An Example: Least Squares Under
Linear Constraints

As an illustration of estimation under constraints, we study in this sec-
tion the ordinary least squares estimation of the parameters of a lin-
ear model when the parameters are subject to some linear constraints.
This example has the advantage of simplicity. In particular, the various
estimators that are reviewed can be written as explicit functions of the
observations. By comparing the constrained estimator to the uncon-
strained estimator, it follows that the study of the effects of the con-
straints will be relatively easy. In addition, it will be easy to assess the
consequences of the form of the constraints whether these are written
in an explicit or implicit form. In more complicated models, however,
it is not always possible to obtain some explicit expressions for the con-
strained estimators. As a consequence, the properties of such estimators
are difficult to derive in finite samples. Then it will be necessary to
rely on an asymptotic theory. This will be the topic of Section 3 of this
chapter.

10.2.1 Explicit Linear Constraints

We consider the linear model
y=z0+u;, i=1,...,n,

where, . conditionally on the exogenous variables, the error terms have
zero mean E(u; | z;) = 0, identical variance V(u; | z;) = o?, and are
uncorrelated.

The parameter § € © C IR? is subject to some linear constraints of
the form

9 =Ha+h, (10.7)

where H and h are, respectively, a known p X ¢ matrix and a known
p-dimensional vector. It is assumed that H is of rank g and that a varies
in RY.
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Suppose that we apply ordinary least squares subject to the above
constraints. Then we must consider the optimization problem

ming Y7, (yi — 2:6)2

subject to 6§ = Ha + h.

(10.8)

To obtain a solution to this problem, we can substitute out the con-
straints in the objective function and maximize the resulting objective
function with respect to a. Then the constraints are used to obtain the
solution in 6. That is, after substitution, the problem reduces to

n
min ; — z;Ha — z;h)%.
oy 2 ;(yz i 1 )

This problem corresponds to.the ordinary least squares estimation (with-
out constraints) of the model

Yl = zia+w;, with yf =y; — z:h, =} = o, H.

The solution is

n -1 n

G = (Z H miw,H) Z H'z}(y; — zih).

ie=1 i=1

Using matrix notations, the solution can be written as
an = (H'X'XH)'H'X'(Y — Xh). (10.9)
Hence the constrained ordinary least squares estimator of 6 is
60 = Ha,, + h,

ie.
0% = H(H'X'XH)'H'X'(Y — Xh) + h. (10.10)

The constrained OLS estimator can be easily expressed as a function of
the unconstrained OLS estimator, which is 6, = (X'X)"'X'Y.

Property 10.1: The estimators é,, and ég are given by

in = (H'X'XH)'H'X'X(@,-h),
0 = HE'XXH) 'HX'X(@,-h)+h
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The preceding expression for the conétrainqd OLS estimator can be
used to derive easily the first two moments of 69.

Property 10.2: The constrained OLS estimator subject to 6 = Ha+ h
is an unbiased estimator of 8 with variance covariance matriz

V(82 = c*H(H'X'XH) 'H'.
PROOF: Since Ef, = 0 = Ha + h and V(4,) = 03(X'X)~! we have

E@) = HE'X'XH) 'H'X'X(Ef,-h)+h
H(H'X'XH)~'H'X'XHa + h

= Ha+h
= 0,
and
V(@) = HE'XXH) HXXV(@,)X'XHHX'XH) H
= PH(H'X'XH) 'H'.
0

Remark 10.3: The constrained OLS estimator §3, which takes into
account information contained in the constraints 6 = Ha + h, is clearly
more precise than the unconstrained OLS estimator 6,. This can be
easily verified by comparing their variance covariance matrices. We have

V(6a) - V(%) = 0*(X'X)"! — PHH'X'XH)'H/
= o?(X'X) V(I - (X'X)Y?H(H'X'XH) 'H' (X'X)/?)(X'X) /2.
The latter matrix is positive semidefinite since
(X'X)V?H(H'X'XH)1H (X'X)/?
is an orthogonal projection matrix.

The constrained OLS estimator can be interpreted as a two-step
estimator. This interpretation relies on the following property.

Property 10.3: Consider the linear (affine) model

b, = Ha + h + v,
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where
Ev, =0, Vv, =V, =c%(X'X)"L.

The estimator G, is the generalized least squares estimator of a and 00 is
the corresponding predicted value for the dependent variable in the above
model.

PROOF: GLS estimation of the above model gives the estimator
(H'(Von) " H) " H (Vun) " (05 - h) = (H'X'XH) " 'H'X'X (6, — k).
This estimator is equal to ,. Property 10.3 follows. O

Thus the constrained OLS estimator 90 can be obtained from two
unconstrained regressions. In a first step, a regression of Y; on X; gives
f,. In a second step, a GLS regression of §, — k on the columns of H
gives 60,

Corollary 10.1: The vectors 9‘0 and 0, — é" are uncorrelated.

Proor: This a direct consequence of the interpretation of 90 and 0;, -4

as the predicted value of 8, and the residuals, respectively, in the model
of Property 10.3. O

10.2.2 Implicit Linear Constraints
Now consider the linear model

Yi =T +uy, = 1,...,n
where the usual assumptlons are satisfied, namely, E(u; | zy,...,z,) =
0, V(u; | z1,...,25) = 02, E(usy; | z1,. ., @n) = 0 Vi # j. Suppose
that the parameters @ are constra.ined by

Go=g, (10.11)

where G and g are a r xp matrix and a r-dimensional vector, respectively,
and G is of rank 7.
The constrained ordinary least squares estimator is a solution to

ming 37, (% — z:6)?

subject to G# = g,

(10.12)
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i.e., using matrix notations
ming (Y — X8)Y (Y — X6)
subject to Gf = g.

The objective function is convex in  and the constraints are linear.
Thus the above problem has a unique solution, which can be obtained
by solving the first-order conditions of the Lagrangian function. Let )
denote the vector of r Lagrange multipliers. The Lagrangian function is

= (Y - X0) (Y — X8) - X(G — g).
The first-order conditions are

—2X/(Y - X6%) - G'A, =0,
G =g.

From the first set of equations, we obtain

® = (XX) XY+ -;-(X’X)“lG'Xn

]

- %(X'X)*lcfi\n
Substituting this expression into the second set of first-order equations,
we obtain the Lagrange multipliers. That is, from
g=G# =Gd, + %G(X’X)"lG’Xn,

we obtain )

A =2(G(X'X)1G") g - Gby). (10.13)
- Therefore the constrained OLS estimator is
0 =0, + (X'X)"1G(GX'X)IG) (g ~ GBy). (10.14)

This estimator is equal to the unconstrained OLS estimator modified by
an additive term that is a function of the extent Go, — g by which the
constraints are not satisfied by 6.

Remark 10.4: From equations (10.13) and (10.14) and the fact that G
is of full row rank, it follows immediately that the vectors A, 0, — 90
and G, — g are in one-to-one relations.
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Property 10.4: The constrained OLS estimator subject to GO = g is
unbiased with variance covariance matric

V@) = oI-XX) I EXX)TE) X))
(I-G(GEX)e)reXX)™.

PRrROOF: This follows from equation (10.14), which expresses 52 as a func-

tion of 8, and from the variance covariance matrix of the unconstrained
OLS estimator. O

Developing the expression for V(ég) gives an alternative and simpler
expression for the variance covariance matrix. We have

V(@) = A(X'X)!-XX)E(GEXX)TIE) e X)).
(10.15)

In particular, we have
V(2) = c2(X'X)™! = V(ba).

That is, the constrained OLS estimator is more precise than the uncon-
strained OLS estimator provided, of course, that the constraints hold.

10.3 Asymptotic Properties

In general, usual estimation methods do not lead to some closed form ex-
pressions for the corresponding constrained estimators of the parameter
vector. As a consequence, it is difficult to derive the exact-distributions
of these estimators in finite samples. As for unconstrained estimation,
however, it is possible to establish some asymptotic properties under
suitable regularity conditions.

These properties are studied in this section within a quite general
framework that includes important estimation methods such as maxi-
mum likelihood, M-estimation, asymptotic least squares estimation, gen-
“eralized methods of moments, etc. This framework is presented in the
first subsection.

Under suitable regularity conditions, these various estimation meth-
ods lead to consistent estimators under constraints. This consistency
property need not be established again. This is because the sufficient
conditions for consistency given in Section 7:4.1, for instance, do not
require that the true parameter value 6y belongs to the interior of the
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parameter space ©. It follows that these conditions are satisfied in the
constrained case as well as in the unconstrained case. On the other
hand, the asymptotic variance covariance matrices of the constrained
estimators are modified. In the second subsection, some Taylor expan-
sions allow us to find some quantities that are asymptotically equivalent
to our estimators. This result allows us to derive the asymptotic distri-
butions of the various estimators in the third subsection.

10.3.1 General Framework
a) Unconstrained Problems

The various estimation methods studied in Chapters 7, 8, and 9 are
all based on the optimization of some objective functions depending
on the observations and the parameters of interest. The unconstrained
estimator is defined as a solution to a problem of the form

max L,(6). (10.16)

It is assumed that this estimator is consistent and that it satisfies the
first-order conditions )
0L (0,) _

=0. 0.1
50 0 (10.17)
Moreover, it is assumed that the objective function L, is such that

_L 6Ln (90) d

T S NO.T), (10.18)
and )
_ %%@l —+ Jo, with probability 1, (10.19)

where Zp and J; are two symmetric positive definite matrices.
"Under the above conditions, it follows from a first-order Taylor ex-
pansion of (1//n)0L,(6,)/86 around 6, that

\_/%%ﬂ.(ao) — ToviBn — 00) # 0. (10.20)

In particular, we have

Vil —60) S N, Ty To T Y). (10.21)
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In general, the two matrices Zp and Jp are different. When they are
equal, the-asymptotic variance covariance matrix of the unconstrained
estimator simplifies to

VasVilfn — 00) = T LTyt = 5 =I5 (10.22)

b) Estimation Methods

Here, we briefly review various-classical estimation methods and we show
how these methods fit into the preceding general framework.

(i) Maximum Likelihood Estimation (see Chapter 7)
‘We have

n
Ln(8) = ) _log f(¥; | X:30)
ge=1
in the case of a conditional model with observations Y3,...,Y, that are
conditionally independent. The matrices Zyp and Jp are equal to the
Fisher information matrix, i.e.

_ B 8%log f(Y | X;6,)
Io=Jo = Eo <_ 89 86" )
_w (mog f%’e! X; 90)) , (10.23)

(ii) M-Estimation
In Section 8:1.4, a quasi generalized M-estimator of 8 is defined as a
solution to an optimization problem of the form

1

max
6cO N

n
Z ‘I’(y;, X‘i; 07 E‘n)a
i=1
where &, is a function of the observations converging to a constant limit

co.
When this estimator is consistent for @ and when the condition

205 (- .
H=E() (a \Il(KX,go,Co)) =0

f’
b6 o' (10.24)

is satisfied, we showed that conditions (10.18) and (10.19) are actually
satisfied with

O*(Y, X;6,, o)
Jo “E"(" 86 80’ )
I = E oU(Y, X;6,,co) 0U(Y, X;8,, co)
o= =0 o0 o0’ '
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See Property 8.5.

For the special case of quasi generalized nonlinear least squares esti-
mation (see Section 8.3.3) and quasi generalized pseudo maximum like-
lihood estimation (see Section 8.4.3), the two matrices Ty and Jp are
equal.

(iii) Asymptotic Least Squares Estimation
In Chapter 9, an asymptotic least squares estimator is defined as a
solution to an optimization problem of the form

q}nk(én,e)'snk(én,o), (10.25)

where k(b,8) = 0 are the constraints linking the parameters of interest
6 to the auxiliary parameters b, b, is a consistent and asymptotically
normal estimator of b with some asymptotic variance covariance matrix
g, and {S,} is a sequence of positive definite matrices converging to a
nonsingular nonrandom matrix Sy.

To satisfy conditions (10.16), (10.18), and (10.19) on the objective
function L,, it suffices to let

Ln(8) = —g—k’(f)n, 9)Snk(bs, 6). (10.26)

Then we have

1 8Ly (6h) _ =0k (b0, 00) o , 3
Tn 08 # ﬁTSok(bn,eo)

OK' (bo, 6o) o 0k(b0,00) 2
# — TS0 /a(h, — b).
It follows that oK ok oK . ok
I[) = —a-g'So-a-i)’—ﬂo—a—b—SoéF, (1027)

where all the derivatives are evaluated at the limit point (bg,f). In
addition, it is easily seen that '

oK', Ok

The two matrices Zp and Jp are equal when we consider the best
asymptotic least squares estimator, i.e., when S; is chosen to be

ok . oK'\t
(5@_90%) .

Jo
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Then we have

=Jo= (10.29)

ok o oK'\ ok
(Bb’ 8 ). 86"

(iv) Generalized Methods of Moments
A GMM estimator is obtained by minimizing an objective function

of the form
min (Z h(Y; e)) (Z h(¥s; 9))

i==] izl
where h is a function that defines the estimating constraints Eoh(Y"; 6o)
=0 and {S,} is a sequence of matrices converging to Sg.
To satisfy conditions (10.16), (10.18), and (10.19), we let

Ln(Y;0) = -~ (Z h(z,e)) (ih(n;o)) .

i=]1 =1
For an arbitrary sequence of matrices S,,, the matrices Ty and J; are, in

general, different. They are, however, equal for the best GMM estimator,
which corresponds to a limit of the sequence {S,} equal to

= Vo(h(Y;60)) 7.
In this case, the two matrices 7y and Jp are equal and given by
Ly, = D

Eo (——————Bh'(‘;;; 9")) (Voh(Y360))™ Eo (2’%}"@) - (1030)

c) Constrained Problems

An estimation procedure under constraints is associated with each of
the estimation methods described above, i.e., with each choice of the
objective function L,,. We shall assume that the constraints are written
in the mixed form
Jac R, g(f,a)=0,

where g is a r-dimensional function. The constrained estimator assoc-
iated with the objective function L,, and the constraints g{f,a) = 0 is
defined as the vector 62 such: that (00 a0) is a solution to the problem

{ maxg o Ly (0)

subject to g(#,a) = 0.

(10.31)
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Thus, according to the chosen objective function, we can define a con-
strained maximum likelihood estimator, a constrained pseudo maximum
likelihood estimator, a constrained asymptotic least squares estimator,
a constrained generalized method of moment estimator, etc.

If the true parameter value 6, is associated with a unique value ag
of the auxiliary parameters a, then it is easy to establish consistency of
(68,a3) to (8o, ap) under suitable regularity conditions. It suffices to use
an argument similar to that presented in Chapter 8.

Moreover, if (6, ap) belongs to the induced interior of {(4,a): 8 € ©,
9(0,a) = 0} and if the functions L, and g are continuously differentiable,
then the estimator (ég, d, ) satisfies asymptotically the first-order condi-
tions. Let A denote the vector of Lagrange multipliers associated with
the constraints. The Lagrangian function is given by

L=Lp(0)—g'(8,a)

A solution (89, &%) and A, to this problem satisfies the first-order con-
ditions

(OLn(Y;03) _ 89'(83,a%)5 _,
a0 8
3 dg'(68, &g);\n ~0, (10.32)
da
\ g(63,a3) =o.

Remark 10.5: When the constraints are written in the explicit form
@ = h(a), the first-order conditions become

(8L (Y;89) 5. =0
60  Ap — U,

4 6hgjgg;‘n =0,

63 = h(ad),

ie.
[ 5 = OLa(¥iR(@S
n 60 b
{ on(a3) ALa(Y3h(a3) _
Ba 00 -

62 = h(al).
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The latter system is easily interpreted. When 8 = h(a), it is possible to
reparametenze the problem with the auxiliary parameters a. Then the
estimator a2 is obtained by maximizing L, (Y; h( a)). The second set of
equations of this system corresponds to the set of first-order conditions
associated with this optimization problem. The constrained estimator
42 is obtained from 42 by applying the transformation k. The Lagrange
multlpher vector is the derivative of the objective function at the opti-
mum value.

Remark 10.6: The other important case arises when the constraints
are in some implicit form g*(@) = 0. The corresponding first-order con-
ditions follow directly from the system (10.32) using the convention

og’

a=0, g*(9) = g(6,0), and o~

= (.

Then we obtain

OLn(Yi03) _ 89”(83)5
06 o6

g (83) = 0.

10.3.2 Taylor Expansions of the First-Order
Conditions

We suppose that the functions L, and g are twice continuously differ-

entiable with respect to # and a. Then we can expand the first-order

conditions (10.32) in a neighborhood of (6g,a0). After multiplying by
the scalar 1/4/n or \/n, we obtain the system

1 0Lu(B0) , 16°Ln(60)
Jn 00 ' n 9800

09'(0o.ap) 1 5

; B¢’ (6o, a s
Vil - o) - 2002 25, 4o,

Oa. f n # 0,
0g(6o,a0) ~ 0g(6o,a0) ~
___.b_%T_Q_ (90 8o) + __?BEI__Q.Vn( v—ag)*‘LO

Now, using )
T 10 Ln(eo)
Jo =lim = =oa
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(see equation (10.19)) and

1 8L, (0 -
T2 - o/ o) # 0,

(see equation (10.20)), we obtain the system

Ton/ln = o) = Tor/ = b0) — 2L5020) L5,
89’ (00, ag) 1
oo a0

69(2‘;;“0)f(o° 6o) + ag((”o’“")x/"( a5, — ao) # 0.

It follows that /n(82—8y), v/n(al—ao) and (1/4/7) A, are asymptotically
linear functions of the unconstrained estimator v/n (8, — 6p) since

a4’ (6o, ao .
Jo 0 g V(80 ~ o)
0 0 69 0((); ag \/ﬁ((;,-% :-— a’O)
09(00,a0)  0g(bv, ao) 0 7an
o9’ da’
jo\/ﬁ(en - 90)
2 0 . (10.33)
0

In particular, since \/ﬁ(én — Bg) converges in distribution to a centered
normal variable, then

N ) 1 <
\/';’&-(92 - 00)’ \/ﬁ(a’g - a’0)7 "ﬁ)\n
also converge to some centered normal variables.

To find the asymptotic variance covariance mairices of these quant-
ities, we need to solve the system (10.33). From the first set of equations

we obtain
--1 ag (0()’ CL()) ’\

0 5 oy
Using this result in the last set of equations of (10.33), we obtain
ag(oﬂya'ﬂ) \/“(9 -0, ) 69(00:0'0) J—-l 69 (90’0'0) /\n

e o Y0 80 /n
+ag(g‘(’)’,“°)\/‘ (83 — ag) # 0. (10.34)
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Since the rank of 8g(fo, ag)/09" is equal to r, the matrix
99(6o, ao) .1 89’ (6o, ao)
o0’ o6
is nonsingular. Thus the preceding equation can be used to solve for the
Lagrange multiplier vector as a furiction of /n(6,, —6o) and /n(a% — ao)

L70~

An 89(60,a0) .,_, 89 (60,a0)\ "
TH#( o 0o 520)
(Bg(g(;lao)\/-(e —85) + 69(90,0-0)\/—(& "ao))- (10.35)

Using equation (10.35) in the second set of equations of (10.33) and
solving for 1/n(a% — ag), we obtain

-1
20 _ ag’ -1 ag - _3_9_
\/ﬁ(an ao) # (aa <39’j a’

ag ag 189’
Ba (69’“70 56 39/‘/— n(6n —60),  (10.36)

where all the derivatives are evaluated at (6g,ag). Note that the non-
singularity of the first matrix in the right-hand side follows directly from
the rank condition (10.4).

Now define the projection matrix

-1
_ 9y ?_@: 139 1_@‘{ 59/ 159
M = 5&7<aa (aefjo 20| Ba 39"70

(10.37)
We have

0g(6g,
9( 0 “O)f( a0 — ag) # — ~m 507 9 /(b — 6o). (10.38)
Then, usmg equatlon (10.35), we obtain
o9’ 99 s
1 . — —
\/_ # <89' ) (1 M)BG' V(0 — o). (10.39)

Lastly, we obtain the constrained estimator ég as
V(65 — 6o)
9y

#(I Jolag <69,.70 ae) (I- M)89> V(6 —85). (10.40)
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10.3.3 Asymptotic Distributions

As noted in the previous subsection, the vector

V(a3 — ao)
Vvn (90 6o)
Y
f
is asymptotically a linear function of \/ﬁ(én — 6p) and converges in dis-
tribution to some centered normal variables. The variance covariance
matrix of the asymptotic normal distribution is readily obtained from

equations (10.36), (10.39), and (10.40). For instance the asymptotic
variance covariance matrix of the constrained estimator 90 is

V:w\/-ﬁ(ég”e)
- ( g% (69,3-169) (- )69,) Vas /(0 = 60)

( (I M) (aaf ~166%) ae'J )

( Jolag (69,J0169> (- M) aw) I 1T

( (I Ml)(aaf 1%%’) ae'j )

This formula, which is derived for the general case, is relatively in-
convenient. It greatly simplifies, however, in important special cases.

I

a) Explicit Constraints
When the constraints are written in the explicit form 6 — h(a) = 0, we

h .
ave o - 6 oh
a6 8~  dd’
Thus the asymptotically equivalent quantities of An/ /T, V(@2 — ag),
and /n(6% — 6p) obtained previously become
A #  Jo(I—M)vn(bn — 6o),
VN
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. Or _ oh\ 7! 8h R
V@l —ap) # - (—EJO—BZ;) '527.70\/5(9,1 - 6o),

V(S —60) # Mvn(d, - 6),

where

=7 \3aP5r) aao

In particular, we have
Vas V(02 — 60) = MTy T g M. (10.41)

oh <6h’ ah)‘l_z_a_f_g

b) Implicit Constraints

~ In this case, the constraints are g*(9) = 0. Asymptotically equivalent
quantities are obtained using the convention

X 9g
ap =0 (and 4% = Q) and 7 =0
Equation (10.39) gives immediately
:\n 8g* __.dg* -1 da* .
T (3%40 1_595.) -a%,-\/ﬁ(en — 6p). (10.42)

Then, from equation (10.40), we obtain

vy, — 6o)

_ ag*/ ag* B ag*l -1 dg* .
— 124 (22 g-1Y9 bt —
# (1 7% ( 2% ) VR -6 (10.9)
That is, equation (10.40) obtained earlier holds provided M = 0 by
convention. Note that the matrix

_ ag*l ag* B ag*l —~1 ag*
— 174 1¥%9 -2
P= 2 % (89"70 %) 30

-1
_ 69*, a 69*/ 4 N ag*I _ ag*/ !
1909~ 199 1 1
Oy ((‘70 ae-) Jo\Jo" 5 Jo " 55 ) Jo
corresponds to an orthogonal projection on to the column space of J{l
0g*' /08 with respect to the scalar product associated with Jo. Hence

the asymptotic variance covariance matrix of the constrained estimator
is

]

Vas V83 — 60) = (I - P)J5 207511 - PY.
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¢) Equality between the matrices 7y and Jp

Recall that Zy = Jp occurs for instance when we consider maximum
likelihood estimation, quasi generalized pseudo maximum likelihood es-
timation, best asymptotic least squares estimation, and best method of
moments estimation. When such an equality holds, we can rely on a
geometric interpretation in terms of orthogonal projections to establish
that the constrained estimator is asymptotically uncorrelated with its
difference with the unconstrained estimator.

Property 10.5: When Zo = Jo, the random variables \/ﬁ(ég — ) and
V10, — 88) are asymptotically uncorrelated.

Proor: We have

Covas (VAR(2 ~ b0), +/r(6n — 62))

- 139 109’
= (1 7% (2% a- )B,,,)

_,0q _,0¢\"toag _
19(1 )<aefjla%> 5%‘701

—1 59 109
(I ) (69’ Jo > o6’ ‘7

10 0 ag
...% l_a_gg_ (601‘701 g> (I M)agl —1 g(I Ml)

9g o9 -

1 99 +-1

(89’ Jo 80) 06’ Jo

Since M is an orthogonal projection matrix with respect to the scalar
product defined by the matrix

—139
(ae'j > !

I-M2=I-M

we Hé,ve
and
ag —1 ag (I ) (I M) 1 ag

60’ 89’
Using the precedmg two equahtles, we can see that

194’ -19¢ n (99 199
(69"70 ) - M)(aaf )(I M)(aa'j ae)
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i

-y (22 7209\
aef " B¢

a-») ()

It follows immediately that

Covgs (\/ﬁ(ég —8o), vn(B, — 92)) =0

]

0
Property 10.6: If Iy = Jp, then

Vo (0= 8) = 5w (o 2)” 69,5 ,

Vas (VR(3 - 60))

a7 g
Tt = Vas (B2~ 09)).

PROOF: Because M is a projection matrix, we obtain

Vas\/ﬁ ((én - 9‘0))

8q’ 5] dg'
= %' (60"7" 1a%> (1- M)ae, 12 (1 M)
..169
(aefj g 69"7
— 169 y 189
= (I M)<39/=70 > 69/‘7

The second equality follows from the asymptotic uncorrelation
between /n(63 — 6o) and /n(6, — 62) and the equality

Vas (VAilBn = 00)) = 757

In the case of explicit constraints, we obtain

Vas (VA(B - 60)) = g5'Mr

_ bR (6h' ah>‘] o'

50 \9a 55 ) Ba (1044)
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Remark 10.7: Equation (10.44) can be easily interpreted for maxi-
mum likelihood estimation under constraints. Let P = {Fp, 6 € ©}
denote the specified family of distributions. The matrix Jp is the Fisher
information matrix of this model. Then (8h'/8a) Jo(8h/Ba’) is the
information matrix of the nested model P = {P, a),a € A}, which is
parameterized by a. Therefore [(8h'/0a)Jo(0h/8a’)]~! is the variance
covariance matrix of the maximum likelihood estimator 4% of a. Then
equation (10.44) results from the relation 62 = h(a2).

When the constraints are written in the implicit form g*(#) = 0, we
have

Vas\/ﬁ(ég - 00) (I - P)JO-—I(I - P,)

(I - P)\YO_I’

ie. '
V;zs \/ﬁ(ég - 90)

- 3g -
— 1 1
=5 -5 g (89"7

og*

) ae'j . (10.45)

d) When I = Jp and the Constraints are Zero Constraints

We suppose that the parameter vector # is partitioned into two sub-
vectors so that § = (¢/, #')’. The matrix Jp can be partitioned accord-

ingly as
j — ( \%,aa J()aﬂ >
° Jo,pa Jo,8

Now suppose that the constraints are @ = 0. Then the constrained

estimator is of the form 0
90 ( > 10.46

Using the explicit form 6 = (0/, 8’)’, where [ plays the role of auxiliary
parameters, it follows from equation (10.44) that

Vas (\/ﬁ(éﬁ - 90))
= (9)(on( B D) () 0n
- (0 %)
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Thus . -
Vas (VB2 = o)) = Tsids- (10.47)

The same result is obtained if we interpret zero constraints as implicit
constraints. Specifically, we use equation (10.45). From the partition of

the matrix Jb’“l
= (% 5,
/N
we have

Vas (\/ﬁ(ég - 90))

e (s) (w0 () wos

_ ( ,_76"“‘ %aﬁ ) _ ( %aa joaﬂ )
\Z)ﬂa %ﬂﬁ ﬁ%ﬁa jéa& ( joaa)—-l Jélﬁ :

Hence

Vao (VAUBS ~ B0)) = T ~ 78°(T5=) 2 75".

This equation is clearly identical to equation (10.47) using the inverse
formula of a partitioned matrix (see Section 2.2 in Appendix A).

10.4 Constrained Two-Step Estimation

10.4.1 Methods Based on Unconstrained Estimators

When the model and the constraints are both linear, we showed that
the constrained estimator 62 is readily obtained from the unconstrained
estimator 4, (see Properties 10.1 and 10.3). This results can be easily
generalized.

Let {7} be a sequence of matrices converging to Jp.

Property 10.7: A solution (52,&9,) to the problem
ming,s (6 ~ 8)' Jn (6 — 6)
{ subject to g(#,a) = 0,
is asymptotically equivalent to (ég, a2). In addition, the Lagrange mult-

ipliers A, associated with the constraints is asymptolically equivalent to

An.

350



10.4. CONSTRAINED TWO-STEP ESTIMATION

PROOF: The optimization problem is of the general form studied in
Section 10.3 provided we define

La(¥36) = =5 (0 — 0)'To(6n - ).

Then we have

1 8L, (6
v aé " ~ oV — B0) S N(0, o Ty T Ty Jo = To),

and . )
18%E,(60
~naeoe U

Next, it suffices to note that the asymptotic equivalent quantities of

A . N

7%’7 \/’;‘L(Cbg - aO)v \/7_7'(0?1, - 90)

that we obtained previously depend on the present optimization problem
only through 6,, and the matrix Jy. But 6, also gives the unconstrained
maximum of L,, and Jp is the same for L,, and L O

Property 10.7 allows us to replace the original objective function Ly,
which can be relatively complex, by a quadratic function in ¢ which is,
in general, easier to optimize. Then the constrained estimator 60 can
be interpreted as a two-step estimator. In a first step, one determmes
the unconstrained estimator. Then, in a second step, one solves the
optimization problem defined in Property 10.7.

When we consider estimation methods such as least squares, gen-
eralized method of moments, etc., Property 10.7 shows that the uncon-
strained estimator summarizes all information relevant to the study of
the asymptotic properties of the corresponding constrained estimator.

Sometimes, it is also possible to replace the original nonlinear con-
straints by some linear constraints, which are more tractable.

Property 10.8: Consider the implicit constraints g*(0) = 0. A solution
82 to the problem

ming (8, — 0)' T (0 — 0)

subject to g*(8,) = Q%jegﬁ(én)(én -0),

is asymptotically equivalent to 62,
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PROOF: An expression for the estimator 82 is easily obtained from the
results of Section 10.2.2. Namely, we have

~ N ~ -1
o -109"(05) [ 8g*(6r) ,,_, 09" (bn )
88 =, - g7 2 )( 200) 1207 )) o).

From a first-order Taylor expansion we obtain
V(B7, — 60)#/n(Bn — 65)
*(8 *(0 8g*' (60)\ ™" g™ (6 s
__jo—lag ( 0) (69 ( U)J—l g ( 0)) g ( 0)\/5(0'”_00).‘

06 g <0 o8 oy

Then the desired result follows from the comparison of this expression,
to the asymptotic equivalent quantity (10:43) of v/n(63 — 6p). O

10.4.2 Methods Based on the Constraints

Results similar to the previous ones can be obtained when we consider
the estimation of the auxiliary parameters a.

Property 10.9: An estimator @3 that is a solution to
m&ing(ém a)'Sng(én, a),
where S, is a matriz converging to

. dg(60,ao) ,_,09 (8o, a0)\ ~*
SO=< (6(;, O)%l g(az 0)) ,

is asymptotically equivalent to 2.
PROOF: A Taylor expansion of the first-order conditions

89(0,.a%)

da’ 0

g (ém &2)’571
gives immediately

— dg' . 8g\" oy . dg 5
0 w—- o [ P P ot — B
\/n(an a’o) # ( 6(1: S aa,) aa SD 69 \/ﬁ(g’ﬂ 00)’

Then the desired result follows from the comparison of this expression
to the asymptotic equivalent quantity (10.36) of v/n(al — ag). O
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Corollary 10.2: Let 6,, be the unconstrained mazimum likelihood est-
imator of 0. Suppose that the constraints are written in the explicit form
0 = h(a). Then the estimator a3 that is a solution to

min(fn — h(a))'S.(Bn — h(@)),
where S,, converges to Jo =Zp = (Vas\/ﬁ(én —0p))~t is asymptotically
equivalent to the mazimum likelihood estimator of a.

PRrROOF: If L,(Y;0) = Y i, log f(Vi;0), then we have L,(Y; h(a))
S5 1 log f(Vi; h(a)) under the constraints. Thus the estimator @ 0 is the
maximum likelihood estimator of a. Then it suffices to invoke Property
10.9 noting that 8g/06’ =1. O

The estimation method for a proposed in Property 10.9 relies on the
constraints g(#,a) = 0. In fact, the method does not depend on the
actual form of the constraints.

Property 10.10: Consider two equivalent forms of the constraints,
namely, g(8,a) =0 and h(f,a,b) = 0, where

{(9,a) : g(6,a) = 0} = {(6,a) : 3 b,k(0,a,b) = O}.
Define the estimator Gon such that (Gon, bor) is a solution to

migl h(én, a, b)’gnh(én, a,b),
a,

(aa'j" lah)

Then Goy, is asymptotically equivalent to @,

PRrROOF: This result dlrectly follows from Property 10.9 and the fact that
the estimators 60 and &2 such that (99,a2,82) is a solution to

{ maxg qb Ln(6)

subject to h(6,a,b) =0,

where S, converges to

are equal to the estimators 60 and a2 that solve the optimization problem
{ maxg,q Lin ()

_subject to g(0,a) =0
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10.5 Examples

Example 10.4: The constrained model is frequently simpler than the
unconstrained model. For instance, consider a logistic model where the

variables Y;, ¢ = 1,...,n are dichotomous and independent conditionally
on some exogenous variables X3,..., X,. The model is given by
PY,=1|X;) = !
' Y7 1+4exp(aX; +6)
exp(aX; + )
PY;=0|X; .
(¥ | X:) 1+ exp(aX; + 3)

The unconstrained maximum likelihood estimator (G, 8,) of (a, /3) must
be obtained by numerical optimization. In contrast, the maximum like-
lihood estimator constrained by « = 0 is of the form (0, 2%)" where 32
is a solution to

(v, 1 v expf
mgxg(xlog(l'f‘exPﬂ)—}-(l KMOg(l-i—expﬁ/)'

The latter problem has a unique solution which is

R 1-V _ 1
0 . n r = L Z
B = log ( 7 ) , where Y, - ;=1 Y;

TI.

Example 10.5: Consider the following linear model

v, = { a+blt—to)+u, ift <ty
ETL adelt—to) Fu,  ift>ty,

where the error terms satisfy the usual assumptions. This model states
that V; varies on average linearly with time with a potential change in
the slope at time ¢ = #;.

Ordinary least squares estimation of b and ¢ gives

B = Covy (Yt —tg)
and

. Cova (Y, t — to)

Cn TR e —————————

Va(t —tg) °
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where Covy, Covgy, Vi, and V3 denote the sample covariances and var-
iances computed for the first and second periods, which correspond to
dates t < tg and t > ty, respectively.

If there is no change in the slope, i.e., if b = ¢, then constrained
ordinary least squares estimation gives

0 _ Cov(Y,t —tg)
" Vit—to) ’

where the covariance and the variance are now computed using all the
observations.

0 .
b, =¢

Example 10.6: Consider the dynamic model defined in Example 10.2,
namely

Y = by + Wkt + W1 Tp1 + .. FWrT—g + U, t=1,...,T,

where Fu =0 and Vu = 0?1
Suppose that the parameters in this model are constrained by wy =
aX¢, k=0,...,K. Equivalently, these constraints are

A wp = Awg—-1, k=1,..., K.

From Properties 10.9 and 10.10 it follows immediately that an
estimator of )\ that is asymptotically equivalent to the nonlinear least
squares estimator of \ is obtained as a solution to the minimization of

Win — Adion
(wln - Awﬂna e ,wK'n. - /\"DK—I,n)Sn ’
wKn - /\wK -1n

where S! converges to

wl'n - )‘wOn

Vo :
TDKn - /\'li]K —1,n

Hence this estimator is obtained from a quasi generalized least squares
regression of Wi, o0 Wp—1,0, K =1,..., K.

Example 10.7: Misspecified Constraints

Consider the linear model Y = X6 + u, where Eu = 0, and Vu =
0L Let 60 denote the ordinary least squares estimator subject to the
constraints G@ = g. From equation (10.14) this estimator is given by

2 =6, + (X'X)"1G (G(X'X)"1G") "L (g — Gbn).
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Suppose now that the constraints are incorrect, i.e., that the true
parameter value 6y is such that

Gbp # g.

The unconstrained OLS estimator converges to 6y but the constrained
OLS estimator converges to.

lim 03 =60+ E(X'X) "G (G(EX'X)~1G") (g ~ Gép).

This quantity is, in general, different from 6p. Thus, in general, the
constrained OLS estimator subject to some misspecified constra.mts is
inconsistent.

Nonetheless some linear functions of the parameter vector may be
consistently estimated. Let A € RP. Then N0 is consistent for N, if
and only if

NE(X'X)'G(GE(X'X)™1G") " (g — Gby) = 0, V b,
ie.
NE(X'X)"'G =0,

i.e.
A€ E(X'X)Ker G.

10.6 Exercises

EXERCISE 10.1: Consider the linear model Y = X;6; + X265 +u, where
Eu =0, and Vu = ¢21. Verify that the OLS estimator of 8 constrained
by 01 =0is

é?n =0, égn = ézn -+ (X’2X2)~1X,2X1 éln-
Interpret the result.
EXERCISE 10.2: Consider a linear model Y = X6+u, Eu =0, Vu = ¢21
where 6 is constrained by 6 = Ha + h (see Section 10.2.1). Charactenze

cases for which §, = 0 and cases for which the latter equality holds for.
the first component only, i.e., 61, = 8.

EXERCISE 10.3: Constraints on the parameter vector 8 can be written i m
various forms. Consider two equivalent forms g(,a) = 0 and h(6, @) =
where

{0:3 a,9(0,a) =0} = {6: 3 &,Ah(4,a) = 0}.
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Verify that the constrained estimator of 6 does not depend on which
form is chosen. Does this result hold for the Lagrange multipliers?

EXERCISE 10.4: Consider the linear model Y; = X;60 +u;, i =1,...,n,
where the parameter vector @ is constrained by G = g. It is assumed
that the pairs (u;,X;), ¢ = 1,...,n, are independent and identically
distributed with E(u | ) = 0 and V(u | ) = 0. Suppose also that the
matrix E(X’X) is nonsingular. Using expressions for the constrained
estimator 92 and the vector of Lagrange multipliers An, show directly
that these statistics converge to 6 and zero, respectively.

EXERCISE 10.5: Consider the linear model Y; = X;60p +ui, i =1,...,7,
where the true parameter value 8y does not satisfy necessarily the con-
straints GO = g. As in Exercise 10.4, it is assumed that the pairs (u;, X;)
are independent and identically distributed.

a) Give the expressions for the solution 63 and the Lagrange multi-
pliers A} associated with the problem

ming Eo(Y — X6)2

subject to GO = g,

where Ey denotes the expectation with respect to the distribution
corresponding to the true value 8y of the parameter vector.

b) Verify that the condition Gy = g is equivalent to the condition
s = 0. Verify that it is also equivalent to the condition 8§ = .

EXERCISE 10.6: One has observations Y k¢, i =1,...,m, k=1,..., K,
£ = 1,...,L that are independent and normally distributed Y; ke ~
N(o + By + e, 02), where the parameters B and -y, are constrained by

K L
Zﬂk =0, Z’)’e = 0.
=1

k=1
a) Interpret the parameters o, B, and ve.
b) Find the maximum likelihood estimators of , Bk, Ve, and o2,
EXERCISE 10.7: LOG-LINEAR PROBABILITY MODEL
LetY;, ..., Y have a multinomial distribution M(n, p1,...,px). The

parameters are subject to the usual constraint p; +...+px = 1. More-
over, it is assumed that these parameters are such that the vector
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(logpy ,...,logpk) belongs to a linear subspace £ of RX containing
the vector (1,...,1)".

a) Is the constrained model an exponential model?

b) Determine the first-order conditions associated with the maximum
likelihood estimator under constraints.

EXERCISE 10:8: Consider the sampling model (R?, N(p, )", where
the vector 4/ = (p1, pp) is unknown and the matrix € is known.

a) Find the unconstrained maximum likelihood estimator of Ha.

b) Suppose that up = 0. Find the constrained maximum likelihood
estimator of y;.

c) Find the distribution of the constrained maximum likelihood esti-
mator of y;. Find the correlation between this estimator and the
sample mean Y5.

EXERCISE 10.9: Consider the model
Yike =+ B + 7o + er + tire,

where the wu;x,’s are independent and normally distributed with mean
zero and common variance 2. The indices i, k, and £ vary from 1 to n,
1to K and 1 to L, respectively. The parameters Bk, e, and g, satisfy
the constraints

K L L K
Zﬁk =0, Z’Ye =0, Z&k =0, V k,}:&ek =0, V4L
k=1 £==1 £=1 k=1

a) Find the maximum likelihood estimators of o, B, e, and Gp,.

b) Suppose that the constraints 8 = 0,k=1,...,K, are imposed.
What are the consequences of these constraints on the estimation
of the other parameters? Answer the same question when the
consraints 7; = 0, £ = 1,...,Lor gy =0, £ = ,...,0, k =
1,..., K are imposed.
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EXERCISE 10.10: Consider again the model of Exercise 10.9. Suppose

now that the index ¢ varies from 1 to Ni.N.¢/N.., where N.. = ZkK=1 Ng.
= Zg;l N.¢. The coeflicients are assumed to satisfy the constraints

K L
D Niefi=0,Y New=0

k=1 £=1

K L
D Nibse=0,Y£ Y Naoby =0, V k.
k=1 f=1

Answer the questions of Exercise 10.9.
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CHAPTER 11

Prediction

11.1 General Concepts

11.1.1 Statement of the Problem

To predict an unobserved variable is to find an approximation of it that
is a function of the observations (see Chapter 2). Prediction problems
are frequent in economic applications. They arise naturally in dynamic
contexts when, for instance, one desires to know the level of unemploy-
ment in the next years, or when one’s goal is to complete a time series
of which some intermediate values are missing. Prediction problems,
however, are also important in numerous other situations. For instance,
a researcher wants to determine the expected change in consumption of
s household whose income changes by 5%. Alternatively, one wants to
find the price that would have prevailed in equilibrium on a market in
desequilibrium (see Example 1.20).

We shall see in the following sections, that estimation problems and
prediction problems are often closely related. As an example, consider
estimation by ordinary least squares. This estimation will naturally ap-
pear when looking for an optimal prediction of a nonobserved endogenous
variable by a linear function of the observed endogenous variables.

Thereafter, we let Yi,. .., Y, denote the observations and W the vari-
able to predict. To simplify, it is assumed that W takes its values in IR.
A prediction or predictor of W is a function W(Yl, ...,Yy) of the obser-
vations. The prediction error is the discrepancy between the predicted
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variable and the prediction. It is' defined as
e=W-WM,...,Y,). (11.1)

The prediction error is random. In general, it is assessed by its mean
squared prediction error

R(W,Po) = Eo(W = W(Y3,...,Y,))?, (11.2)

where expectation is taken with respect to the joint distribution P, of
W,Yi1,...,Y,. Given the distribution Py, there exists an optimal pre-
diction, i.e., a prediction that minimizes the mean squared prediction
error. It is given by the expectation of W conditional upon Yi,...,Y,
(see Property B.17)

Wo=Eo(W | Y1,...,Y,).

In general, however, the joint distribution of W, Yi,...,Y, is unknown.
Then it is necessary to find predictions that have good properties uni-
formly in the possible distributions of wn,....Y,.

11.1.2 Prediction Criteria

We consider a statistical model (W x ), P) specifying a family of joint
distributions for W, Y1,..:,Y,,.

Definition 11.1: A predictor |4 (weakly) dominates another predictor
W* if and only if W is uniformly more precise than W*, i.e.

R(W,P) < R(W*,P), V P &P,
or equivalently

Ep(W - W)? < Ep(W* = W)?2, VP € P.

An optimal predictor, that is, a predictor that dominates any other
predictor exists only in the degenerate case where the conditional expec-
tation

Ep(W|¥i,...,Y,)

does not depend on P € P. In general, it is necessary to restrict the
set of predictors.considered by imposing some additional criteria. These
criteria are similar to those introduced in estimation problems.
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a) Unbiasedness

Definition 11.2: A predictor W is an unbiased predictor of W if and
only if
Ep(W—-W)=0, YPeP,

i.e., if and only if the associated prediction error is on average equal to
zero uniformly in P.

b) Linearity

In some problems, we shall restrict predictors to be linear functions of
the observations.

Definition 11.3: A predictor W is said to be linear if it can be written
as

n
W(K,...,Yn) =a0+zai}{i-

g==1

Linearity is frequently imposed together with unbiasedness. Then we
have

n
EpW =op+ Y _ 0;EpY;, VP € P.

i=1

A linear unbiased predictor exists when there exists an affine relation
among the (n+1)-dimensional vectors (EpW, EpYy, ..., EpYy,), P € P,
with weigths «; independent of P € P. Note that it is sometimes possible
to find optimal predictors in the class of linear unbiased predictors (see
Section 11.2).

c) Consistency

We may also want to impose some conditions when the number of obser-
vations n increases to infinity. In this case the model concerns the joint
distribution of W and the sequence Y3,...,Y,,.... We define sequences
of predictors converging to W as follows.

Definition 11.4: A sequence of predictors W,,(Y1,...,Ys) converges to
w

(i) st'rongly if Wy, — W conwerges almost surely to zero for every dis-
tribution P € P,
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(it) in quadratic mean if E (W’n(Yl, B o W') converges to zero
for every distribution P € P.

A frequent method for finding consistent predictors is as follows.

Consider a parametric model (Wx Y, P = {Ps,6 € ©}). The conditional

expectation of W given ¥1,...,Y;, depends, in general, on the parameter
vector 6. Let

6n(6, 1., Ys) = Eg(W | V4,...,Y,).

Such a conditional expectation cannot be used directly because of the
presence of the unknown parameter vector 8. Suppose, however, that a
consistent estimator 6, of § is available. A natural method for predicting
W is ' :
Wp =6,(0n,11,...,Y,) = E; (W|T,...,Y,). (11.3)
In equation (11.3), randomness arises both from the conditioning
variables and the estimator 8, used. In the special case where W =
Ego(W | Y1,...,Y,) (see 11.2.1.b below), W, is a consistent predictor.
In the general case, the prediction error can be decomposed as

W-E; (W|Y,...,Y,)
= (W—Egp(W|1i,...,Yn)) + (Bg(W | Yi,...,Y,)
~(By, (W | Ya,...,Ya)),
where 0y denotes the true value of the parameter vector. Thus the
prediction error is the sum of the prediction error associated with the

optimal prediction (equal to zero in the special case mentioned above)
and an error due to the estimation of fp.

d) Bayesian Approach

Lastly, we can consider the Bayesian approach. Suppose that the orig-
inal model is parametric (W x V,P = {P;,d € ©}). Let II(d#) de-
note the prior distribution on the parameters §. Then we can find the
joint distribution of W, Y3,...,Y,, and 4. In the Bayesian approach, all
arguments are relative to this joint distribution. Thus the squared mean
error in the Bayesian sense is defined as

Ru(W) = EnR(W, Py) = EnEs(W — W)2. (11.4)

From the properties of conditional expectation, it follows immediately
that an optimal prediction in the Bayesian sense is

W=EW|Yi,...,Y,),
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where expectation is taken with respect to the joint distribution of
W,Yi,...,Y, and 0.

11.1.3 Simulations

First, we consider the case where the joint distribution of W, 11,...,Y,
is known. Let P, denote such a distribution. The conditional expecta-
tion Eo(W | Y3,...,Y,) may be evaluated analytically. It may also be
evaluated by means of a random procedure. This method is called the
simulation method or Monte Carlo method. The procedure is as follows.

Let M be the number of independent drawings from the conditional
distribution of W given Y1 = v1,...,Ys = Y. Let wy,...,wpr denote
the resulting observed draws. From the Strong Law of Large Numbers
it follows that, when M is large, the sample mean

is a good approximation to the expectation of the distribution used for
the M draws, i.e., to

EO(W ' Y = yl"-'7Yn = yn)
Note also that the realized values of the draws (or simulations) can be

used to approximate the prediction of an arbitrary (integrable) function
of W. Specifically, the quantity

L L M
h(w)p = i Z Mwm)

me=1

is a good approximation to

EO(h(W) l i = y17"',Yn =yn)1

when M is sufficiently large.
From a mathematical point of view, the preceding method adds to the
original randomness due to Y3,...,Y, a new randomness w associated

with the various draws from the conditional distribution.
More generally, when the joint distribution P of (W,Y1,...,Ys) be-
longs to a family P, we can give the following definition of a simulation.
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Definition 11.5: A simulation W* of W is a random function of the
observations, i.e.
W* = flw,1,...,Y),

where the extra random variable w has, conditionally on (¥1,....Y5), a
distribution independent of P € P.

The last condition in Definition 11.5 implies that simulations can be
performed even though the true distribution is unknown.
The mean squared error due to the simulations is

R(W*,P) = E(W* - W)?, (11.5)

where expectation is taken with respect to the joint distribution -of w,
W,Y1,...,Y,. A simulation is said to be unbiased if

E(W*—-W)=0. (11.6)

Remark 11.1: Because the variable W is not observed, simulations
are, in general, obtained independently of W conditionally on the ob-
servations (Y1,....Y,). In this case the expression for the risk can be
sometimes simplified. For instance, in the limiting case where simula-
tions are unbiased conditionally on (Y3,...,Y,), i.e.

E(W"|Yi,...,Y,) = Ep(W | Yi,...,Y),
we have
R(W*,P) = E(W*-W)?
V(W™ — W) (since (11.6) is satisfied)
EVIW* =W |N,...,Yo) + VE(W* - W | Yi,...,Y2)

= EVIW*-W |Yi,...,Y,)
= BV(W*|Yi,....Ya)+EpVe(W | 1i,...,Y,),

i

because of the conditional independence between W* and W. Moreover,
the second term is equal to

EPVP(VV ! Yi,.. '7Yn) = EP(IV "EP(W I 1’11-"1Yn))27

which is the optimal prediction error evaluated for the distribution P.
Therefore, to this error, we must add another term that incorporates the
effect of the simulations.
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Remark 11.2: When the model is parameterized by 6, we have seen in
equation (11.3) that a natural predictor of W is

Wo=E; (W|Ys,...,Yn),

where 6,, is a consistent estimator of 8. A similar argument can be used to
obtain a simulation in the sense of Definition 11.5. Namely, a simulation
is a draw from the conditional distribution of W given (V3,...,Y,) after
having replaced 8 by ,,. The resulting conditional distribution, denoted

WY1, ¥

Pg ) , no longer depends on the unknown parameter § and hence

is independent of P € P.
Note also that because 6, is consistent for #, Remark 11.1 remains
asymptotically valid.

11.2 Examples
11.2.1 Predictions in the Linear Model

‘We consider the static linear model
' Yi=Xpnb +... + Xigbe 4wy, i=1,...,n, n+1,

where the error terms are centered Fu; = 0, with same variance Vu; =

o? and independent. The variables Y;, i = 1,...,n, and X;1,..., Xk,
i=1,...,n,n+ 1, are assumed to be observed. The variable Y, +; and
the error terms uy, ..., Un, Uns1 are not observed.

Different prediction problems concerning different variables are of
interest.

a) Prediction of Y41

The variable Y,,1; is unobserved. It can be approximated by zny1b =
Xnt1,1b1 + ... + Xnt1, kb, ie., by the conditional expectation of Y541
given Yi,...,Y,, which is identical to the unconditional expectation of
Y11 treating the z;’s as fixed. Here, we denote by z; the 1 X K row
vector of exogenous variables associated with the ith observation.
Because the parameter vector b is unknown, it is natural to replace
b by its ordinary least squares estimate computed from the observed

variables, i.e., from Y3,...,Y, and z1,...,%,. Specifically, we use
WAk -1 5
by, = Z ziT; Z z}Y;.
=1 i=1
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Thus the corresponding predictor of the unobserved value of Yo+1 is the
random variable

n -1 5
v i / ’
Yoi1 = Zny1by = oy Z LT E z;Yi.

f=1 i=1

b) Prediction of an Error Term u;, i = 1,...,n

The unobserved error term u; is equal to Y; —x;b. Though b is unknown,
we can approximate u; by 4; =Y; — z;b,,.

Definition 11.6: We call residuals associated with the linear quel the
predictions of the error terms, namely

-1
n n
G=Yi~ab=Y,—z | Y zjz; AL
j=1

J=1

Residuals can be usefully pictured by means of a diagram, called the
residual diagram, where the-index of the observations is on the horizontal
axis and the values of the residuals are on the vertical axis.

c¢) Predicted Values

The above expression for a residual shows that a residual is the difference
between an observed value ¥; and its approximation z;b, given by the
model.

Definition 11.7: We call predicted values associated with the linear
model the variables

~ -~

Y;; = :z:,-bn.

Although the formula defining ¥; is identical to that used for defining
the prediction of Y,,..;, there is a fundamental difference between these
two types of predictions. Specifically, the predictor Y, +1 of the unob-
served variable Y;,.; has some optimal properties (see Section 11.2.2).
On the other hand, Y; viewed as a predictor of Y;, is clearly dominated
by the predictor ¥; since ¥; is observed. In addition, note that ¥; cannot
be interpreted as a predictor of Y; even if Y; is unobserved because ¥;
appears in the expression for b,,.

The previous examples illustrate that there are various natural pre-
dictors in the linear model. In the next subsection, we shall study their
properties conditional upon the values of the exogenous variables.
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11.2.2 Properties of Predictors in the Linear Model

We shall consider predicting the variable Y,,y; only. The reader can
refer to Exercises 11.1 and 11.2 to derive properties similar to those
established below for predictors of residuals and predicted values.

Property 11.1: ffn_H is an unbiased prediction of Yy41.
Proor: This follows from »
E(Ynt1—Yn1) = E(@npibn—Yota)
= E(@nt+1(bn — b)) — Bunt1
= 0,
because Bn is an unbiased estimator of b and u,41 has mean zero. O

Property 11.2: The mean squared error of the predictor Y11 is

-1
n
E(Yp41 — Yn41)? = 0%Tnp (Z mém) Tpy + 07

i=1
Proor: We have
E(?n%-l - Yn+1)2 = E(wn+1(8n - b) - un+1)2
= V(@nt1(bn —b) — Uny1)
= V($n+1 (bn - b)) -+ Vun+1,

because b, is linear in u1,...,Un, and unp4 is uncorrelated with these
error terms. Since the variance covariance matrix of the OLS estimator

is
n ~1
Vb, = o? <Z xiz,) ,
. L i=1
it follows that '

n

-1
E(Ypi1 = Yoi1)? = 0%zni1 (Z $§$i> Thy + 07

gl

The second term o2 represents the mean squared prediction error on
Yn41 when b is known since, in this case, Y41 can be predicted by
Tn41b. The first term is due to the fact that b, which is unknown, is
replaced by its estimator b,. O
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Example 11.1: As an illustration of the above results, we consider the
simple linear regression model

Yi=by+bizi+u, i=1,...,n4+1.

The prediction of Y41 is

~

Yn+1 = SOn + 51'nzn+1

= bln(zn+1 - -'Z'n) +Ya,
using the equality R
Y, = bOn + blni‘m

where

=——Z:z:l and Y, =-ZY

i==]

Thus the prediction ¥;,; is equal to the sample mean ¥, of the endo-
genous variable adjusted by a term that takes into account the distance
between z,.; and the sample mean %, of the exogenous variable.

The mean squared prediction error of f’n+1 is equal to

E(Yy1 — Yya)? V(Yt1 = Yoi1)
= V(bln($n+1 - in) -+ l?"n. - Yn+1)-

Since b1, and ¥, are uncorrelated (see Exercise 11.3) we obtain

E(?n-*—l - Yn-&-l)2 = ($n+1 - :'i:n)2V(51n) -+ V(Yn) + V(Yn+1)

o2 (-:n+1 - 51:)22 + a? + 02
2i=1(2i—2Za)?  n

Therefore the mean squared prediction error is an increasing function of
the distance between the value z,,. of the exogenous variable associated
with the variable to predict and the sample mean value of the exogenous
variables associated with the observed Y's.

The predictor ?n+1 is the best linear unbiased predictor of Yy.,1.
This optimality property is analogous to the Gauss-Markov property of
the OLS estimator (see Theorem 6.3).

Property 11.3: The predictor Yn+1 = mn_,.lf)n is the best unbiased
predictor of Yn41 that is a linear function of Y1,...,Y,."
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PROOF: Let ¥;,41 be a linear predictor of Ypt1- It is of the form

The unbiasedness condition is

E(iaiYi) = E(Yp41)
i=1

= Tn+1 b.
The mean squared prediction error is

E(f/n—{—l - Yn+1)2 = V(?n+1 - Yn+1)
(from the unbiasedness condition)

n 2
= E (Z a;Y; — :cn+1b) + o2,
i=1
Thus the problem reduces to finding coefficients «,...,q, that solve
the problem ‘
n 2
mgnE (Z ;Y — $n+1b> )
i=1

subject to the constraints

E (i ai%) = Tp41b.

g==1

This is equivalent to finding the best linear unbiased estimator of z,,1.1b.
Since 415 is a linear function of b, it follows from the Gauss—-Markov

Theorem 6.3 that the solution is xn+15n where 13,, is the OLS estimator.
[

Property 11.4: The OLS estimator b, and the predictor Yn-{—l can be
obtained simultaneously by minimizing the sum of squared errors

-1

> (¥ - zab)?,

g==1

with respect to b and Yp..1.
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ProOF: To solve the above optimization problem, we can proceed in
two steps. First, we can minimize the objective function with respect to
Yn.1 given an arbitrary fixed b. Then, after substitution of the solution
into the objective function, we can minimize the resulting function with
respect to b. _

The first step gives Yp11(b) = Tp41b. Substituting this solution
into the objective function, the problem reduces to the minimization of
> i (Y;—z;b)? with respect to b. The solution is the OLS estlmator bn.

Hence the solution for ¥,,4; is the predictor Y;..1 (b ) = Zpp1bp = Vi1,
]

The preceding properties do not require that the error terms are
normally distributed. When the error terms are normally distributed,
we can obtain a more precise result.

Property 11.5: Suppose that the error terms are normally distributed.
Then the predictor Yn+1 and the prediction error e,y = Yn+1 Yot1
are normeally distributed with

Vi1 ~ N(Zn1b, Tnil V(Bn)m',n-l-l )
ent1 ~ N(0,0 + 2,41V (br), ).

Proor: Normality follows from the fact that Yn-{»l and e, are linear
fungtions of the normal variables Y,...,Y;. The means and variances
of Y41 and ey are readily computed from Properties 11.1 and 11.2.
]

Remark 11.3: When the parameter vector b is known, the best predic-
tor of Y41 given Y3,...,Y, is

Eb(Yn+1 l n,.. n) n+1(b) = Tp41b.

Conditionally to the z;’s this predlctxon is nonrandom and, therefore,
orthogonal to the prediction error en41(b) = Ypqg — Znt1b.

When b is unknown, b is replaced by the OLS estimator b,. It is
easy to verlfv that this substitution introduces a correlation between
Vi1 = Ypy1(by) and en+1(brn). Indeed we have

Cov (ént1,Ynt1) = Cov (Yipr — Tn41bn, Ty br)
- V($n+1bn)
= Tn41V (bn)Tn s

il

Note, however, that V(I;n) is close to zero when n is large so that the
correlation disappears asymptotically.
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11.2.3 Prediction Intervals

The form of the distribution of the prediction error e,,; can be used to
construct an interval that contains the value of Y,,..; with a given prob-
ability. Such an interval is called a prediction interval. For instance,
consider a 95% level. With probability 0.95, it is known that the stan-
dard normal variable

Ent1

-1
U\/ L+ @apr 00 #ms) ™ o)y

is between +1.96 since 1.96 is the 97.5%-quantile of the standard normal
distribution N(0,1). Hence, with probability 0.95, we have

)
k13
Yot1 € Yn-{-l =+ l.QGGJ 14+ 2p4 (Z m{xz) Trg

i==]

In practice, the unknown parameter o? is replaced by its consistent es-
timator defined by
n
>,
i=1

S~

~2
Op =

or by

n
2 1 2:*2
§T = u; .
n— K&

i=1

Remark 11.4: The above prediction interval is only an approximate
interval since the standard error o has been replaced by an estimator.
" An exact prediction interval is, however, easily obtained. Specifically,

the statistic
€n+1

1
-5‘\/1 + o1 (T #im) ™ 20y,

follows a Student distribution with n — K degrees of freedom.
Let t97.5%(n — K) denote the 97.5%-quantile of this Student distri-
bution. With an exact probability of 0.95, we have

-1
n
You1 € | Vagr Etorsu(n— K )S\J 1+ 2np (Z -’Dgwi) Tpi1

i=1
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It is readily verified that the approximate prediction interval obtained
earlier is asymptotically correct since the Student distribution ¢(n — K)
converges to the standard normal distribution N(0,1) as n increases to

In the Figure 11.1, we illustrate how the prediction interval varies
as a function of the value of the exogenous variable in the simple linear
regression model.

yﬂ

Prediction
interval

B T e

]
]
i
I
I
I
]
X

4

Figure 11.1: Prediction Intervals

11.2.4 Prediction of a Nonlinear Function of Y,

To simplify, we retain the linear model framework. The problem of inter-
est is now to predict a nonlinear function h(Y,41) of Yp41. A first and
intuitive solution, is to propose i = h(?n_,.l) as a predictor. However,
even if the true distribution is perfectly known, this predictor leads, in
general, to a biased prediction. A better solution consists in computing

Ep o2 (h(Yns1) | Yi,s. .., Yy) = R(b,0?),

and then in replacing b and 02 by some consistent estimators. Such a
computation clearly requires that the distribution of the error term is
completely specified up to some parameters.

To illustrate the latter method, we assume that the error terms u;,
i=1,...,n+1, are independent and identically distributed N(0, o2). We
are interested in the prediction of exp(Y;+1). Because of independence,
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we have
By, g2 (exp(Yas1) | Y1,... Yo) = Ep o2 exp(Yn+1)

o2
= exp zn+1b+—§- )

where we have used properties of the normal distribution.
Thus the method consists in retaining

N - &2
h = exp (Sb'n+1bn + —22)

as a predictor of exp(Yp+1), where b, and 52 are the OLS estimators of
b and o2 based on the first n observations.

11.2.5 Prediction of a Latent Variable

In Chapter 1 we saw that a latent model is frequently more interesting
from the point of view of economic theory than the observable model
that is derived from it. In such a situation, predicting latent variables
from observed variables is frequently of interest. _

Let Y7*,...,Y,” denote the latent variables and let Y3,...,Y,, denote
the observed variables. We suppose that the model is parameterized by
8. Then, in a first step, we can define predictors as

Eo(Yy | YiyeosYa), i=1,...,m,

for every given value of the parameter vector 8. Then the unknown
parameter value 6 can be replaced by a consistent estimator of 8 in the
preceding expression so as to obtain

By (Y| Y,...,Ya).

Example 11.2: Consider the disequilibrium model defined by

Dy = ap+b+u,
St = apt+B+mwn, t=1,...,T,

where u; and v; are independent and distributed N(0,02) and N(0,02)
respectively.” From the observed prices p; and quantities exchanged
Q¢ = min(Dy, S:), for t = 1,...,n, we want to determine what is the
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equilibrium price p§ at time ¢. This equilibrium price, which is not ob-
served, is given by

b—0F u—-w
(=] — —_—t —
Py a—a oa-—a
Dy - S,
= nt a—a

We need to compute

St

D, ~
E(pf IQt)"pt‘l" =

where Dy = E(D; | ¢) and 8, = E(S, | g). (Other observations.
are irrelevant to the prediction of p§ because of the assumed temporal
independence of the observations.) We have

Dy = P(D:>S:|q)E(D:|D: > q)
+ P(S2D:|q)E(D: | Dy =gq;)
= ILE(D: | D; > g;) + (1 —Ily)qy,
where II; denotes the probability that there is an excess of demand con-

ditional upon the observations. A similar computation can be followed
for S. Then we obtain

E(»§ | a)

o+

(1 — 21:It)qt n fItE(Dt l Dy > qt) - (1 - ﬁt)E(St [ S > qt)
a—a a—a ’

To obtain a useful expression for this type of prediction, it remains to
determine

I;, E(D: | Dy > q1), E(S: | St > a1).

These quantities are easily determined using properties of the truncated
normal distribution (see Exercise 11.10).

In the preceding derivation, note that other predictions were also
determined, namely, the prediction of the regime I, = EQ1 Di>s, | Gt),
the prediction of the demand D;, the prediction of the supply S;, and
the prediction of the demand glven that there is an excess of demand
E (Dt l D, > qt)
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11.2.6 Prediction in a Dynamic Model

The previous examples deal with models that are basically static. But
the method presented above, which consists in determining first the ap-
propriate predictor given an arbitrary parameter value and then in re-
placing the unknown parameter value by a consistent estimator, can
also be used in a dynamic context. The dynamic models are studied in
a companion book cited in reference (see also section 13.5)

Example 11.3: Suppose that observations on the endogenous and the
strongly exogenous variables satisfy

Yi = f(Xt,9)+‘lLt, t= 1,...,T+1,
where the error terms u; follow the first-order autoregressive model
U = pUL—-1 + €4, ¥p| < 17

where &;'s are independent with zero means and independent of the X;'s.
We have (conditionally to the process X3):

Eo (Y741 | Y1,...,Y7)
= Epp(f(X741,0) +ursa | Y1y..., Y7)
= f(Xr41,0) + Eo,o(p(Yr — f(X7,6)) +ers1 | Ya,..., Y7)
= p(Yr — f(X1,0)) + f(X141,0),

because the temporal independence of the €’s gives
E'g,p(ET+1 ] Yl, ey YT) = Eg,p(ET+1) =0.

It remains to estimate the parameters 8 and p. For instance, 6 can be
estimated consistently bTY the ordinary nonlinear least squares estimator
fr that solves ming Y ,_, (¥ — f(X:,60))%. Then p can be estimated
consistently by the empirical correlation pr of the estimated residuals

@y = Y; — f( Xy, 07).
Therefore a prediction of Y71 is given by

Vg1 = pr(Yr — f(Xr,0r)) + (X741, Or).

Example 11.4: The previous example focuses on the prediction of
Yzy1. If we assume that the model is satisfied for t = 1,... , T+ H, we
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can also predict variables farther in the future such as Yoo, ..., Yri .
The difference between the time index & of the variable to predict ¥}, and
the time index T of the most recent obervation Y7 is sometimes called
the horizon of the prediction. Clearly, the formula for an appropriate
prediction depends on the horizon of the prediction.

For instance, we have

Eop(Yriz | Yr) = Ep,o(f(Xr42,0) +urse | Yi,..., Y1)
= f(Xr42,0)
+ Esp(p*ur + persr +erie | Vi, ..., Vo)
= f(Xr42.0) + 0> (Y7 - f(Xr,0)).

More generally, we have
Eoo(Yrsn | Ya,..., Y1) = F(Xr4n,0) + p*(¥r = (Xr,0)).
Thus a prediction of Yr is
Yrin = f(Xz4n, 0r) + ()" (Y — f(Xr,07)).

In this example, the effect of the past on predictions arises only from
the most recent observation, namely Y. Moreover, this effect decreases
as the horizon of the prediction % increases, since |pr| < 1.

Example 11.5: The last formula in the preceding example gives the
prediction of Y7, formulated at time T. To make the dependence on
T explicit, we now denote T?T+h such a prediction at time T". At time
T'+1 another observation Yp.; becomes available. Thus, intuitively, the
prediction of Yr4, can be improved. Modifying the prediction of Y7,
as more information becomes available is sometimes called updating.

In practice, two updating methods are used. The first method up-
dates simultaneously theoretical predictions and estimators. That is,
according to this method, the updated prediction of Yy, is

r41Yern = F(Xn, 0741) + (br1) " (Y41 — F(Xra1, br41)).
The second method updates theoretical predictions only. Thus we obtain
r41Yern = F(Xrsn, 07) + (pr)" (Y1 — F(Xra1, b1)).

The second method is clearly simpler. Moreover, if the number of
observations T is large, predictions given by the two methods do not
differ substantially because 6.1 ~ 61 and pryq = pr.
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If we use the second method, updating of the prediction of Yy is
obtained as

o1 ¥ren — ¥4
= (pr)"(Yrs1 — f(Xr41,07)) = (pr)" (YT — f(Xr,67))
= (pr)"(Yr41 — f(Xrt1,07) — pr(Yr — f(XT, br)],
ie.
rr¥ran — 1¥ren = (A7) (Yr4r — 7Y141)-

Thus the updating of the prediction of Y744 is a simple function of the
prediction error associated with Yp41.

11.3 Residuals

11.8.1 Residuals in an Exponential Model

We assume that the observations Y3,...,Y, are conditionally indepen-
dent given X1, ..., Xn with conditional densities of the exponential form

=1

f(yi | z:;0) = exp (Z Q;(x:, 0) T (i) + A(zs,0) + B(fﬂi,yi)) . (1L7)

Because all relevant information on the parameter vector 8 is contained

in the statistics Tj(¥;), j =1,...,mi=1,...,m, it is natural to consider
the regression model associated with these variables, i.e.
T(y;) = m(zs,0) + us,
(11.8)
with E(ui I IIJi) =0, V(u-,; i ;) = ﬂ(.’l!-,;,@),

where T(Y;) = (Tu(¥3), - .., Tr(¥2))', and m(z;,6) and Q(z;,0) are the
expectation vector and the variance covariance matrix of T;(Y;) condi-
tional upon X; = ;.

We can find some predictions of the error terms appearing in the
second model (11.8).

Definition 11.8: We call residuals associated with the conditional ex-
ponential model (11.7) the predictions of the error terms u; in the asso-
ciated model (11.8).
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As residuals, we can use
@ = T(Y;) - m(z;, 0,), (11.9)

where 6,, is an asymptotically efficient estimator of 6. For instance, 6,
is the maximum likelihood estimator of .

The use of model (11.8) and the subsequent determination of the
residuals are interesting in view of the properties presented in Chapters
8 and 9.

a) For instance, Property 9.2 states that a quasi generalized least
squares estimator of § in model (11.8) is asymptotically efficient. There-
fore, from an estimation point of view, we can use equivalently model
(11.7) or model (11.8). In particular, we can define the residual 4; as
@; = T(Y;) — m(z;,6,), where 8, is a quasi generalized least squares
estimator of 6.

b) From Example 7.29, the likelihood equations of model (11.7) are

dlog 6(Y | x;6,,) _

a6 ’

ie. " .
BQI (zia 6)‘n) ~
Z — g =0,
il
where 4; = T'(Y;)—m(;,,) and 4, is the maximum likelihood estimator
of 8. The likelihood equations can also be written as

n -
~ Om/(z;, 9 1 oA
E :..__....(__’._._"_)Q l(zi,9n)ui = (.
£ o0
gz==]1
These equations can be interpreted as orthogonality conditions between
the “explanatory variables” 0m'(z;,6,)/00 and the residuals 4; with

respect to the scalar product associated with ~1(z;, én‘).

In general, the exact distribution of residuals is difficult to obtain.
This is because residuals depend on which estimator of 8 is used, such
as the maximum likelihood estimator, and because the exact distribu-
tional properties of such an estimator are rarely known. On the other
hand, when the model is correctly specified and when the number of
observations is large, 6, is consistent by definition. It follows that the
properties of 4; are close to the properties of w;. In particular, 4; has
asymptotically the same distribution as u;. A similar property holds
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when we consider an arbitrary subset of residuals of which the number
of elements is independent of n (see Exercise 11.7).

In Figure 11.2 we give below a diagrammatical representation of resid-
uals associated with the linear model y; = z:b + u;, E(u; | z5) = 0,
V(u; | z;) = 1. In this case, it is easily verified that Definitions 11.8 and
11.6 of residuals agree. ‘

a; A

IANIT SRR R NS RARRNRRERTERRTURANIRERNIR RN NEY

Figure 11.2: Residuals

This figure clearly shows that residuals have some properties that
are similar to those of the errors ;. For instance, on average, residuals
are equal to zero, which is equal to Fu;, for either small or large values
of the index i. In addition, the variability of the residuals seems to be
independent of 7, which corresponds to the homoscedasticity assumption
on the error terms u;.

Diagrams similar to Figure 11.2 are frequently used for detecting pos-
sible departures from correct model specification (see Chapter 17, Vol.
II).

Remark 11.5: When the error terms u; are heteroscedastic, i.e., have
different variances, it may be useful to standardize the residuals before
plotting them. This leads to the notion of standardized residuals, which
are defined as .

Vi = V(:L'i, an)ﬂz’

N ) X R
where V! (%3, 00)V (1, 0n) = QY (z, 0r).

11.3.2 Generalized Residuals

In this subsection we consider a model defined in two steps. Specifically,
we consider a latent model which is assumed to be an exponential model
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with density

'@ | 2:,8) = exp ZQj(-’lIi,G)Tj(yf)+A($i,0)+_3($i=yf)
=1 ~

(11.10)

Then, observed variables are related to latent variables by means of a
mapping A so that

Y: = h(Y]"). (11.11)
As in Section 11.3.2, we introduce the error terms of the latent model.
These error terms are defined as
U; = T(Y;*) - m(:z:i, 0)

Here, however, predicting error terms is more complicated since Y* is not'
necessarily observed. Nonetheless, we can apply the following two-step
procedure:

(i) First, we compute

Eo(ui | Y1,...,Ya) = Ep(u; | )
E(T(Y) | Y2) — m(z;, 0).

(ii) Then, we replace 8 in this expression by an estimator, such as the
maximum likelihood estimator of 6, obtained: from the estimation
of the observable model.

Definition 11.9: We call generalized residuals associated with model
(11.10)~(11.11) the predictions of the error terms u; given by

U = E5 (u | V),

where 6, is an asympiotically efficient estimator of 6.

Remark 11.6: When the number of observations is large and when the
model is correctly specified, the distribution of ; is no longer necessarily
close to that of u;. Here, such a distribution converges to the distribution
of the prediction Fy, (ui | Y;) that is associated with the true parameter
value.
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Remark 11.7: The relationship between the likelihood equations and
residuals mentioned earlier still holds for generalized residuals. Specifi-
cally, the score vector of the observable model is

dlog &(Y1,...,Yy;0)

00
dlog £(Yy,..., Y0
— Eg( og ¥ L )m,...,yn>
= Olog f*(Y;* | ;6
= >om (Tl 1ot )
g==]

= 2 (Z 9958200 (y(ry(vy) 1 %) - mj(wz-,e») :

g=1 j==1

See appendix to this chapter.

Hence the likelihood equations are of the same form as in Section
11.3.1. Namely, we have

2 8Q! (z:,0r) -
Z -———6’9—-—“1&«5 = 0.

q==1

Example 11.6: We consider a probit model. The latent model is ¥;* =
z;0 + u;, where the error terms u;, ¢ = 1,...,n, are independent and
identically distributed N(0, 1). The observed variables are related to the
latent variables by
Y~—{ 1, ifYr>0,

*7 1 0, otherwise.

We have

By(V7 | Yi=1)

Eo(zi0 + u; | 2:0 + u; > 0)
z:0 + Eg(u; | uy > —xz:6)
1 OO0

= z;0+ up(u)du

Plu; > —2:0) J_s.0
= $i9+5(%;‘55(*¢(u))3°m9

¢(z:6)
@(:L'ie) ’

= x;0 +
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A similar-computation gives
"1V . P(zib)
EXY?|Y;=0)==z0 1= &(z:0)"

Thus the generalized residuals are given by

_ 5 $(@ifn) Y — (zifn)

i = 20, + = i % 1-Y; )
“ "t oty T a@dy)

ie.

~ . d (}5(3319") A A :
i; = x:60n + S - 2@h) (Y; — ®(z:6,)). (11.12)

These generalized residuals can be plotted. The resulting diagram is
called the generalized residuals diagram. We give below such a diagram
when the latent model reduces to the simple linear regression model

Y =bo+ bz +us

with b =1 and b; = 1.
Generalized residuals are graphed against the corresponding values
taken by the exogenous variable. As a consequence, the different points

line up on two different curves that correspond to observations for which
Yi=1land ¥; =0.

[
0 o e
........

Figure 11.3: Generalized Residuals
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11.3.3 Simulated Residuals

In the preceding model defined by (11.10) and (11.11) predictions of
the unobserved latent variables Y;* (and the error terms u;) rely on ap-
proximations based on conditional expectations. An alternative method
consists in approximating the latent variables by means of simulations.
First, suppose that the parameter value 8 is known. Instead of com-
puting Ey(Y;* | ¥;), we can draw a random variable ¥;* from the condi-
tional distribution of Y;* given Y;, denoted P;’; ¥: YWhen the parameter

value 6 is unknown, a similar approach can be followed after replacing g
by a consistent estimator 8,,.

Definition 11.10: We call simulated residuals the gquantities
’Lvl,-;, = Y;’* — m(:z:,-,én),

where Y;* is drawn from the conditional distribution Pg,"‘m and by, is an
asymptotically efficient estimator of 0.

There is an important distinction between simulated residuals and
generalized residuals. When the model is correctly specified and when
the number of observations is large, the estimator 8, converges to the
true parameter value 5. Thus the variable @; is approximately a draw
from the conditional distribution P;f) ilYs  gince the distribution of Y:
corresponds to the same value of the parameter, i.e., to the true value, it
follows that the distribution of i; is approximately that of the error term
u;. On the other hand, in Section 11.3.2 we noted that the asymptotic
distribution of a generalized residual 4; is the distribution of Eg,(u; | ),
which is clearly not identical to that of u;.

A Linear Latent Model

In some cases, it might be useful to introduce another notion of simulated
residuals. An important case is provided by the linear latent model
Y = z;b + uy, (11.13)
where the error terms u; are independent and identically distributed
N(0,0?).
As before, let 6, denote a consistent estimator of # and let Y;* de-
note a random draw from the conditional distribution Pg," ¥ Thus v

constitutes a good approximation to the latent variable it’i*, which sat-
isfies the linear model (11.13) by assumption. This suggests to replace
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the unebserved Y;* by its simulation Y;*. This simple method only re-
quires standard regression packages that provide residuals among other
statistics:

Specifically, a new estimate, which is in general different from the
original estimator #,, is determined by ordinary least squares based on
the simulated values. This new estimate is

. n -1,
by = (Z xézi) inYz*
=1 =1
Then the simulated residuals can be computed as

’lli = Yi*—:z:,-bn

n =1 5
Y ’ (AVal
Y& -z E T;T _S_ Y

i==1 i=1

Definition 11.11: When the latent model is linear, we call two-step
simulated residuals the variables

-1
n n
4 o z : ! 2 : IRvs ]
U; = Y,; - T ( vwim,—> miYi y
g=1

i==]

where each simulation Y;* is drawn independently from the corresponding
conditional distribution Péyn" I¥:

When the model is correctly specified and when the number of ob-
servations is large, a two-step simulated residual 4; has approximately
the same distribution as the error term wu; of the-latent model. Such
a property can be visualized by means of a simulated residuals dia-
gram. The simulated residuals diagram has the same appearance as a
usual residuals diagram but is quite different from a generalized residuals
diagram. An example of a simulated residuals diagram is given below
for the probit model considered in Section 11.3.2.

11.4 Appendix

SCORE VECTOR OF THE OBSERVABLE MODEL

Counsider a latent model with prbbability density £*(y7,...,y::0),
also denoted £(y*;0), with respect to a measure p*. The observable
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N\

Figure 11.4: Simulated Residuals

model is derived from the latent model via
Y; = h(Yy).

Let £(y1,...,Yn;6) or £(y;6) denote the probability density of the ob-
servable model with respect to a measure denoted .

Lemma: We have

Ologf(y;0) Olog £*(Y*;6)
50 e 80 Y=

Proor: For every real function g that is integrable with respect to the
distribution of Yi,...,Y,, we have

/ 9(Y)e(y; 0)duly) = / g(h(y*))e* (y*; 0)du* (y™*).
y y* )

Differentiating with respect to # we obtain after reversing the order of
differentiation and integration

/@Wmmw/mmﬂwmw%m
ie.
J/ o) 2B Dy )iy

/ o) 2B gy gy o) =0,
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In terms of expectations, the latter equality can be written as

Olog(Y;0) _ Olog &2 (Y*;6)\ _
Ee (g(y) ( 50 50 =0

Since the vector
Olog£*(Y™;0) _ Olog(Y;8)

o0 o6
is orthogonal to every function of Y, it follows from Property B.17,
Volume II that

Olog(Y;0) Olog £*(Y*;9)
0 “E"( 6 1Y)

(|

11.5 Exercises

EXERCISE 11.1: Consider the linear model ¥; = z;b+u;, i = 1,...,n,
where the error terms u; are independently and identically distributed
N(0,0?). Verify that the residual vector @ = (d,...,d,)’ is a linear
transformation of the error vector u = (u,...,u,). Show that this
linear transformation is a projection. Then, find the joint distribution of
(u',@')". Is 4; an unbiased prediction of u;? Determine its mean squared
prediction error.

EXERCISE 11.2: Consider Exercise 11.1 and the prediction vector Y =
(Y1,...,Yn) of Y = (11,...,Y,)". Prove results similar to those estab-
lished in Exercise 11.1 for this prediction vector.

ExEeRCISE 11.3: Consider the simple linear regression model Y; = by +
biz; +uy, i = 1,...,n, where the error terms u; are uncorrela.tedAwith
mean zero and common variance o2. Verify that the OLS estimator by, of
b; is a linear affine transformation of the centered errors (u; — %, ), where
i, is the sample mean of the u;’s. Then show that by, is uncorrelated
with %, and hence with ¥,,.

EXERCISE 11.4: Let ¥4, ... , Y,, be unbiased predictions of the n variables
s« .+ Yn. Consider the statistic

V — Z?_—:l(x - Ylf)z
T n
Zi=1 )/7-:2

as a measure of the relative mean Erediction error. What is this statistic
in the usual linear model where Y; denotes the predicted value of the
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ith observation on the dependent variable. Verify that 0 < V. <1 and
discuss the special cases V, =0 and V, = 1.

EXERCISE 11.5: Consider a Tobit model where the observed variable Y;
is related to the latent variable Y;* by

v [ Y #Yr>0,
¢ 0, otherwise,

where Y* satisfies the linear model Y* = z;b +u, i = 1,...,n, with u;
mdependently and identically dlstrlbuted N(0,0?). Find the predictors
of ¥;* and Y;*2.

EXERCISE 11.6: Consider the normal linear model with unknown vari-
ance

Y;: = z:b + g, E(ui I .’L'i) =0, V(ui I :E,;) = g2,

a) Verify that the model is an exponential model where the statistic
T(Y;) defined in (11.7) may be equal to (¥;, ¥2)".

b) Find some expressions for the residuals and standardized residuals.

EXERCISE 11.7 Consider the simple linear regression model Y; = bp +

biz; + us, i = 1,...,n, where the error terms u; are independently and

1dent1ca.11y distributed N(0,0?). Find the distribution of (1/ ﬂ(ﬂl +
ok un) Compare this distribution to that of (1 [V (uy + .. 4 un)-

EXERCISE 11.8: How would you define two—step simulated residuals
in a conditional latent model that is exponential? Hint: Consider the
maximum likelihood estimator of  based on the latent model where Y;*
is replaced by some simulated value. '

EXERCISE 11.9: Consider a Tobit model (see Exercise 11.5). Give an ex-
pression for its generalized residuals. When the latent model is a simple
linear regression model and when the generalized residuals are plotted
as functions of the corresponding values of the exogenous variable, show
that a fraction of these generalized residuals lies on a curve. Find the
asymptotic variance of an arbitrary generalized residual and verify that
this variance depends on the value taken by the exogenous variable.

EXERCISE 11.10: Notations are those of Example 11.2.

a) Show that
- hat
fi, = 2,
* 7 hae + hae

389



Prediction

where

hy = _1__¢(Qt—apt~b>@(apt+ﬁ"9t),

Oy Ou O
1 ~ ap, — b—

hoe = —o (Qt Qap; ﬂ) & (apt + Qt) ,
O'-U 0-1_) O'u

¢ and @ denote the density and the cumulative distribution func-
tion of the standard normal distribution. Interpret the functions
hit, hoy and hyy +ha;.

b) Verify that

t —apy — b
| s (22
E(Dy¢ | ps, Dy > gt) =ap: +b+oy

u

1—@'(L—E—"~g ‘—b)'
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CHAPTER 12

Bayesian Estimation

12.1 The Bayesian Approach

12.1.1 Review

Let
(I, P ={Ps =£(y;6) - 1,0 € ©}),

be a dominated parametric model. In the Bayesian approach a proba-
bility distribution II, called the prior distribution, is defined on the set
© of possible values of the parameter vector 4. The parameter vector
is considered as random with prior distribution II (see Chapter 4).

Let y be the vector of observations. After observing y, the prior
distribution of the parameter vector is modified. Specifically, the ob-
servations ¥y are used to replace the marginal distribution of 8, i.e., the
prior distribution, by the conditional distribution of 4 given y, called the
posterior distribution. The posterior distribution is given by the Bayes

formula
__ tygowe) Ly 0)
7!'(0 [ y) - fe Z(y, 0)7r(0)z/(d0) = 71'(0)"?(‘;/-)—*, (121)

where 7(0) is the density of the prior distribution with respect to a
measure v. Then the posterior distribution has a density 7(@ | y) with
respect to the measure v. Equation (12.1) shows that the posterior
density is obtained by multiplying the prior density by the ratio of the
conditional density of y given 8, i.e., the likelihood of y given 8, over the
marginal density of y, called the predictive density of y.
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Although it is interesting to know completely the posterior distribu-
tion, frequently only some characteristics of the posterior distribution
are of interest. For instance, the best estimator 8 of 6 in the Bayesian
sense when the quadratic matrix risk function is used is the posterior
mean

6=E®|vy) (12.2)

(see Property 5.7). Thus the determination of the Bayes estimator only
requires the knowledge of the first moment of the posterior distribution.
This estimator is unbiased for 4 in the Bayesian sense since the expec-
tation of 6 with respect to the distribution of y is equal to the mean of
. . . :

If we want to assess the precision of the- Bayes estimator é, then it
suffices to note that the Bayesian risk is

V(9 -9) VE@6-6 | Y)+EV(@-6|y)
0+ EV((E@|y)-06)]y)

= EV(#|y).

Thus an unbiased estimator in the Bayesian sense of the risk is Ve |y),
i.e., the posterior variance. Hence the second-order central moment of
the posterior distribution is useful for assessing the precision of the best
estimator ¢ in the Bayesian sense.

In this subsection we have briefly reviewed the principal character-
istics of the Bayesian approach. The main difficulty, however, does not
lie in the determination of the posterior distribution, even if the exact
determination of such a distribution requires complicated mathematical
derivations. Instead, the important step is the choice of an adequate
prior distribution. To discuss such-a choice, we now focus on this prior
distribution, in particular on its interpretation and the properties that
we may want to impose on it.

12.1.2 Prior Distributions

In the classical (or frequentist) approach, probability distributions are
introduced by means of frequencies. For instance, the fact that empir-
ical distributions of income are frequently close to the density of a log-
normal distribution suggests the use of a log-normal distribution as.an
adequate distribution for the variable “income.” There exist, however,
other approaches to probability distributions. One of these alternative
approaches is the so-called subjective approach, where the “probability”
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of an event measures the degree of beliefs in the occurence of the event
according to an individual or a group of individuals. Such degrees of
beliefs do exist. For instance, consider the following two events: The
income elasticity of consumption is smaller than 0.5 and the income
elasticity of consumption is larger than 0.5. An individual (an econo-
metrician, say) will be often able to state which of these two events is
more likely than the other one.

It is clear, however, that a probability distribution cannot be formed
by questioning individuals on their beliefs only. Indeed, individuals are
able to answer questions of the preceding type only for a limited num-
ber of events. Moreover, although individuals can state relatively easily
which of two events is more likely to occur, individuals have, in gen-
eral, more difficulties in giving a precise measure of the “probability”
of each event. Lastly, individuals’ answers may not satisfy the minimal
coherency conditions required by a probability distribution such as the
usual additivity condition. Thus, even though questioning individuals
has been sometimes used to specify prior distributions on the parameter
9, especially when  can take a few values only, such a method does not
seem applicable in more complex problems.

In more complex problems one usually chooses the prior distribution
in a family of probability distributions. Often, this family is a family
of well-known distributions such as the family of normal, gamma, or
Student distributions. A common characteristic of chosen families of
distributions is that they are parameterized by a few number of auxil-
iary parameters « that are easily interpreted. Hence specifying a prior
distribution reduces to choosing a particular value for a.

As an example, suppose that 0 is a scalar parameter. It is believed
that @ lies approximately between 0.2 and 0.4. If the prior distribution
is chosen to be a normal distribution, then the auxiliary parameter o
includes the mean m and the variance o2 of this normal distribution,
ie., @ = (m,0?). For such a normal distribution, a 95%-confidence
interval is [m — 20, m + 20]. In view of the above prior beliefs about 6,
we can choose m and o2 such that m — 20 = 0.2 and m + 20 = 0.4.
Hence we can retain the normal distribution N(0.3,(0.05)%) as a prior
distribution.

At this stage, we must note that the distinction between a frequentist
approach and a subjective approach is not as important as it may seem
at first sight. Beliefs in the most likely values of the parameter 0 are
frequently based on various observations or prior studies that involve the
parameter 6. In such a context, the prior distribution must be updated
to take into account new information. Suppose that the original prior
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distribution is Tlg(df) and that the variables yo are observed. After
observing yg, knowledge of the parameter 8 is now summarized by the
posterior distribution ITo(df | yg). Then the latter distribution should be
used subsequently as a new prior distribution. Such a stepwise procedure
is pictured below assuming, to simplify, that the observations g are y;
are independent conditionally on 6.

Initial prior Posterior distribution: Posterior distribution:

distribution new prior new prior

Mo(d6) g 1,(d8) = No(d/yy) oy [,(dB) = I, (d8/yy)
= llo(dB8/ys, y1)

Yo - h
abservations observations
1(y0/8) 1(3,18)

Figure 12.1: Bayesian Updating

Although the initial prior distribution depends on an individual or
a group of individuals, it is intuitively clear that the importance of
such a prior distribution will disappear as the number of observations
increases.

Note also that, for a given statistical model £(y; 8) and a prior distri-
bution chosen in a given family II, indexed by the auxiliary parameter
@, it is desirable to obtain a posterior distribution that also-belongs to
the family II,. In this case, updating the prior distribution reduces to
updating appropriately the auxiliary parameter a (see Figure 2.2).

Initial prior
distribution Posterior distribution: Posterior distribution:
4(d8) ———p 1,(d6) = M, (d0) ——pp M:(dB) = 11,,(d6)

Yo Vi
observations observations
1(y0/6) ‘ 1(¥,18)

Figure 12.2: Bayesian Updating of Parameters
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12.1.3 An Example of Bayesian Estimation

We consider a sample Yi,...,Y, independently and identically normally
distributed N(@,1), where § € IR is unknown. We suppose that the
prior distribution on the parameter 6 is also normal with mean myg
and variance o8, where mg and o are given. The joint distribution
of ¥1,...,Y,,0 is normal as well as the conditional distribution of #
given Y1,...,Y,. These distributions are characterized by their means
and variance covariance matrices.

Let Y = (Y3,...,Y,) and e = (1, ...,1)’. By assumption, we have
(@) BE(Y|0)=0e, V(Y |6) =1,
(i) E0 =my, VO =k
It follows
(iii)
EY = EE(Y |0)= E(fe)=mye,
VY = VE|6)+EV(Y|8)
V(6e) + E(T)
ogee +1, :
Cov(E(Y | 6),6) + ECov((Y,0) | 8)
Cov(fe, )

= oZe.

]

Cov(Y, 6)

I

Thus the joint distribution of (Y”,8)’ is the normal distribution

mpe ogee’ +1  ode
N m ’ 2,/ 2 4
0 o€ )
The posterior distribution, i.e., the conditional distribution of @ given Y’

is also normal. It is determined by its first two moments. Let ¥ denote
the sample mean of the observations. We have

(iv)

Cov(8,Y)(VY) Y (Y —EY) + E#
nog o

1+n0§m0+ 1+ nog

E@|Y)
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2
= ot {27 - mo)
V(@|Y) = V() - Cov(8,Y)(VY) 1Cov(Y,0)
o8 :
T I+not

We now discuss some consequences of this posterior distribution. The
Bayes estimator of the parameter 8 is the posterior expectation, i.e., the
expectation of the posterior distribution. It is

-1 nog o

g+ —0 12.3
1+na§m0+1.+nag (123)

6=E@B|Y)=

Thus 6 is a convex combination of the usual sample mean estimator
Y and the prior expectation mq of the parameter 8. The ratio of the
weigths associated with ¥ and mg is

_ o2 _ V@
" = Tn = V10

Thus this ratio depends on the prior precision on the parameter, as
measured by the inverse of V() = o, relative to the precision of the
information contained in the sample only, as measured by the inverse of
V(Y | 6). Hence the sample mean receives a larger weight as the number
of observations n increases or as prior information is less precise, i.e., as
o8 increases. In the limit case, where n is infinitely large, the Bayes
estimator § becomes equivalent to ¥ and prior information no longer
affects the estimate.

A similar argument applies to the posterior variance, which is an
estimate of the precision of the Bayes estimator. This variance is

1
1/0% +1/(1/n)
1
1/V(@)+1/V(Y | 8)

Vg|Y)

Thus the posterior variance is the inverse of the.sum of the inverses of the
prior variance and the variance due to the observations. As n increases
to infinity, the posterior variance becomes equivalent to 1/n. Thus, as
noted earlier, prior information is no longer important.
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12.1.4 Diffuse Priors

In the previous example we saw that an increase in the prior variance o2
has the effect of decreasing the importance of prior information relative
to sample information. We now examine the limit case where o3 in-
creases to infinity. Such a situation corresponds to the case where there
is little prior information. We say that prior information is diffuse or
noninformative.

When o2 increases to infinity, the posterior distribution converges to
the normal distribution N (¥, 1/n). First, note that the mean of the prior
distribution does not appear in this limiting distribution. This agrees
with the intuitive idea that a diffuse prior is noninformative about the
mean of the parameter. In fact, the whole posterior distribution becomes
independent of the prior mean. Second, the Bayes estimator becomes
identical to the usual estimator ¥. Hence, when oZ increases to infinity,
all relevant information is contained in the observations.

We now discuss more precisely the meaning of a limit as o2 increases
to infinity. Specifically, we shall discuss more rigorously the meaning
of the prior distribution N(mg,+o0). When the variance of a normal
distribution increases to infinity, the ratio of its density evaluated at two
points §; and 2 converges to one since

401 ey om0

Thus every possible value of 6 receives the same weight. This suggests
that the limiting prior distribution as o2 increases to infinity has a con-
stant density, i.e., 7(0) oc 1. The symbol o< means “proportional to.” It
is, however, well known that a uniform probability distribution cannot
be defined on IR (see Exercise 12.1).

Therefore, if we wish to follow the above approach, we must allow for
prior distributions that are not probability distributions. Then we must
examine whether such new prior distributions can detenmne unambigu-
ously posterior distributions by Bayes rule.

Suppose that the prior distribution is

m(f) oc 1. (12.4)

Such a prior distribution is said to be diffuse or noninformative. From
Bayes rule we obtain

76| y1,.. ., Un) X T(O)(Y1y. .. Yn; 0) = L(y1,- ., Un; D),
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ie.
71'(9 | Y1, 7yn) ( n/2 exp — Z(yz s
z-—l
ie.
ng?
70| y1,-..,Yn) X exp - +néy),

since the symbol oc means that equality holds up to a multiplicative
scalar which may depend on y,...,¥,. The right-hand side resembles a
part of the density of the normal distribution N(§,1/n). Thus we obtain

n n _
6 |y 1) = Yo exp=2(0 - )"

Hence, although the diffuse prior is not a probability distribution, com-
putation of the posterior distribution is still possible. In addition, the
posterior distribution is a proper probability distribution.

Lastly, note that, in the preceding example, two different interpreta-
tions of a diffuse prior were given. The first interpretation is as the limit
of a proper prior as the variance o increases to infinity. The second

interpretation is as a uniform measure on R.

12.2 Conjugate Priors

12.2.1 Models with Sufficient Statistics of
Dimension Independent of the Number of
Observations

To simplify the notation, the next results are derived for unconditional
models. The presence of exogenous variables does not introduce new
difficulties. We consider n observations Y3,...,Y, of a random vector
that are independent and identically distributed. Let £,(y1,...,¥n;6)
denote the joint density of these 7 observations with respect to some
measure @;_; #(dy;). If the model has a sufficient statistic

T(n)(ylt fee ,yn) = (Tl(n)(yla fee 1yn)f K 7T_§?(?n)(yl’ s 1?/77-)),1
then, using the factorization criterion (Theorem 3.1), we can write

Ca(yrye - ¥n30) = h(T™ (y1, . ¥2); 0, ) An (W1, - - - Un)-
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In what follows, we are interested in the relation between the param-
eter 6 and the observations y,,...,y,. Then the preceding equation can
be simplified as

€Y1, -, Yn3 0) o< BT (31, ..., 5,); 6,7), (12.5)

where the symbol o denotes, as before, that equality holds up to a
multiplicative scalar that is independent of the parameter § but that
may depend on the observations.

Definition 12.1: The model has a sufficient statistic of constant di-
mension if and only if we have

en(yl, ceeyYni 0) (S8 h(T(n)(yh [ERE] yn)a 91 Tl),

where T™ is a statistic whose dimension K is independent of n.

For a given model, there clearly exist many sufficient statistics and
hence many decompositions of the likelihood based on the factorization
criterion. According to Definition 12.1, it suffices that the condition on
£, is satisfied for one of these statistics and one of these decompositions.

Example 12.1: Let Y3,...,Y, be a random sample drawn from a uni-
form distribution Ujg g; where > 0. A sufficient statistic for this model
is

T(n)(yh . vy'n.) = St.lpyi-

Its dimension is equal to one. Thus it is independent of the number of
observations n.

Example 12.2: Let Y3,...,Y, be a random sample drawn from a noz-
mal distribution N(m, o). A sufficient statistic with constant dimension
equal to two is

) T(n)(yla sy y’n) = (Tfn)(ylv sy yn)v T2(n)(y11 s 7yn)),a

where

1 n 1 n
T (1, ¥n) = ;{Z%‘, T (g1, Yn) = ;Zyiz'

4==] =1
A useful feature of models with sufficient statistics of constant di-

mension is the possibility to replace standard operations on densities by
operations on their statistics T(™). Specifically, suppose that the number
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of observations increases from n ton + p. Because the observations Y;,
i=1,...,n + p, are assumed independent and identically distributed,
we can write

en+p(yly cevy Yn;i 0) = ‘en(ylv oo Uns 9)Ep(yn+1, .. ayn+;1; 0)

Hence

h(T(n+p)(y11 ey yn+P); 67 n+ p) e
h(T(n) (yl: ceey yn); o, n) : h(T(p) (y‘n+11 ceey yn+p);0’p)'

Let * denote the operation that associates T(™*?)(y, .. <y Yntp) to the
pair T™ (yy,...,y,) and T} (Yps++++Yn+p). Such an operation sum-
marizes completely how the joint density of y1,...,Yn+p can be derived
from those of y1,...,yp and ¥p,...,Yn4p.- The next property formally
states such a result.

Property 12.1: Let T™ c IR¥ denote the set of possible values of
the statistic T(™. For every pair of integers n and p, there ezists an
operation * from T x T®) to T(+P) such that

h(T(n) (yh ey yn); 6, n)h(T(P) (y‘n+17 ey yn+p); 07 p)
x h(T(n)(yl, e 7yn) * T(p)(yn-*-h LR y’n.+p); 0: n +p)'

Although the operation * depends on the integers n and p, in most
applications, such an operation is simply the restriction of a fixed binary
operation to T(™ x T® ¢ R?X, This justifies that the symbol * is
neither indexed by n nor p.

Moreover note that the definition of the operation * implies immedi-
ately that * is associative and commutative.

Example 12.3: Let Y3,...,Y, be a random sample drawn from a uni-
form distribution Upg g where 6 > 0. We have

TOP) (g1, Yngp) = sup  (u:)
i=1,...,n4p

= SUP( Sup Y, sup 'yz')

i=1,...,n i=n+1,...,n+p

sup (T™ (31, )y TO Wty s nt)) -

Here the operation * is the operation sup.
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Example 12.4: Let Y3,...,Y, be a random sample drawn from an
exponential model. The distribution of ¥; has density

K
f(yi;0) = exp (Z Qr(0)Ti(y:) + A(6) + B (yi)) :

k=1

The joint density of the n~tuple ¥3,...,Y, is

K n L
Ly1,...,Yn;0) =exp (Z Qx(9) ZTk(yi) +nA(9) + ZB(y,)) .
i=1

k=1 i=1
As a sufficient statistic of dimension K, we can choose the statistic
n
T(n) (yh [ERR) yn) = ZT(yz)v
g==1
where T'(y;) = (T2 (%), - - ., Tk(¥:))’- As a function h, we can choose
T ™ (yy,. . .,vn); 0,n) = exp(Q (6)T™ (Y1,---,Un) +nA(9)).

Hence the operation * is the usual sum operation.

12.2.2 Conjugate Priors

Given a model having a sufficient statistic of constant dimension, we
now seek some forms of prior distributions that lead to simple and easily
interpretable computations.

Definition 12.2: Let Yy,...,Y, be n observations that are indepen-
dently and identically distributed with a common distribution satisfying
a model of the form

‘e(yh «e oy Yn;j 9) & h(T(n)(yl’ (R 7y'n); 07 n)1

where T(™) is of constant dimension and 6 € ©. A conjugate prior
distribution for the parameter 8 is a distribution with density

”T(O) x h(to; 01 n0)7

where ng € N* and tg € T(™) gre given.

Thus the form of a conjugate prior is similar to the form of the like-
lihood. Such a choice of prior distribution is not always possible. It is
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clear that the function h can always be chosen to be positive valued. On
the other hand, if © denotes the set of possible values of the parame-
ter, the function h(tg;#,ng) must be integrable on © with respect to a
measure v(df), which has been omitted from Definition 12.2. When © is
an open subset of TP, one usually retains the Lebesgue measure as the
dominating measure, i.e., ¥(df) = df so that ratios w(6;)/7(f2) can be
directly interpreted as measures of relative beliefs. In this case, the func-
tion h(tp;#,7no) must be integrable with respect to Lebesgue measure,
i.e., the integral fe h(to; 0,m0)df must exist. Then the prior density is
given by

h(to; 6, m0)

"= o w0, o)

Remark 12.1: The function A is often integrable for different choices-
of ©. It is useful, when possible, to retain the largest parameter space
©. Then, the parameter space © and conjugate priors are defined auto-
matically as soon as the form of the likelihood is specified:

12.2.3 Posterior Distributions From Conjugate
Priors

We suppose that the likelihood function of the model is
(1,1 Yni 0) < (T (g, ., 4n); 6,1),
and that the prior distribution is of the form
w(0) «x h(to;8,n0)-
The posterior distribution has a density which is given by

77(0 ! Yiy.n- 7yn) x ‘en(yh e ,yn§9)7f(9)
o< A(T™(ys,...,4n);0,n)h(to; 6,n0)
x h(T(n)(yla reey yn) * tO; 91” + TL()).
Property 12.2: When the conjugate prior is of the form
m(0) o h(to;6,m0),

then the posterior distribution has the same form as the prior distribution
and is given by

(0| y1,--+yYn) X h(T(")(yl, ey Un) * 030, + ng).
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The posterior distribution is obtained from the prior distribution by
updating appropriately the values of the auxiliary parameters o and
ng. The updated values take into account information contained in the
observations. Namely, we have

i1 =T(”)(y1,...,yn)*tg, N1 = N+ Ng.
This suggests that updating can be applied iteratively. Let Y, 41,...,
Yn+p be p additional observations. Then 7(6 | y1,...,yn) o h(t1;0,n1)
can be used as the new prior distribution. It is a conjugate prior. There-

fore the new posterior distribution is of the same form, namely

7T(9 I Y1, 'ayn—l'P) x h(t2;97n2)7

where
t2 = T(p) ('yn+1, ey y’fH‘P) * tl
= TP (Yni1y-rerUnip) * T (Y1, ..., ¥0) * o
T(n+p) (yl, ceey yn+17) * to’
and

Ng =P-+"Ny1 =N+ D+ ngp.

The form of the posterior distribution allows us to interpret the auxil-
iary parameters ¢y and ng appearing in the conjugate prior distribution.
For the latter distribution, prior information can be viewed as com-
ing from ng observations Y1,...,¥™ such that T(")(y, ... y™) = t,.
Thus, the larger ng, the more important are prior beliefs relative to the
available observations Yi,...,Y,. Moreover, a suitable choice of ty, in-
dicates which values of 8 are more likely a priori. Such an interpretation
generalizes that given in Section 12.1.3.

12.2.4 Examples

Without much difficulty, conjugate priors can be obtained for exponen-
tial models. To facilitate the interpretation of a prior distribution, how-
ever, it may be preferable to work with the usual parameterization of
the model. This parameterization may not correspond to the parame-
terization in £g.
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a) Binomial Model

Let Y3,...,Y, be a random sample drawn from a Bernoulli distribution
B(1,p). We have

(n) —m{n)
b(yip)=pT (1-p)~ T,

where T = 7 ;.
A conjugate prior must have a density of the form

7(p) x pP (1 — p)no~e,

where 0 < £y < np. Whenever possible, the prior must also be defined
on the interval [0, 1], which is the usual parameter space for p.

A distribution of the above form is a beta distribution with param-
eters £ + 1 and ng — tp + 1 (see the appendix to this chapter). Such a
distribution is continuous on the interval [0, 1] with density

__ pho(l—p)roto
™P) = Bl T Lo —to 1)’

where the function beta is evaluated at tg + 1 and ng — tp -+ 1, i.e.

1
B(to+1,ng—tg+1) = /0 ptﬂ(l — p)o~todp,

The corresponding posterior distribution is a beta distribution with
parameters

to +T™ +1 and no+n—tg—T™ +1.

Since a beta distribution with parameters o and @ has a mean and a
variance equal to a/(a+ ) and aB/((a+ B)*(c.+ B + 1)), respectively,
we can readily determine the mean and variance of the posterior distri-
bution. In particular, the Bayes estimator of p is

to+ T +1

Blp |y, o) = L.

Its precision is estimated by

(to +T™ + 1)(ng + n — tg — T 4+ 1)
(no+n+2)2(no+n+3)

V(ptylr"vyn):
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Remark 12.2: When the number n of observations is large, the Bayes
estimator satisfies approximately

7(n)

E@ly,.-,9n) =

which is the usual sample mean estimator. In addition, the estimated
precision of the Bayes estimator is approximately given by

=17,

T (n-TM) g1-7)
n3 T on

Viply,...,un) =

The latter quantity is simply the classical estimator of p(1 — p)/n.

Remark 12.3: When n is finite, the Bayes estimator is a weighted
average of the usual sample estimator Y and the prior mean of §, which
is (to +1)/(no + 2). Specifically, we have

ng+2 ifp+1 n

E(Plyl,---,’!/n)=n+n0+2no+2 n+no+2y.

b) Poisson Model

Let Y3,...,Y, be a random sample drawn from a Poisson distribution
P(\) where A > 0. The likelihood function is

= 1
bn(y1,-- - Yn;A) = exp (—n/\+2yilog/\)ﬁ—ﬁ————'

i=1 i=1 Y&
x exp(~n)\)AZ:=1 v,
Thus -
T(n)(ylv (KRR yn) = Z Yi.
i=1
A conjugate prior for A must be continuous on JR* with a density of
the form
(X)) o< A% exp(—n,)) with £ > 0.
A gamma distribution with parameters tp + 1 and 1/ng satisfies these
requirements. Thus the density of a conjugate prior is

to+11yt
_ ng?" A exp(—ng)
L e o
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The corresponding posterior distribution is of the same form. It is
a gamma distribution with parameters tg + 7™ -+ 1 and 1/(n + ng).
Therefore

g+ TM 41
E(/\Iyl,n-,yn)-*W
and n)
) ) _to+T"+1
V()‘lyla'--ayn)“‘ (n+n0)2

Remark 12.4: Restricting ourselves to the first two moments of a pos-
terior distribution clearly leads to a loss of information. In this example,
when n is small, the posterior density is heavily asymmetric. ‘Such an
asymmetry might be interesting to take into account.

Remark 12.5: When n is large, the Bayes estimator becomes again
approximately equivalent to the usual estimator, i.e.

T®
E(/\lyl,-.-,yn)z-—;— =7,

while its estimated variance is

V()‘!ylr-'-vyn)%

S e

¢) Uniform Model

Let Y1,...,Y, be a random sample drawn from a uniform distribution
on [0,6]. The likelihood function is

1
Lo(yis-- - yni ) = b’;{nsupyises
where T(™) =sup,_; v
A conjugate prior must be of the form

w(0) o @Lntoso where t5 > 0,19 > 1.

g
Thus
o~ tgo?
r(é’) = (N9 — I)W]ltusg.
This is a Pareto distribution with parameters o = ng —~ 1 and 4 = ¢,
(see the appendix to this chapter).
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The corresponding posterior distribution is also a Pareto distribution,
but with parameters a; = n+no—1 and 4; = sup(to, T(™). This follows
from Example 12.3 where it was shown that the binary operation * is
the sup operation. Hence

1y Rt T))mmo?

7\‘(0 l Yiy.- 7y'n) = (n +ng — gn+no ]lsup(to,T("))SB'

The next figure represents the form of such a posterior density

S

s

I

|

1

l
] -
sup(s,, T™] 8

Figure 12.3: Posterior Density

The posterior mode 8 = sup(to, T™) is a natural estimator of the
parameter . This estimator is not the Bayes estimator, which is equal
to

b = E@|yis---1Yn)

= e—— t
ﬂ+n0~2sup( 07T )
n+ng—1-

= —{.
n+ng — 2

These two estimators of 6, however, become equivalent as the number n
of observations increases.
The posterior variance is

n+ng—1

V(0 |y,---1¥n) = (n+ng — 2)%(n +mno — 3)

2
(sup(to, 7))
(see the appendix to this chapter). It is not much different from

(Supi-—-l,...,n(yi))z
n2

k]

when n is large. Note that the order of the latter quantity is 1 /n?.
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d) Gaussian Linear Model with Known Variance

Conjugate priors can also be used when the observations Yi,...,Y, are
not identically distributed. A simple example is provided by the linear
model. '

The observation vector Y = (¥3,...,¥,)" is assumed to follow a
multivariate normal distribution N (X8, o3I), where the K explanatory
variables are linearly independent and the variance o¢ is assumed to be
known for the moment. The likelihood function is

1
Lo(y1,...,Yn; 6) ox exp ——2(y —X0)'(y - X6).
0

Consider the OLS estimator 7™ = (X'X)~1X'y, which is a sufficient
statistic. Let £2(,y = X'X denote the control matriz. Then

1
(Y1, ..y Un;0) ox ex ——%.g 7(n) _ e)lﬂ(n)(T(n) -9).

Thus the model has a sufficient statistic 7™ that is of constant dimen-
sion.

The operation * that associates T(**P) to the pair (T, 7)) is
given by

np “latp
TC (s, Ynap) = <Zm£wi) AT

i=] g==1

= Qnyp)-1 <ﬂ(n)T(") (Y1r-++1Un)
+Q(p)T(p) (yn+17 caey y'n+p)> 3

where z; is the ith row of X. The operation * depends on the control
matrix, which is simply updated via the formula

ﬂ(’n-&-]:o) (xla oo 7$n+p) = ﬂ(n) (z1,... 1 Tn) + ﬂ(p) (Trt1y.-. ’ mn—i-p)'

A conjugate prior distribution for the parameter 6 must be continuous
on R¥ and such that

7(0) ox ex —E}ff(to — 6)'Q0(to — ), where Qg > 0.
0

Thus a conjugate prior is normal with mean ¢, and variance covariance
matrix 0325,

410



12.2. CONJUGATE PRIORS

The corresponding posterior distribution is also normal with mean
(R0 + Qmy) ! (oo + Q(n)T(")), and variance covariance matrix

O'g (Qo -+ ﬂ(n))-l.
Thus the Bayes estimator, which is the posterior mean, is
6= (ﬂo + ﬂ(n))-l(ngto -+ ﬂ(n)T(n)).

From this expression we obtain immediately the following property.

Property 12.3: In ¢ Gaussian linear model with a conjugate prior, the
Bayes estimator is a convez combination of the prior mean ty and the
OLS estimator T(™ = (X'X)~1X'Y.

e) Gaussian Linear Model With Unknown Variance

We consider the Gaussian model Y ~ N (X8, o2I) where both parameters
0 and ¢? are now unknown. The likelihood function is

1 1

Zn(yl)-'-ryn;oaaz) x (;é)_n/—z'exp—' z(y_xg)/(y_'xg)

202

This expression can be rewritten using the control matrix @ = X'X, the
OLS estimator of T'(y) = (X'X)~1X'y of 4, the number of explanatory
variables K, and the usual variance estimator

1
n—K

Viy) = ly — XT'()|. (12.6)

Specifically, let h = 1/02. We have
e'n.(yly ceeyYns b, h)
hin— K h
o« wien (-2 Ky - L) - oyamw) -o)
~ W¥2exp (=5 (1) - OYUTW) - 0)) KO~

e 0]

The second expression suggests the form of a conjugate prior distri-
bution for the pair (6, k). Namely:
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(i) the marginal distribution of h is chosen in the family of gamma

distributions,

(i) the conditional distribution of # given k is chosen in the family of

normal distributions N (g, (h§2)™1).

Such a conjugate prior distribution for (#,h) is said to be a normal-

gamma distribution.

In Table 12.1, we summarize the various forms of conjugate priors
(and hence of posterior distributions by construction) that are associated
with some usual models.

Table 12.1
Conjugate Prior Distribution
Sampling Models
"Prior and
Model 6 © Posterior
Distributions
B(1,p)®" P (0,1) Beta Distribution
P()\)®n A R* Gamma Distribution
U{?,?)] 0 R** Pareto Distribution
N(m,o})®" m R Normal Distribution
Normal
N(m,?)®" (m,0?) | Rx R™ | Gamma
Distribution
. Pareto
£(y; Ag, ) = o+1 @ R* Gamma Distribution
for y > Ag
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12.3 Asymptotic Results

When the number n of observations is large, the examples of Section
11.2.4 show that:

(i) the Bayes estimator, ie., the posterior expectation, is approxi-
mately equal to a classical estimator such as the maximum likeli-
hood estimator,

(ii) the posterior variance is given approximately by the inverse of the
estimated Fisher information matrix,

(iii) the posterior distribution converges to a normal distribution.

These asymptotic results are not specific to the use of conjugate priors.
They can be established in a more general context.

12.3.1 Asymptotic Study of Posterior Distributions

To simplify the presentation, we shall not discuss explicitly the regu-
larity conditions under which the next asymptotic arguments hold. We
shall assume that the model is a conditional model of which the likeli-
hood function for n observations is £,(y | z;8). Let 6o denote the true
but unknown parameter value used to generate the observations. Thus,
within a classical framework, we shall examine the posterior distributions
obtained in a Bayesian framework.

It is useful to make the following assumptions where convergence is
defined in the classical sense, i.e., with respect to the true distribution
Py, and without integrating with respect to a prior distribution.

Assumptions:
(i) The parameter space © is an open subset of IRP.
(i) The true parameter value 6o satisfies 6o € ©.

(iif) The specified prior distribution II is continuous. (Hence the dom-
inating measure is the Lebesgue measure on IRP.) Tts density is
strictly positive in a neighborhood of fp.

(iv) The conditional likelihood function £,(y | z; 6) is twice continously
differentiable with respect to 6.

(v) The means of (1/n)logé.(y | z;9), (1/n)8logLn(y | x;0)/00 and
(1/n)d2 log n(y | =;0)/86 06" converge Py, — almost surely for
every given 6.
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(vi) The asymptotic Fisher information matrix

_ o 10%logla(y ] =i60)
Z(60) = plim,, ~~ a6 06"

is nonsingular.

We also assume the existence of a maximum likelihood estimator &
of 6 converging to 6y at the rate 1/\/n and satisfying the first-order
conditions dlog, (y | z;6%)/66 = 0.

Property 12.4: Under the previous assumptions, the posterior distri-
bution of \/n(6 — 0;,) associated with the prior distribution I converges
Py, — almost surely to the normal distribution N(0,Z(6,)~1).

SKETCH OF THE PROOF: The posterior density of 6 is

__ m(0)n(y | x;6)
Tn (6 l Y, T) = fe W(g)[n(y l x; H)da

Thus the posterior distribution of z = \/n(d — 67) is

1 * ) *
) _ h—ﬂgﬁ("ﬁ-’rgn)en (ylﬁs"‘j‘ﬁ""en)
mn(zl92) = Ton(0)6nly | 5070 !

ie.
Wn(z I Y :L‘)

;,}75%’(%”2) GXP<10g£n (y | w;ﬁwi‘z) —logén(y | z; 9;2))
- J7(6)2u(y [:6) exp—log u(y | 2;05)d0

Hence

z *
Ta(z |y, z) = Knp(y,z)m (—ﬁ + 9n)
X exp (Iogfn (y | z; -j—-ﬁ + 9:{) —log ln(y | z; 9:;)) :

where K, (y, z) does not depend on the argument z.
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Next, we use the fact that z//n converges to zero and that 8% con-
verges to dp. We obtain

(2 | y,2) # Kn(y, z)7(8o)
7 . (¥
% exp (;ﬁ_alogeng;[ z; 6%) +

1 8210g€n(ylw;9?§)_2_)
. .

ZI
Jn o6 8¢’ vn
Thus

182 . o>
e | 3:0) # Knly, @)rion) exp (57 (-1 TEBULBE)) ),

n 80 o9’
Hence

(2 | 9,3) # Ka(y, 2)7(60) exp ~3 L (0o)z.

Finally, because the integration constant K,(y,z) must be such that
(2 | ¥, z) is a probability density, we obtain

1 1 L,
@0P2 Jdet Tt T 2 (60)=-

Wn(z ‘ Y, :I)) #

12.3.2 Consequences

Various results follow immediately from Property 12.4. Some of these
are: )

a) The posterior distribution of 6 as well as that of /n(6 — 6%) tend
to become symmetric.

b) The posterior mean 6, = E(0 | y) becomes approximately equal
to the maximum likelihood estimator 6.

c) Since 67 converges to p, it follows that the Bayes estimator 6,
also converges to fp.

d) The posterior variance V(6 | y) is such that

nV(@ly) = V(vVn®-6)l|y)
I3 I(()o)“l.
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e)

)

g)

Consistency and asymptotic efficiency properties do not depend
on the chosen prior distribution, provided the prior is continuous
with a strictly positive density on a neighborhood of 8y. Then
a priori information has effectively vanished due to information
accumulated from the observations. ’

Since the posterior distribution can be approximated by a normal
distribution, namely by

r * _}_ #\=1
v (e 2zten ),

we can construct, for instance, the smallest region containing ap-
proximately 95% of the probability. This region is given by the
ellipsoid defined by

{6:n(6 - 6;)'Z(67)(6 — 6;) < XxGos(P)} 5 (12.7)

where X3 o5 (p) denotes the 95% quantile of the chi-square distribu-
tion x2(p) with p degrees of freedom. Thus, instead of considering
the estimation problem of # as a point estimation problem, we can
view it as an interval estimation problem (see chapter 20).

The proof of Property 12.4 does not actually use the property that
the specified model contains the true distribution. In fact, Prop-
erty 12.4 can be readily generalized to the case where misspecifica-
tion errors are present in the likelihood function. In this case, Tay-
lor expansions are carried out around the pseudo maximum likeli-
hood estimator 6};, which converges to the pseudo true parameter
value 6. Then the posterior distribution of v/n(6 — 6};) converges
Py,-almost surely to the normal distribution N(0, J(6%)~!), where

. : 18%logln(y | z;65)
J) = Pim — e -

12.4 Diffuse Priors

12.4.1 Representations of a Noninformative Prior

In Section 12.1.4, we studied an example where the parameter 6 is inter-
preted as a mean and where the prior distribution on this parameter is
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chosen in the family of normal distributions N(mqg,02). The variance o2
of the prior distribution intuitively measures the importance of a priori
information: the larger o2, the less precise this information. When o2
increases to infinity, we showed that the posterior distribution could be
viewed as being obtained from the improper prior m(6)d0 o« df. Then
we interpreted this diffuse prior as representing our noninformative prior
in some way. It is important to know whether such an approach can be
generalized. It is also important to provide various justifications for such
noninformative priors.

a) Comparing Prior Measures of Intervals

Consider ratios of measures assigned to intervals of the form (—oo, a] and
[b, +00) according to the diffuse prior df. For such intervals we obtain
the following indeterminate result

II((-—oo,a]) - ffoo df . _O_?
I(b+o0)  [F°dp oo (128)

According to Jeffreys, the existence of such an indeterminate result
constitutes a formal representation of our ignorance. It is clear, however,
that it is only a particular form of our ignorance, which is represented
here by the limit of prior normal distributions. For instance, if we con-
sider now intervals of the form [a;, ag] and [b, 4, 00), we obtain

W, 02) _ Joy @0 _
I(o+o0))  fF°de

Hence the improper prior df implies that every bounded interval is in-
finitely less likely than an unbounded interval. In addition, it is easy to
find many other improper priors satisfying property (12.8). For instance,
property (12.8) is satisfied by the prior w(8)df o 62df. Thus condition
(12.8) does not characterize completely a notion of diffuse prior.

b) Invariance With Respect to Parameterization

The Lebesgue measure df is invariant (up to a multiplicative factor)
to linear transformations of the parameter §. However, it is modified
by nonlinear transformations of the parameter. Thus, if the Lebesgue
measure is retained as a representation of a noninformative prior, it is
necessary to indicate which parameterization is used.
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Example 12.5: Consider the usual linear regression model Y ~ N(Xb,
0%I). Two types of parameters appear. There are the coefficients b of
the explanatory variables, on the one hand, and the variance o2, on the
other hand: A change of measurement units on the variables X and
Y or some aggregation of explanatory variables, etc... introduce linear
transformations of the parameter b. This suggests to retain the Lebesgue
measure as a diffuse prior for b

n(b)db o db

since this measure is invariant by linear transformations.

If we now consider the variance o2, other common parameterizations
are given by the standard error Vo2 and the precision h = 1/ Vo2
These transformations are linear in logo. Note also that a change of
measurement units on the endogenous variable leads to a translation of
logo. This suggests the use of the Lebesgue measure as an improper
prior on logo. This gives

1
w(o)do x ;da,

after a change of variables.

Lastly, if we suppose that the two priors on b and o? are independent,
we obtain

(b, 0)db do x %db do.

Invariance issues appear to be necessary in practice. Examining
such issues can be quite helpful in some simple cases. We give another
example.

Example 12.6: In a Poisson process, the parameter A is usually in-
terpreted as the rate of occurrence of an event in the infinitely small
period of time (¢, + dt). Then the distribution of the number of times
the event has occurred between time zero and time T is given by the
Poisson distribution P(AT"). Moreover, the length of time separating
any two occurrences follows an exponential distribution with parameter
1/X. Natural changes of parameterization are A — AT and A +— 1/A.
This suggests the use of the Lebesgue measure as an improper prior on
log A. Hence '

r)dA %\.d,\.
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There are many diffuse priors that are compatible with some given
reparameterizations. Jeffreys has proposed the following choice

m(0)dd oc (det Z(6))'/2d6, (12.9)

where Z(f) denotes the Fisher Information matrix corresponding to the
likelihood function of the specified model.

Property 12.5: Let w(6)df o (det Z(8))'/2d6 be the prior distribu-
tion and n = g(0) be a continuously differentiable bijective reparame-
terization. The prior distribution on 1 induced by the mapping g and
associated with 7(6) df is proportional to (det Z(n))/2dy.

PrOOF: Let £(y;6) denote the likelihood function parameterized by 6.
Then the likelihood function parameterized by 7 is £(y; g~ 1(n)). Thus
the Fisher information matrix associated with the model parameterized
by 7 is

It) = E, (310g€(Y 19~ (m)) Olog (Y g 1(n)))

on on'
89 (n) L, (Blog £(Y;97(n)) Dlog £(Y; 9"1(77))> dg~(n)
On Ey o0 o0’ o'
dg~(n) 39“1(71)
o Z(6) :

Taking the determinant of each side of this equation gives
det Z(n) = G det Z(9),

where G is the Jacobian determinant of the transformation g—!. Then
taking the square root of each side gives

(det Z(n))*/? = G(det Z(6))*/2.

Therefore (det Z(n))'/2dn gives the prior distribution on 7 induced by
the mapping g and associated with mw(8)d6. O

Clearly, there exist many prior distributions having the preceding
property. Jeffreys’ solution has the advantage of giving the desired result
in the case of a normal distribution.

Example 12.7: In the usual linear regression model Y ~ N(Xb, o2I)
with known variance 63, the Fisher information matrix is Z(b) = (1/02)

419



Bayesian Estimation

X'X. Thus Jeffreys’ diffuse prior (12.9) gives, as desired, a prior measure
on b that is proportional to the Lebesgue measure.

Example 12.8: In the preceding example, suppose that the variance is
unknown. The Fisher information matrix is diagonal

I(b,0'2) — ( (1/0'20)X’X n/ga4 ).

Computation of the determinant gives a measure that is not proportional
to the expected measure (1/0)db do.

' c) Diffuse Priors as Limits of Conjugate Priors

In Section 12:1.4 the diffuse prior was obtained as a limit of the conjugate
prior N(mg,0¢) as o2 increases to infinity. We now examine whether
such an approach-is applicable to other examples. Namely, we wish to.
know whether a suitable limit of conjugate priors can be viewed as a
diffuse prior.

Example 12.9: Let Y3,...,Y, be n random variables independently
and identically distributed N(0,0?). The likelihood function is

1 1 &

2 2

£y, 0%) x RRE exXp—5— E 1 Y;.
fu==

From Section 12.2.4-e) we know that a conjugate prior on h = 1/0? is a
gamma distribution. Thus-we have

Tya() R~ lex —-b—.
o

Such a prior distribution has a mean Eh = va and a variance
Vh = vo®. Hence we may hope to obtain a diffuse prior from: this
conjugate prior by considering sequences of auxiliary parameters such
that va converges to a finite limit and va? diverges to infinity. Let
Vn = a/a, where @ is an arbitrary constant. As o, increases to infinity
we obtain '

1
W(h) X E’

" i.e., the Lebesgue measure applied to the parameter log h. Note that the
“limiting prior” thus obtained does not depend on the value a.
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Example 12.10: As in Section 12.2.4-a) consider a binomial model.
Conjugate priors belong to the family of beta distributions

_pi(1-p)ft
n(p) = “"Wﬂ[o,l] (p)-
Such a distribution has a mean Ep = a/(a + 8) and a variance
Vp= ab :
P e+ T+

In this case, parameter p is constrained to be in the bounded set
[0, 1] and the notion of diffuse prior is non-degenerated, it is given by
the uniform probability distribution on [0, 1]. It is easily seen that this
distribution belongs to the previous family and that it is reached for
a=1and f=1.

d) Diffuse Priors as Approximations to Prior Distributions

Lastly, a justification of diffuse priors has been given by Lindley based
on robustness arguments.

Given a model {£(y;0),6 € O}, different prior distributions lead,
in general, to different posterior distributions. The “ discrepancy” be-
tween two posterior distributions, however, can be much smaller than
the discrepancy between the two prior distributions from which the two
posterior distributions are derived. Intuitively, since a posterior distri-
bution is given by the formula 7(6 | y) < 7(6){(y | §), we can expect
that changes in a prior distribution over regions where the likelihood
function £(y | 6) takes small values will have little effect on the pos-
terior distribution. Such an argument clearly depends on how the dis-
crepancy between two distributions is measured. This argument, how-
ever, is valid if the discrepancy is based on the comparison between the
means of the posterior distributions (see Section 12.6 for more precise
results).

In this approach the choice of an improper prior such as Lebesgue
measure constitutes a practical approximation to a prior distribution
that is sufficiently flat over neighborhoods of modal values of the likeli-
hood function.

Remark 12.6: The preceding argument assumes implicitly that the
prior has a certain form in the neighborhood of the maximum likelihood
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Figure 12.4: Diffuse Prior and Likelihood Function
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estimator 9(y) Since this estimator is a function of y, it follows that the
prior distribution depends implicitly on the observation y. This shows
that the preceding argument is not strictly a Bayesian argument.

To summarize, it seems that the notion of a diffuse prior is somewhat
ambiguous. In practice, one chooses frequently some Lebesgue measures
defined on appropriate transformations of the parameters so as to take
into account natural parameter changes and to obtain simple forms for
the posterior distributions. The above asymptotic results and robust-
ness arguments show that such a strategy is relatively neutral to other
possible choices of a prior.

12.4.2 Application to the Linear Model
a) The Model

We consider observations satisfying the linear model y = Xb + u where
the n x K matrix X is assumed nonrandom. To develop an estimation
procedure that does not depend heavily on the normality of the errors,
we assume that the errors are jointly -multivariate Student distributed.
The density of a multivariate Student distribution is indexed by two
positive parameters ¢ > 0 and vg > 0. It is given by

- K(Vo) . 1
= (a2)n/2 uly (vHe)/2?
(vo+22)

£(u;v,0) (12.10)

140
where n denotes the number of observations and

K () = ()" (v + 5) =7
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The mean of this distribution is zero provided v > 1 and its variance
covariance matrix is E(uu’) = (v90?/(vo — 2))I provided vg > 2.

When vg increases to infinity, this joint density converges to the den-
sity of the multivariate normal distribution N (0, o2I). Hence the case of
normal errors is contained in the above specification.

When the parameter v is finite, then u;/o follows a univariate Stu-
dent distribution with vy degrees of freedom. As vy becomes small, the
tails of this distribution become thicker. When vy = 1, this distribution
is identical to the Cauchy distribution.

b) Bayesian Analysis With a Diffuse Prior

In what follows, we assume that vy is fixed and that the prior distribution

concerns the parameters by, k = 1,..., K and o? only. Specifically, we
assume that by,...,bx and logo? follow independent diffuse priors so
that )
2
(b, 0%) pot (12.11)

Then the posterior distribution is

—— , —
E(b, o? ‘ X, VO) x (0.2)-—(n+2)/2 (VO + (y Xb) (y Xb)

o? !

)‘("+Vo)/2
ie.
l(b, 0'2 l Y, Xa VO) &

- s\ —(ntvp)/2
2\(vo/2)—1 S AYa d] _

where b = (X'X)~1X'y is the OLS estimator of b

1
2
s T n—-K

is the classical unbiased estimator of the variance, and

(y = Xb)'(y — Xb)

o 102+ (n—K)s?
g° =
v+n—K
The above expression for the posterior distribution gives easily the
posterior marginal distribution of 0 and the posterior conditional distri-

bution of b given 2. The latter posterior distribution is a K-multivariate
Student distribution.
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c¢) Posterior Marginal Distribution of ¢2
The posterior marginal distribution of ¢ is proportional to
(az)uo /2-1
(5-2)(n+uo-K)/2 :

Hence
g2\ »0/2-1 1
W(azly,X,Uo)O((?) TR (12.13)
(1+ 25 %)

Thus the variable 02/s® follows a Fisher distribution with vg and
v = n — K degrees of freedom (see Property B.56). The mode of this
distribution is (v/v)(vp — 2)/(v + 2) provided vy > 2 and the posterior
mean is

R

B@?ly) = 2
-K
n—-K-2’

3 |

(12.14)

provided v =n — K > 2.

Remark 12.7: The Bayes estimator of o2 is independent of the chosen
form of the distribution of the errors, i.e., of v5. On the other hand,
the posterior distribution of 02 depends on . In the limiting case with
normal errors, i.e., when vy increases to infinity, the posterior distribu-
tion of 62/(n— K)s? converges to the inverse of a chi-square distribution
with n — K degrees of freedom (compare with the classical result on the
distribution of (n — K)s?/o?, Property 6.12 and Theorem B.6).

d) Posterior Marginal Distribution of b

Formula (12.12) shows that the posterior distribution of b conditional
on ¢2 is a multivariate Student distribution. If b is the only parameter
of interest, then this conditional distribution must be integrated with
respect to the posterior marginal distribution of o2. This gives

7(b | y,v0) o ((n— K)s? + (b= bYX'X (b - b))~"/2. (12.15).

‘We have a multivariate Student distribution. Note that this distribu-
tion is independent of the auxiliary parameter 1. The posterior mean
of bis )

Eb|y,v0) = b, (12.16)
which is the OLS estimator of b.
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12.4.3 Marginalizing

We consider observations on two types of variables X and Z. Let
= (X, Z). 1t is assumed that the joint distribution of the pair (X, Z)
depends on the parameter vector § = (¢, %) and that

Uy | 0) = £(z | 9)e(z | z; 0, 9).
That is, it is assumed that the marginal distribution of X depends on
only through ¢.
Let 7 denote a prior distribution on 8 = (¢,%). We can always de-
compose 7 as w(P, ) = w1 (@)mwa(v | ). Therefore the joint distribution
of the observations and the parameters is

Ly | 0)m(0) = (€= | $)m1(9))(e(2 | 2; b, ) m2(¥ | 9)).
Hence the marginal distribution of (z, ¢) is £(z | ¢)m1(9).

Suppose now that ¢ is the parameter vector of interest. To conduct
inference on ¢, we shall first determine the (posterior) distribution of #
given y. Then we shall integrate this posterior distribution with respect
to 7 so as to obtain the (posterior) distribution of ¢ given y. Such
a procedure is called marginalizing. An example of marginalizing was
given in the preceding paragraph. Here we obtain

(1) = [ OO om0,
Sz | $)mi(d)e(z | z; 6, ) ma(¥ | $)dpdyp

When this posterior distribution depends on the observations only
through z, i.e., when X is partially sufficient for ¢ so that n(¢ | y) =
7(¢ | z), thén we can obviously determine this posterior distribution
directly from the joint distribution of the pair (X, ¢). That is, we need
only the conditional distribution of X given ¢ and the marginal prior
distribution on the parameter ¢.

Marginalizing is always valid when the prior dlstrlbutlon is a proper
probability distribution. When the prior on the parameters is an im-
proper prior, marginalizing may not be justified. Such a difficulty is
referred to as the marginalizing paradoz. As an illustration, consider a
parameterization consisting of a mean m and a standard error o. Con-
sider also the diffuse prior m(m, o)dm do « (1/0)dm do. Suppose that
. the parameter of interest is the ratio ¢ = m/o. Then we need to deter-
mine the possible improper marginal distribution m; of ¢. But for every
nondegenerated interval of the form (a,b), we have

H(l:- e (a,b)) =/0°°§- (/badm) do = +00.
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Hence it is clear that marginalizing is not a possible operation here.

12.5 Best Linear Unbiased Bayesian
Estimation

In the preceding sections the determination of the Bayes estimator and
the posterior distribution requires that the conditional distribution of ¥
given 8 is completely specified. Sometimes, however, a model is defined
by its first two moments only. The bayesian approach is still applicable
provided one restricts the class of estimators considered. We discuss
such an extension within the linear model.

12.5.1 Existence and Form of the Optimal Estimator
We suppose that the observations satisfy the linear model

Y =Xb+u, (12.17)

where E(u | X;b,02) = 0 and V(u | X;b,02) = 0?I. Suppose also
that we restrict the class of estimators considered to the class of affine
estimators, i.e., to estimators of the form

b=AY +a. (12.18)

We can easily compute the bias in the Bayesian sense and the corre-
sponding risk of such an estimator. We have

E(b-b) = E(a+(AX-1)b)
= a+(AX -I)Eb,

and

E(b—-b)(b- by
= V(b-b)+E(b-bE®b-b)
V((AX —T)b+ Au) + E(b - b)E(b — b)’
VE(AX -I)b+ Au|b,0%) + EV((AX — )b+ Au | b,0?)
+E(b—b)E(® - b)Y
V((AX ~1)b) + E(c?AA") + E(b — b)E(b — b)’
(AX -TI)V(b)(AX —I)' + Ec?AA’ + E(b—-b)E(b - b)'.

426



12.5. BEST LINEAR UNBIASED BAYESIAN ESTIMATION

Thus, the determination of these two moments does not require a com-
plete specification of the prior distribution. Specifically, it suffices to
know the first two moments of the prior.

To simplify, we assume that Eb = 0. Let Q@ = Vb and 7?2 = Eo2.
Then unbiasedness in the Bayesian sense, i.e.

E(b—1b) =0,
is equivalent to
a=0.

Hence we can restrict ourselves to estimators without a constant term.
Moreover, given the unbiasedness condition, the Bayesian risk becomes

E(b-b)(b-b) = (AX -DQAX -I) +7?AA’.

Property 12.6: There exists a unigue matriz A minimizing the
Bayesian risk in the positive semidefinite matriz sense. This matriz
is given by

A = QX' (0?1 4+ XOX")"L.

ProOOF: We shall only verify that the matrix A must be of the above
form. As an exercise, the reader may verify the converse. To establish
that the above form is necessary, it suffices to consider the first-order
conditions

(AX - DX’ +7?A = 0.

These conditions can be written equivalently as

AR I+ X0X') = QX/,

ie., as
A = 0X'(* 1+ X0X/)"L.
|
Note that
X' (P’ I+ X0X) ! = (P’ I+ X'XQ)"1X/,
since

(%I + X'XQ) "X/ (n%1 + XOQX)
= (PI+X'XQ) (7L +X'XQ)X'
= X\
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Hence an alternative form for the matrix A is
A = Q1+ X'XQ)"1X/,

ie. .
A= ("7 + X'X)IX. (12.19)

From Property 12.6 and equation (12.19) it follows that there exists
a unique best linear unbiased estimator in the Bayesian sense. This
estimator is
b= (*Q 1+ X'X)"IXY. (12.20)
Remark 12.8: From equation (12.20) and the results obtained for a
Gaussian linear model with a conjugate prior (see Section 12.2.4-d)), it
follows that b is similar to the estimator obtained there. Thus, as in the
classical framework, the best linear unbiased estimator is also the best
estimator under normality of the error terms and under normality of the
prior distribution on b.

12.5.2 Shrinkage Estimators
The estimator

b= Q! + X'X) IX'X(X'X)'X'Y
can also be written as

b= (?Q + X'X)"HX'Xb + n?Q720),

where b is the ordinary least squares estimator of b. Thus b can be viewed
as a convex combination of b and zero. Hence, when Eb = 0, the Bayesian
estimator b shrinks the OLS estimator toward zero. In general, however,
shrinking is not uniform in every direction. For instance, suppose that
the matrix Q is

0 = (X'X)"V/2ding (we)(X'X) 72,

where diag {wy) is a diagonal matrix with. positive diagonal elements.
Then we have
~ 172 P N -1 -~
b= ((X’X')l/2diag (;—-) (X'X)1/2 + X’X) X'Xb,
k

ie.

o

oy =1
(X'X)M2 = diag (H%) (X'X)1/2p,
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Property 12.7: Suppose that
Q= (X'X)"2diag (we)(X'X)~1/2.

Then the Bayesian estimator 4 of the “shrinked” parameters defined as
v = (X'X)'/?b is obtained from the OLS estimator via

- 1 .
Ve = 1+n2/wk7k'

The shrinkage coefficients are equal to 1/(1 + n?/wg). They are de-
creasing in n?/wy. Hence, the larger n%/wy, the more important the
shrinkage and the closer to zero the Bayesian estimator.

Remark 12.9: The choice of the prior variance covariance matrix {2
depends on the control matrix X'X. Thus €2 depend on the observed
values of the exogenous variables. Hence such a choice for £2 is not
strictly Bayesian.

Remark 12.10: When £ = w(X'X)™!, then all shrinking coefficients
are equal and the above estimator becomes

- 1 ~
vy

Estimators that correspond to choices of matrices 2 of the form £ =
(X'X)~/2diag (wi)(X'X)~1/2 are frequently called ridge estimators.

12.5.3 Bayesian Linear Estimators and Admissible
Linear Estimators in the Classical Sense

Every linear Bayesian estimator, of which the general form was given
above, is an admissible linear estimator in the classical sense. The proof
of such a property is identical to the proof of Property 2.2. An interesting
question is whether the converse holds, i.e., whether every linear admis-
sible estimator is a Bayesian estimator. The answer to such a question
is positive.

‘We shall verify this property for the special case where b is a scalar.
We consider the linear model Y = Xb + u, where X is a n x 1 matrix,
E(u|X)=0,V(u|X)=0%,bc R, and 0% € R+

It is easy to see that every estimator that is a linear function of ¥ is
dominated in the classical sense by an estimator that is a linear function
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of b= (X'X)~1X'Y. Therefore it suffices to consider estimators of the
form . X
b(a) =ab, witha € R, (12.21)

when searching for admissible estimators. :
The classical risk of an estimator of the form (12.21) is

R(b(a);b,0%) = (a —1)%? + a®02(X'X)"L. (12.22)

Thus an estimator of the form (12.21) is inadmissible if there exists ag
such that
(ao—1)2< (a—1)%? and @2 < a? ‘ (12.23)

hold simultaneously with at least one strict inequality. Condition (12.23)
is equivalent to @ < 0 or @ > 1. Therefore admissible estimators are of
the form _

b(a) = abwith0 < a < 1. (12.24)

That is, the class of admissible estimators is the class of convex combina-
tions of zero and the OLS estimator. From the previous section it follows
that such a class is exactly equal to the class of best linear estimators in
the Bayesian sense.

Remark 12.11: Although estimators of the form ab are unbiased in
the Bayesian sense when Eb = 0, such estimators are not unbiased in
the classical sense with the exception of the OLS estimator which corre-
sponds to a = 1.

12.6 Approximate Determination of
Posterior Distributions

The posterior distribution is given by

_a(0)ey | 6)
"O 1Y) = Ty | 6)a

With the exception of some simple cases such as those studied in the
preceding- sections, the posterior distribution is, in general, difficult to
determine in practice. Therefore it is useful to find some approximations
to the posterior distribution. Such approximations can be analytical, in
which cases they are valid for every value of y, or they can be numerical,
in which cases they are valid only for the actual observations.
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12.6.1 Approximating the Prior Distribution

A first method consists in replacing the density of the prior distribution
n(f) by an approximation of it ¢(f) such that the associated posterior
distribution given by

@)y ]6)
C1) = ooy 0@

is readily computed. Then the approximate posterior q(0 | y) is used in
place of (0 | y). A similar idea was used to justify some diffuse priors
(see Section 12.4).

Consequences of using an approximate prior on the posterior distri-
bution are assessed in the next property.

Property 12.8: We make the following assumptions.

A.1: The approzimation of the prior distribution is adequate on some
subset B C ©, i.e.

3B co,38 (small):lsg—(%)SI-{-ﬂ,VGEB.

A.2: The approzimate prior is not significantly smaller than the original
prior, i.e.
3\ (moderate) : =(6) <AVéee.
q6) =7

Then, under these assumptions, we have

IBly) ~=@ly) . _1+8
1+8 ~a@ly) ~ QBly)’

VY 0eB,

and
m@ly) oA

@1y <a@B e

PROOF: We shall establish only one of the above inequalities, namely

m0ly) o A
9@]y) ~ QB|y)’
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The other inequalities are proved similarly. We have

w@|y) _ (8 [a0)(y|6)db

961 y) q(6) [m(0)é(y | 6)do .
Ja®)y|6)ydo .

/\W (usm:, A2)
Ja(@)e(y | 6)dd
Jem(0)(y | 6)do
Ja(6)(y | 6)do
J5a(0)e(y | 6)do

A
Q(B|y)

IA

IA

IA

(using A.1)

D

Property 12.8 holds even when the approximate prior g is improper.
Hence, in Assumption A.1, it is always possible to choose the value one
as a lower bound for 7(8)/q(6).

Example 12.11: Consider a random sample Y3,...,Y, drawn from the
normal distribution N(m,1). Suppose that the prior distribution on m
is the shifted exponential distribution

_ | bexp(—b(m —a)), ifm>a,
m(m) = { 0, otherwise.

The presence of a threshold leads to a posterior distribution that de-
pends on the cumulative distribution function @ of the standard normal
distribution.

Suppose that we approximate the above prior by the improper prior

g(m) = b(exp —b(m — a)), Y m € RR.
We have o
atm ) = Vo (Vi (m-7+7))

and
g(m|y)

w(mly)= @(ﬁ(gj-—a—%))an’

where ¢ and @ denote the density and the cumulative distribution func-
tions of the standard normal distribution N (0, 1).
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Property 12.8 can be applied with B = (a,+c0), 8 =0 and A = 1.
We have ;
51y =2 (vi(s-a-2)).

It follows that
m(m|y) . 1

a(mly) ~ @ (va(g-a- 1))

, Vm,

and
L < 7(m1y)

~amwrvm>&

12.6.2 Direct Approximations to Posterior
Distributions

Another method, which is frequently used, consists in selecting a family
of possible distributions for the posterior distribution and in retaining
a distribution in this family that has some characteristics common to
the exact posterior distribution. For instance, if the family of normal
distributions is selected, then the exact posterior distribution could be
replaced by a normal distribution with the same mode and the same
curvature at the modal value. Alternatively, when conjugate priors arise
naturally, we can base approximations to the exact posterior distribution
on families of conjugate priors or on mixtures of such conjugate priors.

Remark 12.12: The idea of using mixtures of distributions arises
essentially from the study of models derived from latent models for which
there exist conjugate priors. Specifically, consider a latent model whose
likelihood is £*(y* | ) and for which a conjugate prior is (). By def-
inition, the corresponding posterior distribution, which is 7*(8 | y*)
£*(y* | 0)w(8), belongs to the same family as the conjugate prior.

Suppose now that the observed variable Y is related to the latent
variable Y* by Y = h(Y™). The posterior distribution (6 | y) is ob-
tained from the joint distribution of the pair (Y, 6). We have

Ja-10yy (0 | y*) € (y™)dy*

(6 = ,
( I y) fh—l(y) Z*(y*)dy*

o= [ omew
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To simplify the notation, we have implicitly assumed that Y is discrete
valued. The posterior distribution is

(8| y) / DO

or

7(8 | y) o / (6| 37" (y")dy
h=1(y)

Hence the posterior distribution appears as a mixture of conjugate priors
™0 | y*).
Example 12.12: It may happen that the resulting mixture is a partlc-
ular conjugate distribution.
(i) Consider independent pairs of independent variables (Y73, Ys5), i =
1,...,n. Suppose that the parameter § appears only in the distribution

. of the variables Y7;. Assume also that the variables Y7} are identically
exponentially distributed with density

£(yi; | 6) = 0 exp(~0y1;) 1y >0

Thus the joint distribution of the variables (Y7}, Y5,4 = 1,...,n) has
density
n
exp(—05(Y’) + nlog8), with S(Y) = ZY{;,
i==]1

with respect to a dominating measure of the form

pa(dys) [ [ (Byz, >0duts).

im=1

If the variables (Y35,Y5;,¢ = 1,....n) are observed, then a prior on 6
could be the conjugate gamma distribution

w(6) x exp(—8A + klog ),

where A > 0 and k > —1 are two auxiliary parameters.

(ii) Suppose now that the variables Y7%,7 = 1,...,n, which can be
interpreted as survival times, are not always observed. Namely, observa-
tion of the phenomenon stops at time given by ¥;. ’I‘hat is, we observe
Y1; and Y5, given by

Y1 = min(}],Y33),
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and
Yiz = Dy, =y
The likelihood function is proportional to

£(y | ) o< exp(—0S41 + Sy2log ),

where

Sy = ZYzl, S+2—ZY§2

fe=]

Hence, if the prior distribution is a conjugate prior for the latent
model, then it is readily seen that the corresponding posterior distri-
bution is a gamma distribution with parameters \* = \ + S41 and
k* =k + Sio.

12.6.3 Numerical Integration

To determine the posterior expectation of a function 9(6) of the param-
eter we need to determine

E(g(0) | y) = Jo 9(0)e(y | O)m(6)do

Jo Uy | 9)m(6)do

The main practical difficulties encountered in the explicit determination
of such a posterior moment arise from the presence of integrals. These
integrals, however, can be evaluated numerically for the observed value
y. A method that enables such an evaluation is the so-called integration
method by Monte Carlo.

Let q(0 | y) = £(y | )7 (6). Consider the numerator

M= /e 9(0)a(6 | )de.

If p(f) denotes a probability density on ©, then this integral can be

written as ©)a0 | )
gawv)q Y
M= / L a(e)ds (12.25)

Property 12.9: The Monte Carlo integration method consists in draw-
ing 1 independent values 61, . . . ,0, from the distribution given by p(6)do
and in approzimating M by

1.—-1
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The density p used for the draws is called an importance function.

Thus the Monte Carlo integration method consists in approximating
the iritegral M by the quantity Af,. Since M, is an estimator of M, it
is important to study its. properties. .

Property 12.10:
a) M, is a consistent estimator of M.
b) M, is unbiased.

¢) The variance of M, is

VL, = -7-]; ( /e g2(9)q—21(7%)lflde - M2> .

PROOF: .

a) Consistency of M, directly follows from the Strong Law of Large
Numbers provided the integral M exists. (The latter condition is as-
sumed to be satisfied.)

b) Since every variable 6; follows the distribution given by p(6)d#,

we have
. a9 ]y)
EM, = < (0) = ~0) )

- /e 4(0) "f«‘,)y)pw)de

= M.

¢) Lastly, because the draws are independent, we have
e _ 1 o200 1)
Vit, = -V, (g(e) o
1
n

([#0L8 va ).

0

Note that the variance of the approximation based on the Monte
Carlo integration method depends on the choice of the importance func-
tion p. Thus an appropriate choice of p should lead to the smallest pos-
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sible variance. Consider the extreme case where VM, = 0. Then it is
easily seen that it is the case if p is a density proportional to g(8)q(6 | y).
Such an optimal choice supposes that the sign of g(8)q(f | y) remains
constant. Moreover, such a choice is not useful in practice since it gives

__g9(8)q0]y)
PO = 1 08)a@ | )0

where the denominator is precisely unknown. Nonetheless, the previous
argument suggests that the choice of an importance function approxi-
mately proportional to g(f)q(6 | y) leads to a good approximation M,,.

12.7 Appendix

SoME CoMMON PROBABILITY DISTRIBUTIONS

a) Pareto Distribution

A Pareto distribution with parameters & > 0 and 4 > 0 is a continuous
distribution on IR with density

aA*

fys o, 4) = FﬁﬂyZA- (12.26)

/

<V

Figure 12.5: Pareto Density

The mean of a Pareto distribution exists provided a > 1, in which
case it is given by

o0
BaaY =ad® | ;—ig - a-_-oj-l-A. - (122)
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When the parameter ¢ is strictly larger than 2, the variance exists.
The second-order raw moment is

*® dy @
2 @ —= 2
Ea,AY =ad _[4 ya-—l C!-—2A .
Then we obtain the variance as
2
- & 2« 2
Voa¥ = a—2A (a—l)zA ’
i.e.
2
Vu¥ = — 24 (12.28)

(a—=2)(a—-1)%

b) Beta Distribution

A Beta distribution with parameters a and § restricted to be both
strictly positive is a continuous distribution on [0, 1] with density

a-1¢1 ., \B—1
flyion ) = L

where the constant B(a, () is such that the integral of the density is
equal to one. Thus B(a, f) is given by

1{0,1] (?/)a (12-29)

1
B(a, f) =/ y* (1 - y)’dy.
0
It can be expressed in terms of the gamma function I' as

I(e)T(B)
Dla+p8)’

The density of a beta distribution with parameters a and 8 both
stricly larger than one is represented in the next figure.
The mean of a beta distribution is

Jo v2 (1~ y)P~tdy
B(e, B)
B(a+1,8)
B(a, 8)
Fa+1) Tla+p)
I'a) T(a+B+1)

B(a, B) = (12.30)

EypY
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1
0 a—-1 1
a+ff—2

<V

Figure 12.6: Beta Density

.i.e. o

a+f3’

where we have used the recursion relation I'(a + 1) = oI'(a).
"The second-order raw moment is computed similarly. We have

Bla+2,0)
B(a+f)
Fa+2) T(a+p)
MNa) T(a+B+2)
(+1)
atr i
Then we obtain the variance as

a+1
Vo,8Y = EopY (m - Ea,ﬁy)

EopY = (12.31)

E,gY?

_ o < a+l o )
 a+B\a+Bf+1 a+p)’
ie.

af
(a+B)2(a+B8+1)

Va,gY = (12.32)

12.8 Exercises

EXERCISE 12.1: We consider a measure defined on IR with density
f(y) = a with respect to Lebesgue measure. Verify that the condi-
tion ff;o f(y)dy = 1 implies that a = 0. Conclude that there does not
exist a uniform probability distribution on R.
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EXERCISE 12.2: Let § = E(f | Y) be the Bayes estimator of 8, where
0 is a scalar. Let §(Y") be another estimator. Verify that the Bayesian
risk of ¢ is given by

~ ” 2 :
Re(8) = Rel)+ [ (60) - @) &y | Om(0)du(s)a(6).

Deduce the optimality of §.

EXERCISE 12.3: Consider the Gaussian linear model Y ~ N (X4, ¢*1)
where 6 and o? are unknown. Suppose that the prior on (8,02) is a
conjugate prior.

a) Give formulae for updating the auxiliary parameters appearing in
the prior distribution as the number of observations increases.

b) Find the Bayes estimators of § and 2. Give an estimate of their
precision.

¢) What happens to the preceding formulae when the number n of
observations increases to infinity assuming that the control matrix
is such that (1/n)X'X converges to a nonsingular matrix?

EXERCISE 12.4: Consider a random sample drawn from the Pareto dis-
tribution

aA®
y; A,a) = ga+T luz4)
where A is known but « is unknown.

a) Determine the likelihood function and conclude that a sufficient
statistic is the geometric mean, denoted G, of the observations.

b) Suppose that the prior distribution on « corresponds to the diffuse
prior on loga given by w{a) = 1/a; where o > 0. Verify that the
posterior distribution of « is a gamma distribution. Determine its
parameters. Show that the corresponding Bayes estimator of « is
1/log(G/A).

Exercise 12.5: Can a same family such as the family of gamma distri-
butions (say) be a family of conjugate priors for two different models?

EXERCISE 12.6: Suppose that the prior distribution on log o is improper
and proportional to the Lebesgue measure. What is the prior distribu-
tion on oP?
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EXERCISE 12.7: Let Yi,...,Y, be a random sample drawn from the
normal distribution N(#,1). Consider prior distributions of the form
Tgy = N(mo, o) on the parameter 8 including the limit case of the dif-
fuse prior 7o, (see Section 12.1.4). Determine the value of the Kullback
discrepancy between the posterior distributions associated with 75, and
Too. Verify that such a discrepancy measure depends on the observations.
How will you interpret the convergence of the posterior distributions as
oo increases to infinity?

EXERCISE 12.8: To measure the amount of information contained in
a continuous distribution on [—A,+A] with density f(z), Shannon has
proposed the quantity

A
() = f_  f(a)log (@)

Study the properties of such a measure. In particular, verify that it is
minimized when the distribution is uniform on [—A, +A]. Interpret the
latter result in terms of a diffuse prior.
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CHAPTER 13

Numerical Procedures

In the previous chapters we studied various estimators obtained by min-
imization of some criteria such as maximum likelihood estimators, least
squares estimators, pseudo maximum likelihood estimators, method of
moments estimators, asymptotic least squares estimators, etc. The nu-
merical determination and updating of such estimators as well as various
predictions as new observations become available are, however, questions
that are frequently difficult to solve analytically. Such questions can be
approached by means of numerical procedures. In this chapter we present
various classical numerical procedures used in statistics and we discuss
their respective advantages and disadvantages.

13.1 Numerical Optimization

To begin with, we consider the problem of maximizing a scalar function
V(6) defined on a subset © of IR with a nonempty interior. When
the function is twice continuously differentiable, the local maxima of the
function V(f) in the interior of © can be characterized by the first and
second partial derivatives. Thereafter, to simplify the notation, we let
g(8) = 8V (0)/80 and G(0) = 8%V (9)/0609' = Og()/08' denote the
gradient and the Hessian, respectively, of the function V at 6.

A local maximum 6 of V satisfies the first-order conditions
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Moreover, except in some degenerated case, § is such that the matrix

82V (6)

GO = 56

is negative definite.

The various numerical optimization algorithms presented in this sec-
tion can determine local maxima in some favorable cases. If a global
maximum of the function V is desired, then it is, in principle, necessary
to find all local maxima and to determine among these local maxima the
one that gives the highest value to the function V.

Note, however, that a consistent M-estimator may be obtained at
a local maximum of the criterion function. Thus, the fact that usual
numerical optimization algorithms determine local maxima can also be
useful. :

13.1.1 Gradient Methods
a) Introduction

A numerical optimization algorithm is an iterative procedure that allows
generation of sequence of approximations 8, 61, ... k) gK) ¢o
the desired local maximum 6. It is defined by: ‘

(i) the method for choosing the initial condition 6O,

(i) the dteration formula describing how the approximation %+1) at
the (k + 1)th step is computed from the approximation 8%} ob-
tained in the preceding step,

(iii) the sioppz'ng rule defining the maximum number of iterations of
the algorithm.

The central piece of an algorithm is clearly the iteration formula. In
general, this formula is of the form

gtk+1) — glk) + u®) gk) k) ¢ R*, d®) ¢ RP. (13.1)

Hence 6%*1) can be viewed as being determined in two steps. First, an
appropriate direction d'*) of search is chosen for the function V. Then
an appropriate step or stepsize u*) along this direction is chosen so as
to maximize the increase in the function V.
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INCREASING DIRECTION OF SEARCH

Definition 13.1: A vector d is an increasing direction of search for
the function V' at the point 8 if and only if V(8 + ud) is en increasing
Junction of u for p positive and sufficiently small.

From a Taylor expansion of V in a neighborhood of p = 0 we obtain
V(0 + pd) # V(0) + ug'(6)d.

From this relation we obtain the following characterization of increasing
directions.

Property 13.1: A vector d is an increasing direction of search for the
function V' at a point 8 where the gradient g(8) is nonzero if and only if
g'(0)d > 0.

Such directions always exist when g(6) is nonzero. For instance, we
can choose d = g(#) since

g'(0)d=g'()9(6) = lla(®)* > 0.

‘We can also easily characterize increasing directions in terms of the gra-
dient (see Exercise 13.1). We have

Property 13.2: If g(6) is nonzero, then increasing directions of search
are of the form d = Qg(6), where Q is a symmetric positive definite
matric.

Thus, if we want to have an increasing numerical algorithm, i.e., an
algorithm such that V(§(+1) > v (9)), Yk = 0,..., K —1, it suffices to
consider an increasing direction with a suitable stepsize. This is equiva-
lent to replacing the iteration formula (13.1) by

g+ = (k) 4 (I QR) g (oY - (13.2)

where Q(*) is a symmetric positive definite matrix.

Definition 13.2: A gradient method is a a numerical optimization
algorithm based on an iteration formula of the form (13.2).

DETERMINATION OF THE STEPSIZE
A suitable choice of direction produces an increasing algorithm. The
purpose of an adequate choice of stepsize is to obtain a convergent
algorithm, i.e., an algorithm such that limg_.co ) = 6, on the one
hand, and to increase the speed of convergence, on the other hand.
There are many ways to choose the stepsize u(¥).
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(i) Optimal Stepsize

A natural idea consists in choosing x(*) so as to maximize the increase
in the function V' along the direction d'*). The optimal size is given by
solving the optimization problem

1% (9(k> + uBQ® g(gf.k))) = max v (g(k) + ,,,Q(k)g(gw))) . (133)

We are led again to solve an optimization problem, which in practice
must be solved numerically. This maximization problem, however, is
with respect to a scalar parameter . This allows the application of
simpler algorithms and methods such as & grid search method (see
Section 13.1.3). :

(ii) Optimal Stepsize by Quadratic Approximation

Instead of solving directly the optimization problem (13.3), we can
consider an approximate problem. Specifically, from a second-order Tay-
lor expansion of the function V around p = 0 we obtain

V(6© +uQPg(6®)) # V(0®) + g (98 QW g(o¥)
1 :
+56%'(69)QMG(IR)QMg(6™).

Thus maximization of this approximation with respect to u gives, after
solving the corresponding first-order condition

g'(0%))QF) g (g
F(P)QWG (6 QP g0y

Replacing the original criterion function by a quadratic approxima-
tion may lead to undesired effects on the algorithm. For instance, when
the function V' has a positive definite Hessian at 8®), then it is readily
seen that p(®) is negative and corresponds to a minimum of the quadratic
approximation. However a quadratic approximation is clearly useful
when the Hessian is negative definite, which is the.case in the neighbor-
hood of a local maximum.

pl®) = — (13.4)

(iii) There exist many other methods for determining the stepsize. The
method presented next allows us to achieve convergence of the algorithm
(see Goldstein (1967) for a proof).

Property 13.3: Consider a gradient method-
gU+1) = g(k) 4 ) gk wirh dF) = Q) gk,

where for every k:
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(i) the direction.d®) is such that there exists a scalar o € (0,1) sat-
isfying
d(k)g(g(k))

“dRigm ~
(ii) the stepsize u®) is such that

V(8%) + d®)y — v (g S
FIOZTTIO)) =%

p®) =14f

and

(8) 1 W) g®)y — v (ak)
5 < YO +p®d®) - v(g®)
POFIOICR))

where 6 is a scalar belonging to (0,1/2).

<1 -6 otherwise,

Then g(6®) converges to zero as k increases to infinity.

Such a convergence theorem clearly shows that a limit point of the
algorithm satisfies the first-order conditions of the optimization problem.
This limit point, however, may correspond to a local minimum or a
saddle point. This is because the chosen value of the stepsize does not
ensure that the algorithm is increasing.

STOPPING RULES

From a practical point of view it is important to make a distinc-
tion between a theoretical convergence property of an algorithm such as
Property 13.3 and a numerical convergence of the algorithm. It is the
later concept that determines the maximum number K of iterations. It is
recommended to stop the algorithm, i.e., to fix indirectly the maximum
number K of iterations when several conditions are satisfied simultane-
ously. Examples of such conditions are the following:

(i) The convergence of the sequence #*) must hold numerically. Thus
the difference between two successive values %) and 9(5+1) must
'be sufficiently small (e.g., smaller than a given tolerance level ;)
before stopping the algorithm

"9(16-4-1) - g(k)” <e.
(ii) The values of the criterion function must not differ significantly
before stopping the algorithm. This motivates a condition of the

form
V() — V(6®)]| < e
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(iii). The value of the gradient must be close to zero, i.e.
lg@*)] < e.

Then the maximum number of iterations could be, for instance, the
smallest index k for which the preceding three inequalities hold simulta~
neously.

Note that all three preceding criteria are satisfied asymptotically
when theoretical convergence is achieved at a saddle point or at a lo-
cal minimum. Therefore it seems necessary, at the end of the numeri-
cal algorithm, to compute the Hessian G(6%)) so as to verify that the
second-order conditions for a local maximum are satisfied.

b) Method of Steepest Ascent

This algorithm consists in retaining the increasing direction that ensures
the steepest ascent. To determine such an optimal direction, it is neces-
sary to introduce a norm on-the space IRP. We assume that such a norm
corresponds to a symmetric positive definite matrix B.

Locally around 8 we have

V(0 + pd) # V(z) + pg'(0) - d,

for every direction d of norm equal to one.
Then the optimal direction is obtained as a solution to

maxgg'(6)-d
(13.5)
subject to d'Bd = 1.

"The solution is readily obtained by introducing a Lagrange multiplier
associated with the constraint. The solution is given by

B~14(6)
(9'(0)B—1g(8))*/2"

The simplest choice of a norm corresponds to B = I. In this case we
obtain the iteration formula

d=

(13.6)

(k)
oD = gk) 4 B gy, 13.7
Ty (13.7)

Remark 13.1: Although the increasing property of the algorithm is
ensured by an appropriate choice of the stepsize u(®), the locally “opti-
mal” direction of steepest ascent may turn out to be relatively inefficient.
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For instance, suppose that the isocurves of the function V are of the form
represented in the next figure in a neighborhood of a local maximum 6.

8, &

gm/<

L 6,

Figure 13.1: Steepest Ascent Method

The steepest ascent direction at §(*) is orthogonal to the tangent to
the isocurve passing through ). In Figure 13.1, such a direction is
almost orthogonal to the desired direction (#(%), §). Hence, the method
of steepest ascent may lead to a large number of iterations.

c) Newton Method

The basic idea of the Newton method is to replace the function V by
its quadratic approximation in a neighborhood of 8% at every step. At
step k, a quadratic approximation gives

V(O™ +d) # V(E®) + ¢/ (0% . d + %d’G(G("))d.

To determine the vector d'®) that maximizes such an approximastion, it
suffices to solve the first-order conditions. This gives

d®) = —Ge*))~1g(gt), (13.8)
Hencé we obtain an iteration formula of the form

gD = glk) _ (0 G (kN1 g(g(R)), (13.9)

Remark 13.2: The preceding argument is clearly valid only if the vec-
tor d*) given in equation (13.8) corresponds to a local maximum of the
quadratic approximation. This is true when the Hessian G(8()) is neg-
ative definite. Thus the Newton method will behave properly when the
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objective function V' is globally concave. When V is not globally con-
cave, it will be necessary to modify the algorithm. Also note that using
formula (13.4) to obtain u(*) we obtain u(*®) =1 as expected.

Remark 13.3: When the objective function V is globally concave, the
Newton method can be interpreted as a method of steepest ascent where
the matrix defining the norm used at step k is given by B%) = —G(9(*)),

Remark 13.4: Another interpretation of the. Newton method, based
on geometrical arguments, is obtained from the first-order conditions.
Recall that these conditions are g(6) = 0. To simplify, consider the case

= 1. Then, finding  is equivalent to finding a zero of the function g.
At the kth iteration we can replace the function g by its tangent at 6¢%).
Correspondingly, we can replace § by the value of  where this tangent
intersects the horizontal axis. Hence, when p = 1, the Newton algorithm
can be represented geometrically as in Figure 13.2.

y=g0) ——-P//

YA

=V

/3(k+z) g tk+1) 1G]
Figure 13.2: Newton Method

The equation of the tangent at §() to the curve defined by y = g(9)
is
6g(0

y— g(0®) = 2200 5 _ g3y _ (o0 - 69,

The intersection point of this tangent with the horizontal axis is deter-
mined by the value 8(+1) satisfying

—g(8%)) = G(0®))(gk+1) — 6y,

Thus
gtk+1) - g(k) _ (G(8F))~1g(6k)),

This is simply the iteration formula of the Newton algorithm.
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d) Quasi Newton Methods

We noted that a Newton algorithm may exhibit undesired properties
when the Hessian is not negative definite (see Remark 13.2). Some
modifications to this algorithm, which have been proposed, consist in
replacing the Hessian G(6(*)) by a negative definite matrix G*) that
approximates G((%)).

(i) Levenberg-Marquardt Algorithm
In this algorithm a scalar matrix is added to the Hessian so that

G® = G(HF) + 4*)1. (13.10)

The scalar v(¥) is chosen to be negative and sufficiently small so that
G®) < 0. It suffices to choose %) smaller than minus the largest
eigenvalue of G((%)).

In practice, one avoids in general to compute the eigenvectors and
eigenvalues of the Hessian. A common procedure is to select a value
4*) in a more or less heuristic fashion so as to increase the value of the
criterion function V.

(ii) Davidson—Fletcher-Powell Algorithm

In this algorithm, an approximation to G(#*))~1 is computed recur-
sively at every step. Let H(*) denote such an approximation. Then the
algorithm is as follows:

(i) A direction d(*) is determined according to d(®) = —H(®*) g(6").

(ii) An optimal size u(¥) is obtained as a solution to the maximization
of V(6 + pud(®)),

(iif) A new value of § is obtained according to §*+1) = (k) (k) (k)
(iv) The matrix H is updated according to

HE+D _ k)
-.H(k) (g(o(k-}'l)) - g(a(k))) (g(e(k+1)) _ g(O(k)))'H(k)
(g(6tk+1)) — g(g(k)))’ HE) (g(6(c+1)) — g((R)))
uk) q(k) gk
@Dy = g(g@nyam

451



Numerical Procedures

e) Approximate Derivation

The various gradient methods presented above rely on the gradient func-
tion g(€) = 0V (6)/86. In practice, it may be difficult to differentiate
the function V' analytically. Then g(6¥)) can be replaced by an ap-
proximate value. Specifically, a partial derivative such as the Jjth com-
ponent of g(6¥)) is the slope of a tangent. Hence it can be approximated
naturally by the slope of an approximate line. Let e; denote the
vector whose components are all equal to zero with the exception of
the jth component which is equal to one. Let & be a positive scalar.
Two natural approximations to g(§*)) are

V(0®) + he;) ~ V(9K)

(k)

or :

k) _ V(W) + he;) — V(K) — he)

%= 2h ‘
In general, the value V(8(¥)) is computed within the algorithm when
determining, for instance, the stepsize or when checking the increase of
the objective function. Then it is readily seen that the above second
approximation requires twice as many evaluations of the function V.

In general, however, gj(.k) is a-more accurate approximation to the jth

(13.11)

partial derivative than g(-k). For such reasons the first approximation
is frequently used in the first steps of the algorithm while the second
approximation is used when the algorithm is close to convergence.

13.1.2 Gradient Methods and ML Estimation

In this section, we shall see how gradient methods can be used to deter-
mine estimators obtained by maximizing or minimizing some criterion
functions. To simplify, we restrict ourselves to estimation by maximum
likelihood. It is, however, easy to adapt the results and discussions pre-
sented below to other estimation methods.

We assume that n independent and identically distributed observa-
tions (Y;, X;), ¢ = 1,...,n, are available. The conditional density of Y;
given X; is assumed known up.to some parameter vector § with density
Ff(y: | 2:;0). A conditional maximum likelihood estimator of @ corre-
sponds to a maximum of the conditional likelihood function

log£(y | z;6) = " log f(y: | z:;6).

g=1
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Thus we have
V(@) = logl(y|=;0)

= ) log f(yi | 2:;0). (13.12)

g=1

The first and second partial derivatives are

_ Blogl(y|z;0) < 0dlog f(y; | 7:;6)
9 80 =2 86 :

|

t==]

G = loellylzio) _ i 02 log f(ys | ©:;6)
00 89’ P 00 o4

Before introducing some algorithms designed for the determination
of @, it is useful to make three remarks: .

(i) From a practical point of view, the estimator 6 is not the only
object of interest. In particular, its precision is of interest. Thus it is
desirable to have algorithms that can also provide an estimated value of
this precision.

(i) An algorithm will be more efficient the closer the initial value
6® is to the desired value §. This is because, in the neighborhood of é,
the function V' is approximately concave, which is a property useful to
many algorithms such as the Newton method. In addition, by starting
from an initial value close to §, we can expect that the number of steps
required for numerical convergence of the algorithm will be smaller.

Clearly, the main difficulty is to find a close value to § since 8 is
unknown. In general, such a difficulty is resolved as follows. Suppose
that a simple consistent estimator 8 of 6y is available, where 6y denotes
the true value of the parameter §. Then, provided the number of obser-
vations is large, we have 6 # 0 and 6 # 6o. Hence § # 0 so that we can
choose 6 = § as an initial value.

Thus, the determination of the ML estimator is often done in two
steps:

— In a first step, a consistent but frequently imprecise estimator that
is easy to compute is determined.

— In a second step, this preliminary estimate is used as an initial
value for some algorithm that determines the maximum likelihood
estimator.
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The second step, which is heavier computationally than the first step,
allows-us to improve the precision of the original estimator @ since the
estimator § is not only consistent but also asymptotically efficient.

(iii) A case quite favorable to algorithms such as the Newton algo-
rithm is when the log-likelihood function is concave in the parameters.
In Chapter 7 we noted that concavity is satisfied in some important
models when the model is suitably reparameterized. Thus. a suitable
reparameterization of a model is useful not only because it may sim-
plify the proofs of some properties {(see Chapter 7) but also because it is
desirable from a numerical point of view.

a) Newton—-Raphson Algorithm

This algorithm is a direct-application of the Newton method. The iter-
ation formula is

, -1 .
B+ — (k) _ () 8%log £y | ;6%\ ™ dlog é(y | z;6™)
o6 o4’ o8 )

(13.13)

The method presents the same disadvantage as the Newton method.
Namely, the matrix

0% log L(y | z;6(%)
a6 8¢’

G(6®) =
is not necessarily negative definite.

Note that, when the algorithm converges to 6, the matrix premulti-
plying the score vector in equation (13.13) converges to

o1 8%logl(y | z:0) -
—(GE@)™ = *(“—"W>

N -1
_ = 8log f(yi | z:;0)
- <"Z o6 b6’ ) :

i=1

From Section 7.5.3 it follows that the premultiplying matrix in equation
(13.13) is, up to a scalar factor, an estimator of

E (- 82log f(Y | X; Ho>) "1,

o6 a6’
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i.e., of the inverse of the Fisher information matrix associated with one
observation. It follows that —(G(6))~! # V,,0. Hence an estimate of
the precision of the ML estimator is determined at the last step of the
algorithm.

b) Score Algorithm

The preceding interpretation in terms of precision can be used to modify
the Newton-Raphson algorithm. Namely, at the true parameter value
6o, it follows from the Strong Law of Large Numbers that

_lf:3210gf(yi | z:; 60) 4 E _&log f(Y | X;60)
n 80 09’ %o 80 5¢' )

g=1
This suggests to approximate minus the Hessian by

8?log(y | z;0) &log f(Y | X;0)
~ 56 o0 #'”E"( 56 56/ )

Because observations are assumed independent and identically dis-
tributed, the latter quantity is equal to

. (_8log (Y | X;6)
o 96 60" '

i.e., to the Fisher information matrix Z(8) corresponding to the condi-
tional model. Then the score algorithm is a quasi Newton method where
the Hessian is replaced by —Z(8). The iteration formula is

10log (y | z; ()

glet+1) = g(k) 4 (k) (T(9(R)))~ 55

(13.14)

Note that the matrix premultiplying the score vector is now symmet-
ric positive semidefinite.
¢) Berndt—Hall-Hall-Hausman Algorithm

Consider again the true parameter value 6. We know that the Fisher
information matrix admits two equivalent forms, which are

—8%log f(Y | X; 60)
Ea, ( 26 o0’ )
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and

dlog f(Y | X;60) Olog f(¥ | X:6p)
Beo a6 6" '
In addition, from the Strong Law of Large Numbers we have for n large
dlog f(Y | X:60) Dlog f(V | X;60)\
Eeo 98 a0
aloaf(% | z:;00) Olog f (v | zi; 00)
# = Z 5

This suggests to approximate minus the Hessian by

z alog f(yz l T4 90) alOg f(yz ' Ti; 00)
o6 oy’

g==1

The Berndt-Hall-Hall-Hausman (BHHH) algorithm is a quasi New-
ton method of which the iteration formula is

gD = glk) () (Sn‘ Blog f(y: | z:;6™)) Blog £ (ys lmi;o(k)))

ot a0 o0’
| s g08)
0log€(g(;39 07). (13.15)

As before, the matrix premultiplying the score vector is positive semidef-
inite.

Remark 13.5: An important advantage of the BHHH algorithm is that
it requires the analytical or numerical computation of the first partial
derivatives only. In particular, it does not require the determination of
the second partial derivatives.

d) Application to a Gaussian model

As an illustration, we consider the conditional Gaussian model defined
by

vi=g(z:,0) + us,
where the error terms u; are independently and identically distributed
N(0,1). Maximum likelihood estimation is here equivalent to nonlinear
least squares estimation. We have

log (y | 236) =~ log2r — = 3" (3 — g(a, O).

1.—1
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The first and second partial derivatives are

Dloglly|z:6) _ ~dgl@nb), _ o
98 ; 57— W —9(z4,0)),
0logl(y | z:8) _ <~ 0%9(s:,0)
0 96’ = ;W(w-g(ww))
Z 0g(w:, 0) dg(w:,6)
59  oF

fe=l

The Fisher Information matrix is

I(G) Z ag(g; 6) agg;zlv 9)

i==1

We can determine explicitly the various algorithms presented above.
The iteration formulae are as follows.

Newton—Raphson Algorithm:

" 92g(z;, 0))
(k) — pk) _ (k) Z_Q_y___ - alg. )
G =0~ (~=1 6 00 (v~ 9@ )

L w,,9(’°) 8g(z:, 0\ " I g(s, 9
d==] i=1

Score Algorithm:

n -1
8g(z:, ) 8g(w:, "))
(k+1) _  pk) o (R ) )
9 7+ n (; 50 50

. 8g(z;, 0®
> —gi‘%@““‘)‘(w — g(2:,6)).

d==1

BHHH Algorithm:

-1
n
gD = ) 4, ®) (Z % (”’goe(k)) deland g - g 9"”))2)

i=1

3o 200 ) — g(a, 60).

i==]l
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In this example the simplest: procedure is the score algorithm. In
addition, its iteration formula has an interesting interpretation based on
a linearization of the original nonlinear econometric model with respect
to the parameters (see Exercise 13.2). Relative to the score algorithm,
the BHHH algorithm is obtained by weighting the terms -

dg(z:,0')) Bg(a;, 0*F))
15/ o8’

by the squares. of the residuals (y; — g(z;,8%)))2. Moreover, it can be
seen that these estimation residuals are implicitly computed at every
step of the algorithm. Hence their values are readily retrieved.

13.1.3 Direct Search Methods

Direct search methods evaluate the criterion function at various points
and retain a point that gives the largest value. of the criterion func-
tion. In general, direct search methods are not based on theoretical
justifications and-can be computationally intensive especially when the
dimension of the parameter 6 is large. Direct search methods, however,
present the advantage of not requiring the determination of the deriva-
tives of the criterion function. In addition, direct search methods are
frequently used for determining the stepsize u(*) arising in gradient type
procedures.

a) Grid Search

To begin with, suppose that the criterion function V' depends on a scalar
parameter 6 so that p = 1. A grid search consists in choosing a set of
values 6; of possible values for 6, for instance, —5, -4, -3, -2, -1, 0,
1, 2, 3, 4, and 5, and in evaluating the value V(6;) of the criterion at
every of these points #;. Because the number of chosen points is finite,
there exists a point for which the criterion function is maximized. For
instance, suppose that

V(2) 2 V(6;), V j, with 8; # 2.

Hence V(2) > V/(3) and V(2) > V(1). Thus, if the function V" is contin-
uous, then V" has a local maximum on the interval (1,3). Then another
grid search is pursued on the interval (1, 3) so as to obtain a more precise
approximation to the local maximum. For instance, the function V can
be evaluated at the points 1.0, 1.1, 1.2,...,2.9, and 3.0. If one desires,
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the procedure can be pursued further. When @ is a scalar parameter,
this method is clearly simple and requires a relatively small number of
function evaluations, thirty in our example.

A grid search method, however, is not as appealing when the dimen-
sion p of the parameter 8 is large. This is because a grid search must
be based on all the components of § simultaneously. For instance, if 10
possible values are selected for each component of 6 in a first grid search,
then there will be 107 function evaluations. Then, if twenty values are
used for each component in a second grid search, then there will be 207
additional function evaluations. Table 13.1 gives an idea of the overall
computational costs as the size p of the parameter increases.

Table 13.1

Size p 1 2 3 D

Number of | 30 | 500 | 9000 | 10P 4 207
Evaluations

It is clear that computational costs constitute an important limitation
to a grid search method.

b) Random Grid Search

The number of function evaluations can be decreased substantially when
a grid search is not undertaken systematically. This is the case for a
random search. A random grid search, however, does not produce nec-
essarily a local maximum.

An example of a random grid search is as follows. At the kth step,
one has an approximation %) and p scalars ag.k), j =1,...,p, that
reflect the quality of the approximation (¥) along the p components of 6.
Then g independent values from the p-dimensional uniform distribution
on (—1,+1)? are drawn. Let (ri1,...,7s)’, ¢ = 1,...,qk, denote the
observed values of these draws. Next, among the points (9§~k) 4 rija§k)),
t=1,...,qk, one determines the point that gives the largest value for
the citerion function V. :

This point is retained as a new approximation p(*+1). The “errors”
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o

5~ are decreased by a factor a priori given

a§k+1) = (1~- E)a'(-k)

5, with0<e< L.

13.2 Fixed Point Methods

13.2.1 Principles

One is led frequently to solve an equation of the kind V() = § where V
is a mapping from © C IR? to © C RP. This problem is equivalent to
finding a fized point of the mapping V.

A fixed point is often determined by means of the so-called Gauss—
Seidel algorithm, which is defined by

g+ = v (9k)), (13.16)

If V is a continuous mapping and if the sequence of values §() converges
to a limit 8, then we must have

§ = lim g%+ = Jim V(e®) = V(lim 8%y = v ().

k—+00

Hence 8 is a fixed point as required.

Clearly, convergence of the sequence #(%) is not ensured. If the map-
ping V is arbitrary, the sequence () may not converge or may cycle
indefinitely. Some sufficient conditions for convergence are known. The
next property gives one of these.

Property 13.4: Suppose that the mapping V is such that there ezists a
scalar o, with0 < a < 1 and

V8, € ©:|V(6) - V(B)| < all6 - .

Then the algorithm (18.16) converges.

Proor:
We have

6440 — 98] = 1 (6%) - V(8- | < a6 — g,
By induction, it follows that
6%+ — g(kﬁ‘l < a6 — g©@).
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The sequence () is such that the series with general term §(*+1) —
) converges normally because [|§(*+1) — 9(¥)|| is dominated by the
general term of a convergent series. Hence the series with the general
term §(¢+1) — 9(%) also converges, i.e.

K
Z(g(k-f-l) — 0y = g(K+1) _ g(0)
k=0

converges. [

In practice, fixed point algorithms may be applied to the first-order
conditions associated with M-estimators. For instance, consider the max-
imum likelihood estimator 6. It satisfies the first-order conditions

dlog(y | z;0)
o6

In some cases, such conditions can be rewritten as

= 0.

§=V(y|ab),

which corresponds to a fixed point problem.

13.2.2 An Example: The Fair Algorithm

‘We consider a simple Tobit model. The latent variables Y;* are assumed
to satisfy a Gaussian linear model Y;* = z;b + u; where the error terms
u; are independent and identically distributed N(0,0?). The observed
endogenous variables are related to the latent variables by

Y= Yyr, fYr*>0,
: 0, otherwise.

Let Jp and J; denote the subsets of indices corresponding to ¥; =0
and Y; = 1, respectively. The likelihood equations are

BlogZ 1 ¢(zib/o) 1
- Z t3 ;(% - zb)a; =0,
1

o ®(—z:b/o) 2
and
dlog? _ 1 zib p(zbfo) m 1 L am2
do? o? Z "o ®(—z;b/o) 202 + 20 EJ;(% zb)” =0,
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where n; denotes the number of “complete” observations, i.e., the num-
ber of elements of J;. These first-order conditions can be rewritten as

-1
— lo I ‘. #(zib/a)
- () Sotne (So) - (Satetie)

and

1
== Z(% - z3b)y;.
n A

These equations are of the form

b= Vl(b1 0'2)1
{ o2 = Vy(b).

Fair algorithm follows as

b(k+1) = V3 (p(R) | 2(K) ),
{ o2(k+1) = 5, (p(R)),

Fair algorithm may not converge. It is, however, easily applied. In ad-
dition, the preceding formulae can be readily interpreted. For instance,
the first equation shows that 5*+1 is the sum of the OLS estimator of b
using the complete observations, i.e., (3 N a:z:c,) 25, Tiyi, and a term
correcting the OLS bias

, ¢z /o!¥)
—o® <§:miwi) (Z q)(_i; b(k)7a(k)) )

13.3 EM Algorithm

The Expectation Maximization (EM) algorithm is used for the numerical
determination of the maximum likelihood estimator when the observable
model is derived from a latent model. When the latent model is expo-
nential, the iteration formula defining the EM algorithm takes a simple
form, which is easily interpreted.
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13.3.1 Definition

The latent variables Y* = (Y7,...,Y*) are assumed to have a den-
sity £*(y* | ;6), where = denotes the values taken by some exogenous
variables. The observed endogenous variables Y = (V3,...,Y,) are re-
lated to the latent variables through a mapping h so that ¥; = h(¥}*),
i=1,...,n. The observed endogenous variables have a density denoted
£(y | z;0). Thereafter the parameter vector 6 is assumed to be identified
in the observable model and, therefore, identified in the latent model.

If the latent variables Y7, ..., Y’ were observable, the maximum like-
lihood estimator of # would be obtained as a solution to the maximization
of log £*(y* | x;0). Because the variables Y,...,Y,* are not observed,
one may consider replacing the original criterion function by its best
approximation based on the observed variables Yi,...,Y,. This leads
to the maximization of the conditional expectation of the latent log-
likelihood function given the observed variables. Such an optimization
problem, when solved directly, does not lead, however, to satisfactory
results (see Exercise 13.4). As a consequence, the actual method will be
based on a iterative procedure.

Specifically, the following function is introduced
Q6,0) = E5 (log£* (Y™ | 2;6) | Y =y). (13.17)

Note that the conditional expectation is evaluated at value § that may
differ from the value 6 appearing in £*. Also, the expectation is taken
conditional on X = z.

Every iteration of the EM algorithm consists of two steps, which are
an evaluation of the expectation (the E step) followed by a maximization
(the M step). If 6%9) denotes the approximate value obtained at the gth
iteration, then the approximation §(9+1) at the following iteration is
obtained after

Step E: Evaluation of Q(8,6(9),
Step M : - Determination of #(¢*Das a solution to (13.18)
the maximization of Q(8,69).

The EM algorithm is especially interesting from a numerical point
of view when the optimization of Q(#,6(?) is much simpler than the
optimization of log £(y | z; 6).
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13.3.2 Application to Exponential Latent Models

In this subsection we consider the special case where the latent model is
exponential with density of the form

£y | z;0) = exp(0'T(y", x) + B(y", x) + C(6,x)). ‘ (13.19)

Hence, the prediction of the latent log-likelihood function is obtained
directly as
Q6,6) = Ez(logl’(Y*|20)|Y =y)
= ¢'E;(T(Y™* 2)|Y =y)+ E;(B(Y*,z)|Y =y)+ C(0,z).
Therefore, at the (g + 1)th iteration, we are led to maximize the

quantity .
' Eg (T(Y",2) | Y =y) + C(6,z) (13.20)

with respect to 8. The first-order conditions are
. 3C pary
Eoo (T(Y",2) | Y =y) = -5 (097", 2). (13.21)

Hence, when the latent model is exponential, the E step only requires the
determination of the prediction of the canonical statistic E(T(Y*,z) |
Y =y).

Remark 13.6: For an exponential family of the form considered above,

we know that Blogt*(¥* | 2:6)
og * (V) * z; _
Eo 56 =0,

ie. :
[ (16,2 + G5 0.0)) e 1 m0)aut7) =0,
ie. '

. .. 8C.
EgT(Y*,2) + 7(6,3) = 0.

It follows that the first-order conditions are equivalent to equating the
conditional and unconditional expectations of the canonical statistic.
That is, we have

Eoo) (T(Y*,2) | Y = y) = Ega+ny (T(Y™", 2)). (13.22)

Example 13.1: The EM algorithm can take even a simpler form when
the latent model is a particular exponential model. As an illustration,
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we consider the usual Gaussian linear model, where the variance of the
error term is assumed to be equal to one. Hence the latent model is
Y;* = x;b+u;, where the error terms u; are independently and identically
distributed N(0,1). The observed variables are related to the latent
.variables by ¥; = llyi— >0-

The latent log-likelihood function is

log £*(y* | z; b)

n 1 = * 2
_.Elog27r -3 Z(yi — z;b)

i=1
n 1 zn n 1 n
= —— —_— *2 ol o b)2,
= -3 log 27 3 i-—El Yo+ ;31: Yy zib 3 i§=1 (z:b)

The prediction of the latent log-likelihood function is

AR n 1 = 2% _
Q(byb) = -—2—10g27r—§E5(ZYi IY-y)

d==1
n 1 n
+E; (}: Yizb|Y = y> -5 > (@ib).
i=1 g=1

In this case, the first-order conditions at the (g + 1)th iteration reduce

to
n n
Eya (Z Yo | Y = y) = ngxib(q’*l),
=1 i=1
ie.

n -1 5

o) (Z mgzi) S ol By (5 | 7).
fe=1 iz==]

Thus the approximate value 5(4+1) is simply the coefficient estimate in an

OLS regression of the predictions Eyq) (Y;* | ¥; = y;) on the explanatory

variables ;. Since these predicitions are

* Yi l—y
By (Y7 | Yi = ;) = 2:bD + ¢(z:bD) (@(w-g(q)) —-1= @(jﬁ@)) ;
(] k3

the iteration formula becomes
plat+l) = p(a)

-1
- ’ = ’ Yi 11—y
+ (Z a:,wz) Zmig’;(a;ib(q)) ( B@d@) " T-0 (a:z-b(‘I))) . (13.23)

i=1 t=1
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13.3.3 Properties
Property 13.5: The EM algorithm is an increasing algorithm, i.e.

V g, log£(y | z;6%V) > log £(y | z;69).

ProoOF:
Let L(#) = log £(y | z;#). Define the function

H(6,0) = Ej(log£(Y™ | Y,2;6) | Y =y),

which is the prediction of the conditional log-likelihood of Y* given
Y=y '
From

log £*(y* | z;0) = log £(y* | y, z; 0) + log £(y | =;6),
it follows that

Es(log (Y™ | z;6) | Y =)
= Ej(logl(Y" |Y,z;0) | Y =y) +1logl(y | z;0).

That is _ .
Q(6,0) = H(6,0) + L(6).

Therefore
L)y — L(6@) = (Q((;(qm, 99) — Q6@ 9<q)))
+ (H(g(q), 99y — H(g(q+1),9(q))) )

The first term in the right-hand side is positive since 8(9+1) gives the
maximum of the function Q(6,6(?)) with respect to 8. Moreover, from
Kullback inequality (see Property 1.1) we have H(6,0) < H(6,4),V 6,6.
Hence the second term in the right-hand side is also positive. These
imply that L{#(4+1)) — L(#(D) > 0, V ¢q. Hence the EM algorithm is
increasing. O

Property 13.6: Suppose that the latent log-likelihood function is contin-
uously differentiable. Suppose also that ezpectation and differentiation
can be interchanged so. that

0 * * % * *

%Eg(logé Y*|z;0) | Y =y)=E; 5§1ng Y*|z:0)|Y=v9]).
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Lastly, suppose that the latter derivative is continuous in (4, é). Then
every limit point 8() of the sequence §(9) satisfies the first-order condi-
tions

dlogé(y | z;6)) 0
BT, =5

Proor: :
The approximate value 8(9+1) gatisfies the first-order conditions

(g
06 G=0(a+1) ’

ie.

Olog £*(Y™* | z; 0la+1)
Eg(q)( 28 ( aolw )IY-':y):O

When g increases to infinity, we have

Olog £*(Y* | z; 6()
Eo(:»)( o8 (6015” )iY=y)=O.

since both 6(9) and #(¢*+1) converge to §°°. Then it suffices to note that
the conditional expectation of the latent score vector is equal to the
observed score vector (see the appendix to Chapter 11). Hence

dlog (Y | z;6(>)) 0
o0 o
0

Because the EM algorithm is increasing by Property 13.5, every limit
point is necessarily a local maximum or a saddle point. It remains to
study when the sequence (9 is converging. In fact, convergence is not
ensured and the simplest way to know when it occurs is to analyze the
problem numerically (see Exercise 13.6 for some results).

13.4 Kalman Filter

The Kalman filter and the Kalman smoothing procedure studied in this
section are algorithms that can be used to compute conditional expec-
tations in a relatively general framework. This framework is called the
state space framework.
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13.4.1 State Space Models
We consider a model defined by the equations

Bi+1 =Fif: + &4, (13.24)

and
Zp = H;,Bt -+ 7, t> 1, (1325)

where f3; is a random k-dimensional vector, called the state vector at time
t. It is assumed that B; follows a normal distribution N(m,P) and that
the k-dimensional vectors &;, ¢ > 1, are independently and identically
distributed N(0, Q). The k x k matrix Fy, called the transition matriz;
is nonrandom (see however Remark 13.11). Equation (13.24), called the
state equation, defines completely the distribution of g, for every ¢ > 1.

The vector z:, called the measurement vector, is of dimension n. The
vectors 7, are mutually independent of €; (see Remark 13.9 for a gener-
alization) and identically distributed N(0,R). Equation (13.25), called
the measurement equation, allows to define the distribution of z;, ¢ > 1.
Together, equations (13.24) and (13.25) clearly determine the distribu-
tion of the process (B, z+), t = 1, which is Gaussian.

The nx k matrix H; is nonrandom (see Remark 13.11). It is called the
measurement matriz. To simplify the notation, the matrices Q and R
are assumed to be independent of ¢. Such an assumption is not necessary
(see below).

Note that an important distinction between z; and §; is that 2 is
observed while f; is, in general, partially observed or unobserved. In
any case, the information available at time ¢ is 21,..., 2.

Problems that we shall study within a state space framework are
problems that involve the numerical determination of conditional expec-
tations: Three kinds of such problems can be distinguished. Filtering
problems focus on the computation of E(f; | 21,. .., 2:), which is the op-
timal approximation to 3; given information available at time ¢. Smooth-
ing problems focus on the computation of E(8s | 21,...,2) in the case
where s < t. Hence these problems focus on the optimal approximation
to (B, at a time ¢ > s. Thirdly, prediction problems deal with the nu-
merical determination of E(Bs | z1,...,2t) or E(zs | z1,...,2) where
s > t. Before studying such problems, we now give some examples of
state space models.

Example 13.2: Consider the second-order autoregressive model

24 — 01241 — Q2242 = Ut,
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where u; is a Gaussian white noise process with variance o2.

Let
— 2t

_{ 4 @2 Ut
Be+1 = ( 100 )Pl o )
2= (17 O)ﬂt
Hence the model can be written in a state space form. Note that here

the state vector is observed and that the error term 7 is zero. This form
is sometimes called the companion form.

we have

Example 13.3: Consider the first-order moving average model
2zt = Ug + Uz,

where u; is a Gaussian white noise process with variance 2.

Let
Z
ﬁt = ( ¢'Zt ))

wa=( 00 ) (22 )
2 = (17 O)ﬂt-

Hence the measurement error is again zero. On the other hand, the state
vector (; is partially observed.

we have

Example 13.4: Linear Model with Time Varying Coefficients
Counsider the model

2y = Ty + 1y,
Bt = FBt + &4,

where 1 and ¢ are independent Gaussian white noise processes of dimen-
sion one and k, respectively. The model is already in a state space form.
Note that if F =1 and Q = V(e;) = 0, then we obtain the classical lin-
ear model with constant coefficients over time. Note, however, that the -
parameter vector 8 = ; = f; is considered as random and distributed
N(m,P). The latter distribution can be viewed as a prior distribution

on 3.
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13.4.2 Kalman Covariance Filter

The Kalman covariance filter is an algorithm that is used to compute
recursively the “filtered” state vector

Bt]t = E(ﬂt‘l 5 P 7Zt)-
We introduce the following notation. Let
Bye-1 = EB:|2,...,2-1),
2t]t—-1 = E(Zt I zlr-w”t—l)a
e = _ E((ﬁt - ﬁt(t)(ﬁt - ﬂc]t)’)s
2th:—.—l = E((ﬁt - ,Bt|t-—1)(ﬂt - :Bt[t—-l)l)a
M1 = E((z = Zys-1) (2 = Zie-1)"),
Z = m—Gpa=2-— H;ﬁﬂt—l-
Then ﬁt,t_l and Z;;_; are the predictions of 8; and 2, formed at time
t — 1. The matrices Xy, Xy and M1 are the mean squared

prediction errors and Z; is the OLS residual in the regression of z on its
past values.

Property 13.7: Kalman Covariance Filter
We have the following relations:

6] :Bt]t = Bt|t-——1 + K Z:, where the gain of the filter is
K; = By Hy(H Sy H, + R) 1
(i’) 2t|t = (I - KtHQ)Et;t-—l,
(i) Beape = Fibys,
(i) B = F 2, F1 4+ Q,
(iii) Zopage = Ho 1 B
(iii’) My =Hi 1 300 He + R

ProoF:
(i) We have

ﬁtlt = E(ﬁt.lzl‘,...,zt)
= E(ﬁtlzls-'-azb—lazt)-
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In view of the identity between conditional expectation and linear re-
gression with normal errors (see Property B.43), we have

By = EBel2,...,2-1) +EB: | %) — EB:
Bjt—1 + E(B: | Z) — EB;

(see Frisch-Waugh Theorem B.3). Then, from the formula for a condi-
tional expectation with normal errors (see Property B.43), we obtain

i

E(ﬁt l gt) = Eﬂt + COV(ﬁt } Et)(V(Et))“IEt.
On the other hand, we have

CQV(ﬁt, Et) = COV(,Bt, H; (ﬂt - :étlt—-l) + T]t)

= zt|t—1Ht1
and
V(z) = V(G- iétlt—l) + 7t)
= H{ZyH;+R.
Hence

Btlt = Btit-—l + By He(H g H + R) 712,
(i") We have
Zue = V(Bt — Bye)-

But from (i) we have
B — Bt]t = f — Bﬂt—l = By He (B Hy + R) 712,
Since £; — 3t|t and Z; are uncorrelated it follows that
| Bie + V (a1 He(Hi Sy 1 Hy + R) 7' 2) = By,
ie.

Ty = Bige-1— Sije—1 He (3, H, + R)_lHézt;t—l
= (I-KH)Zg .

(ii) This is an immediate consequence of equation (13.24).
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(ii’) We have

Bepe = V(Be+r = Birape)
V(Fe(3: ~ Bt{t) + €1)
= F. 2, F; + Q.

(iii) This is an immediate consequence of equation (13.25) written at
time £ 4 1.
(iii’) We have

Mipapp = V(241 = Zeqape)

V(i1 (Bet1 = Brarje) + mev)
H 2 Hep + R

i

0o

Equations (i) and (") of the Kalman filter are called the measure
updating equations. Equations (i) and (ii’) are called the time updating
equations. Equations (iii) and (iii’) are called the prediction equations
for the observations.

To apply the Kalman filter (Property 13.7) some énitial values are
required. More precisely, to apply formuale (i) and (i’) at time t = 1,
we need Byjo and X,)9. Intuitively, By|o is the optimal prediction of 8;
based on no information. Thus Bijo is equal to the mean m. Then we
have ¥;)0 = P. Such an intuitive solution is confirmed by the exact
evaluation of Blll = E(B: | z1). Applying the formula for a conditional
expectation with normal errors, we find easily that

Bip =m+ PHy(H;PH,; + R)™}(z — Hm).

This equation agrees with formula (i) with Bio = m and Xy = P.
Similarly, we have V/(8; — fy1) = P — PH; (H;PH; + R)~'H/P, which
is formula (i’) with ;)9 = P.
Various remarks can be made on the Kalman filter.

Remark 13.7: The formulae giving the variance covariance matrices,
i.e., Property 13.7-(i"), (ii’), and (iii’), do not involve the observations
;. Thus these formulae can be used independently of any observations
provided the matrices F; and H; are known.

Remark 13.8: Suppose that equation (13.24) is replaced by
Bi+1 = Fif; + Gyuy + &4,
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where G, is a nonrandom matrix and wu; is either a nonrandom vector
or a function of 2i,...,2. Then it is easy to see that only formula (ii)
of the Kalman filter is modified. Specifically this formula is replaced by

Berrjp = FeBye + G

Remark 13.9: Sﬁppose that &; and 7; are correlated with E(e:n;) = S.
Let ef =&; — SR™1n;. Then

Bes1 = FifBs +&f + SR,

Hence

ze = HiB: + ne,

where E(eln,) = 0 and V(g}) = Q — SR™'S'. Therefore, Remark 13.8
applies. Hence the Kalman filter is still applicable.

{ ,Bt+1 = (Ft — SR—ng),Bt + SR—'IZt + E:,

Remark 13.10: When the error terms &; and 7; are not normally
distributed but have finite second-order moments, the formulae of the
Kalman filter remain valid provided the concept of conditional expecta-
tion is replaced by that of linear regression.

Remark 13.11: Suppose that the matrices H; and F;_; are functions
of 21,...,%-1 and that the errors are not normal. Then the formulae
of the Kalman filter still hold provided the various variance covariance
matrices are viewed as conditional upon the variables used in the con-
ditioning of the relevant expectations. In particular, this implies that
the process (B:,z:) is no longer normal although the conditional distri-
butions of these variables given the past are normal. This is because
the expectations of these conditional distributions are no longer linear
in the conditioning variables and their variance covariance matrices are
no longer independent of the conditioning variables.

Remark 13.12: From formulae (i) and (ii) we can easily obtain an
equation linking Bt+1|t to Btlt-—l- Similarly, from formulae (i’) and (ii’),
we can obtain an equation linking %, ); to Zj;—;. Such equations are
the direct prediction updating equations.

_ From the same formulae, we can also derive an equation linking
Betije+1 to By and an equation linking Zit1jt+1 o By. The result-
ing equations are the direct filter updating equations.
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13.4.3 Information Filter

The basic formulae of the covariance filter are given in Property 13.7-(i),
('), (i), and (ii*). This set of formulae is equivalent to another set of
formulae, which is called the information filter. The basic idea of the
information filter is to base the induction not on

ﬁr[t: zt]uﬂz«}-l]t and 2t+1|15

but on
by = E;;'tl/étjt, Eatl,
and
Geqp = Effllﬁt-_n-m and X4y,
"assuming that the relevant matrices are nonsingular.

Property 13.8: Information.Filter
We have the following relations:

) = Ggje—1 + HR 1z,
=) = = 22&1—1 +H,RTH],

() Guyrp = (I— B)F, ay,

+H) =7l =(1-ByA,,

1t
where
Ay =F ISR
and
Bt = A.t(At + Q-—l)“l.
PRrOOF:

(I-") The formula of the inverse of a partitioned matrix

A B
C D /¢
where A and D are nonsingular, implies the matrix inversion equality

(D-CA™'B)"'=D! +D"!C(A - BD"1C)-'BD"!
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(see Property A.4). Applying this equality with A = R, B = Hj,
C=-H;,and D= Eatl__l shows that
-1
(Z5e, + HRH)
= Byje-1 — Sy H; (R + H} Sy, 1 H;) ™ Hy Sy,
Hence Property 13.7-(i") is equivalent to
-1
Sy = (Sgh, + HRTH)
which is (I-).
(I-i1’) Property 13.7—(ii), which is
B = Fe 3y FL+ Q,

is equivalent to
B = A7+ Q,

where A;! = F; % F;. Hence
T = A7+
= (I -+ AtQ)flAt.

Then, applying again the inversion matrix equality given previously, this
equation is equivalent to

' 2:—*}1|t =(I-B)As,

where
B; = A (A + Q)

which is (I-ii").
(I-ii) Property 13.7—(ii) is equivalent to

n _ s=1 n
App1jt = 2t+1,ttht1tat1t,
we have

Et_fmFtEﬂt = (I-B)AF:3y,

= (I-B,)F, .

This establishes the equivalence between (I-ii) and Property 13.7-(ii).
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(I-1) Property 13.7—(i) can be written as

.Bt]t = Dyjp—18yje—1 + Dppp— 1 He (Hi Dy Hy + R) ™ (22 —Hi 3y 18y2-1).
Then, using Property 13.7-(i"), this is equivalent to

Btlt' = Bysbyjp—1 + Sepeo1 He (A Ege 1 He + R) 1z,
ie., to

gt = yje—1 + By Deje 1 He (g1 Hy + R) 1z,
Right multiplying Property 13.7-(i’) by H;R™?!, we obtain easily .

B HR™ = By H (H Sy H, + R)™L
Hence a form equivalent to Properﬁy 13.7-(i) is
byjt = Bye—1 + HR ™12,

ie., (I-). O

If the variance covariance matrix of 8;, denoted P, is nonsingular,
then the initial conditions of the covariance filter P10 =m and 3y = P
are equivalent to the initial conditions of the information filter

é1jo =P 'm and Bjg =P~

An interesting feature of the information filter is that it allows for
the consideration of an initial “diffuse” distribution on 8; obtained when
all the eigenvalues of the matrix P increase to infinity, i.e., when P~
converges to zero. In this case, one takes G;)p = 0 and 21_1(1) = 0 as initial
conditions. Such initial conditions correspond to an initial “diffuse” or
“vague” knowledge of B;. Hence they are appropriate to some Bayesian
type estimations.

Remark 13.13: The formulae of Property 13.8 require that the matrices
R, Q, and F; are nonsingular. If Q = 0, however, it is easy to see that
formulae (I-i) and (I-’) are unchanged while formulae (I-ii) and (I-ii’)

become @141 = F;’ldt!t and X +11!t = Ay, respectively.

Remark 13.14: Using Eatl and Ei:i-lllt does not actually require-that
these matrices are nonsingular. In general, these matrices are singular in

the first iterations when the filter is initialized at-d;;o = 0 and 21_1(1) = 0.
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13.4.4 Kalman Filter and Computation of Likelihood
Functions of State Space Models

We consider the state space framework of Section 13.4.1. In view of
Remark 13.9, we may assume that the error terms &; and 7; are cor-
related. Let S = E(gsm;). In addition, the vector m and the matrices
F;,H;,P,Q, R, S are no longer necessary known and may depend on an
unknown parameter vector § € © C IRP.

Our goal is to evaluate the likelihood function of the model, i.e., the
density of the observations 21, .. ., zr viewed as a function of §. This will
allow estimation of # by maximum likelihood provided sufficient regular-
ity conditions are satisfied so that the desired asymptotic properties of
ML estimation hold. '

For every given 8, the Kalman filter can be used to compute the value
of the likelihood function. The next property is used.

Property 13.9: The log-likelihood function of the state space model
(18.24)-(13.25) is

nT 1& 1&

Lr(9) = ——-log2m — 5 > log|My—y| - 5 DoEM Z,
t=1 t==1

where 2y = 2 — 2451, Myjg—1 = V(2 — Zyjp—1) and 2100 = Ezy, My =

V(zl).

Proor:
The joint density of the vector (z1,...,2,) can be decomposed as

f(Zl,o)f(Zz I 21;9) .. f(zt l 21, ..,zt_l;B) . ..f(zT I 21y .,zT...1;9).

Every conditional density is a normal density. Specifically, we have

log f(z | 21,...,2-1;0)

-1

n 1 1. =
= -3 log 2 — 5 log |[Myj;—y| — 'jziMm«lzt'

Since Zy¢—1 and My, are, respectively, the conditional expectation
and the conditional variance covariance matrix of z given z1,..., 2.1,
the desired result follows. O

Because Zy;—; and My;.; are determined by the Kalman filter, the
log-likelihood function at 6 can be readily obtained by applying this
filter. Then we can use one of the maximization algorithms presented
earlier to determine the maximum likelihood estimator.
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Remark 18.15: The initial values 2o = Ez; and M) = V(z1) can be
obtained from Property 13.7-(iii) and (iii’) of the Kalman filter at t = 0
with ﬂlIO = m and 21:0 = P.

Remark 13.16: If the two summations in the formula of Property 13.9
start at ¢ = 7, and if the constant term of this formula is replaced
by —(n/2)(T — 7 + 1) log 2, then we obtain the log-likelihood function
conditional on 21,...,%,-3. In particular, if the Kalman filter (Property
13.7) is applied startmg from equations (i) and (ii') at ¢ = 1 with 8y =
m and X9 = P, we obtain % and My;_; for ¢ > 2 only. In this case,
the formula of Propertv 13.9, hence modified, gives the lorr-hkehhood
function conditional . on zj.

Remark 13.17: If F;_; and H, are functions of 2y, ..., 2;..1, then Prop-
erty 13.9 remains valid in view of Remark 13.11 since the proof of Prop-
erty 13.9 involves conditional distributions only.

Example 13.5: Consider again the first-order moving average
z = us + dug—1, Eu, =0, V{w) = o7, o] <1

(see Example 13.3).
A corresponding state space model is

_f =+ Y_[0 1 Ugg1

ﬂt+1—<¢ut+1)“‘(0 0>ﬂt+(¢ut+l)’
2 = (1, O)ﬂt-

Here we have

%110 = Ez; =0 and Myg = V(21) = 6%(1 + ¢?).

Similarly

A 0 1+ ¢?
On the other hand
a AT My, 2
,Bt|t—-1 = ( ztl(t) ! ) ) Et;t-—l = ( ng ! ¢¢20(;2 ) .

Hence the prediction updating equations obtained from Property 13.7-
(i) and (ii), which are

Best = Fiby—r + F K7,
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imply that
Zipape = 0+ (0, 1)K, 2,

where

K, = 1 (Mt|t-—1 4502)(1)___( 1 )
* Mt g ¢’ 0 ¢ /My )

Hence we obtain the recursion formula

. po? _
Zip1)t = 2ty
-1
ie.
. o2
2t41 = Zgpl — M 2t (1326)
tit—1

Similarly, from Property 13.7—(i’) and (ii’) imply

24
Meaye = -Mtlt 1

+ ¢%0% + o2, (13.27)

Equations (13.26) and (13.27) are used to determine %4, and Mz,
recursively. Hence, the likelihood function can be easily evaluated.
Note also that, in this example, we can determine explicitly the scalar
Mt-}-llt' Let
1 + 1
My —0?  o2(1-¢%)

Nig1 =

It is easy to see that equation (13.27) leads to the recursion formula

1
Nt+1 = (—bé’Nt

It follows that

2 (1= $7)¢20+D

— 2
Mt+1lt =0 + g 1 - ¢2(t+1)

Note, however, that, even in this simple example, the explicit deter-
mination of Z; . is difficult. This illustrates the usefulness of a recursive
method.
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13.5 Prediction and Smoothing in State
Space Models

13.5.1 Prediction

We consider the general state space model defined by (13.24) and (13.25),
ie.

Biv1 = Fibi+er,
z = Hif+mn.

The hypotheses of Section 13.4.1 are maintained. In particular, &; and
7); are assumed uncorrelated.

We observe z1,...,2 and we want to predict Bypp and 2¢p5, b > 1.
That is, we want to determine ‘

Bt+hlt = E(ﬂt+hl21,---,zt),
/’:’t+h(t = E(zt-}-hlzls---szt),

as well as the variance covariance matrices of the prediction errors. When
h = 1, the optimal predictions of f;4; and 2;4; as well as the variance
covariance matrices of the corresponding prediction errors are given by
Property 13.7-(ii), (ii’), (iii), and (iii’) of the Kalman filter.

More generally, writing equations (13.24) and (13.25) at time ¢ + h,
we obtain

Brarn = Frin—1Btah—1+ Erpn-1, (13.28)
zeen = HypBeen + Netn (18.29)
Taking conditional expectation given zj,..., 2, this system becomes
Beng = Ferno1Bran-ap, (13.30)
2t+h.|t = Hg-‘}-h/-f;‘t-!-h.lt' (1331)

Substracting (13.30) from (13.28) and (13.31) from (13.29) we obtain

Birn = Brant = Fron1(Btaho1 = Beah-1jt) + Etrh-1.
zerh = Zornge = Bopn(Bern = Beghje) + Mt

The latter formulae express the predictions errors at horizon h as func-
tions of the prediction errors at horizon h — 1. Then we can readily
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obtain the variance covariance matrices of the prediction errors. These
are

Birnt = Fopn1Zpno1Fin +Q, (13.32)
Miene = HippZepnpHesn + R. (13.33)

The preceding equations show that

‘ﬂt+h|t, 2’t+h|t, 2t+h|t, Mt+h|t

are easily obtained by applying the Kalman filter (Property 13.7). Specif-
ically, after using (iii”), it suffices to follow the sequence of formulae (ii)
and (ii’), where ﬂtlt and 3, are replaced by ﬁz+11t and 3|, respec-
tively, and to iterate this operation h — 1 times. Of course, the values
of ,Bt+1[t and 2t+1|t must be kept so as to continue the algorlthm at (i)
and (1’) for time ¢ + 1.

Remark 13.18: From Remark 13.9, we know how to modify the equa-
tion giving ﬁt_,_m when ; and 7; are correlated, The remaining equations
are unchanged. In particular, the system (13. 30) (13.33) is unchanged
for h > 2.

Remark 13.19: When H; and F;_; are functions of zy,..., 21, we saw
that the Kalman filter equations of Property 13.7 remain valid provided -
the various variance covariance matrices are interpreted as conditional on
the information used in the computation of the conditional expectations
(see Remark 13.11). In contrast, when the prediction horizon & is larger
than two, i.e., A > 2, then formulae (13.30)—(13.33) can no longer be
used. This is because the matrices Fyyp—1 and Hj 4, are now random
conditional on z;,..., 2.

13.5.2 Smoothing
We consider the general state space model defined by

Biv1 = Fibi+ey,
2y = H;ﬂt'*’nh

where the variance covariance matrix of the vector w; = (&}, 7;)’ is
Q S
s R/’
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We observe zi,...,2r and we want to determine the optimal predic-
tion By = E(B; | z1,...,27) of B, t € (1,...,T), as well as the variance

covariance matrix of §; — By, denoted Zy 7.

Property 13.10: We have the recursion formulae
(z) Bt]T = Btlt + Ct(BH—l[T - Bt+1|t): where Cy ='Et|tF£2t—,:1!t:
() Byt = By + Ce(Beqayr — Zes1) Cr-

Proor: (i) Let E(B; | I;) denote the conditional expectation

E(B; | 2140152ty Byr — ﬂt-ﬁ-llty Wity .- WT)-

Each variable 24541, 4=0,...,T ~ 1, is a function of the conditioning
variables in the above expectation since

Zepirr = Hii0Bevivs + Neticts
Bivivr = Fiyi. Frp1Biyr + 614
+Fi€pic1+ oo+ Fegg o Fopoei,
Beri = Ber1 = Bosape + Brrrpe:

and B;41) is a function of z3,...,2. Hence

Bir = E(Be | 21,---,27) = E(B(Be | &) | 21, ..., 27),

(see formula B.45).

We now compute E(B; | I;). Since errors are normal, then E(3; | I;)
is a random vector of which the components are orthogonal projections
in the Ly sense on the subspace generated by the variables of I; and 1.
This subspace is the sum of three mutually orthogonal subspaces, which
are

Ilt = (Zl,...,Zt,l),
I = (Bes1 = Biripe)s
I3t = (wt+19 e ,’IUT)-

Hence E(f; | I) can be decomposed as

EB:| L) = Bt}t + (E(Bt | B4 — ﬁt+1u) - Ef;)
+(E(ﬂt I W1y oo ,’U)T) - Eﬁt)
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The third term is equal to zero while the second term can be written as
E(Be | Be+1 — Berje) — EB:
= Cov(Bt, Bes1 — Bt+1[t)zt—+11|t(ﬁt+1 = Berae)
= Cov(B, F+(B: — Byys) + Et)z;,_lm(ﬁt-x—l = Betaye)
= 2t|tF£E;+1m(ﬁt+1 - :Bt-{-llt)
= Ci(Be+1 — Brsapt)-

Hence we have

E(Be | It) = Bys + Ce(B41 — Bet1e)-

Then, taking expectation conditional on 2y, ..., 27, we obtain

BtlT = Btlt + Ct(Bt+1|T - Bt-{—llt)a

as desired.
(i) Substracting B; from each side of the preceding equation and
multiplying by minus one, we obtain

Bt — Bt|T =B - :Bt|t - Ct,Bt+1;T + Ctﬁt—}-llty
ie. ) . . )
(Be = Byr) + CiBrrair = (B — Byye) + Celsyrje-

Each side of this equation is decomposed as a sum of two uncorrelated
terms. Hence we have

Zyr + CeV (Beryr)Ct = By + CoV (Berrp) Cly
ie. R )
Et[T = Et!t + Ct(v(ﬂt-q-l]t) - V(ﬂH—IIT))C;- (1334)
On the other hand, we have the identity
(Be+1 — Boage) + Borage = (Berr — Bevyr) + Bervr-

Each side of this equation is again decomposed as a sum of two uncor-
related terms. Hence

Bt + ViBryrs) = Berr + V(Beryr),

ie. .
V(Birapt) = V(Berrir) = Sppyyr — Segaps-
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Then, using equation (13.34), the desired result follows. O

Property 13.10 shows that ;§’t1T and X7 can be obtained by first
applying the Kalman filter, which provides ﬁtlt, Bt*HIt! X4y and gy,
and then using Property 13.10-(i) and (ii) starting fromt =T — 1.

13.6 Recursive Least Squares and
Recursive Residuals

The preceding results can be straightforwardly applied to the linear
model. Consider the linear model

yt=$tﬂ+nt: t=17-",T7

where the error terms 7; are independently and identically distributed
N(0,02).
The model can be written in the state space form

{ Ber1 =B (=B)
Yt = 20 + n;.

Hence we have Fy = I, H} = z;, Q =0, S =0 and R = 02,
The information filter with Q = 0 (see Remark 13.13) is:

(IH) 8y = Gy + zhye /02,

(1) Etlt Eatl | iz /o,

(IHi) Ggje—1 = g,

() Sy, =2y
In view of equations (I-ii) and (I-ii’), we can simplify the notation by
letting

g = ath‘ = at|t 1s

=t o=y =3

Then the information filter can be written as

-~

G = @y 1+mtyi, (13.35)

5t o= 5+ ‘“t””‘. (13.36)
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In particular, if we use a diffuse prior, i.e., if dyj0 = 0 and E;Ié =0,
then we have

1 T
-1 /
ET = ;2- Zwtxt,
t=1
and
T
.1 )
“=-3 >z
t==1

Hence

T
Br = Prr = (Z $2$t> Z TyYs-
t=1 t=1

Hence we obtain the least squares formula. This agrees with Property
12.3 where Qg = 0.

The information filter with a diffuse prior is equivalent to the covari-
ance filter when ¢ > 7 and 371 =1/02Y"]_| )z, is nonsingular, which
is in general satisfied when ¢ > k, where k is the number of compo-
nents of z;. In this case, the updating equations of the covariance filter
Property 13.7-(i) and (i’) can be used. Here these are

B = Bi1 + Ky,

ie.
B = Be-1 + 12, (zeZpaz} + 0'2)“1 Ut (13.37)
and
3 B By 31 s
= 3 z} <.’1:t —3 .’1:2—!-1) Ty (13.38)

The gain of the filter, which is
Kt = Ztﬁl(a:gxt_lwg + 0'2)-1,

can be written as

1
K= 'afz'ztm;,’

using Property 13.7—(i"). Hence equation (13.37) becomes

’
Etwt .

Be =B+ e
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ie.

' -1
Be =1+ (}: z:m,) T (yt - -’Btﬁt-—l) . (13.39)
i==]

This equation used in conjunction with equation (13.38) allows to update
the so-called recursive least squares estimates, which are the least squares
estimates based on ¢ observations. o

In particular, equation (13.39) shows that the change §; — ;1 in the
least squares estimate is proportional to the residual y; — z;8;—;. Condi-
tionally or unconditionally to [ the variance of the residual
Y — T:—1 appearing in equation (13.39) is

: -1
o |1+, (Z mia:z> z
i=1
The “normalized” residuals

Yi — Tt fr-1

-1
(14 (Shorotos) )

are called recursive residuals.

By construction, recursive residuals are distributed N(0,0?%). More-
over, it is easy to see that these residuals are mutually independent since
Vr<s

r—1 “1r1
Cov (wr,ws) = E|n—z (Z zi:n) Zfl’;ﬂi

i=1 i=1

We = /2

1

-1
o 8—1
/ § /
j=1

J=1
-1
§--1
’ /
= ~—Zg $J$] T,
Jj=1
-1
1 =1 /e s—1 \
+ iz Tz ‘zi|
Ty 3 Li i Li .’EJ ] 8
=1 i=1 - G=1
= 0.
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13.7. EXERCISES

13.7 Exercises

EXERCISE 13.1:

a) Consider two nonzero vectors u and v of JR™ such that u = Qu,
where Q is a symmetric positive definite matrix. Show that u/v >

0.

b) Let v be the vector (1,0,0,...,0)". Characterize the vectors u such
that v'v > 0.

c) Consider a vector u = (us,...,u,) such that u; > 0. Find a sym-

metric positive definite matrix Q such that v’ is the first row of Q.
Deduce property 13.2.

EXERCISE 13.2: Consider the nonlinear regression model y; = g;(6) +
u;, ¢ = 1,...,n. One wants to determine the nonlinear least squares
estimator 4 of 8. Thus the criterion function is

> (Wi - 9:(0))* = V(6).

i==]

a) Find a linear approximation to g;(f) in the neighborhood of §(¥).
When g;(0) is replaced by this approximation in the criterion func-
tion, verify that the criterion function becomes

n

2
V(9) = Z (yi — g:(6%)) — g‘%(e _ g(k))> ]

i=1
b) Determine the value (1) at whiéh the function V is minimized.

EXERCISE 13.3: Compare the Newton-Raphson and BHHH algorithms
when the model is the linear model y; = ;8 + u; and the errors are
independently and identically distributed N(0,1).

EXERCISE 13.4: Consider a random sample Y7*,...,Y* drawn from a

distribution with density 6exp(—0y*)1 R+("). We observe Y; where
Y, =Y ;<1

a) Find the log-likelihood function of the latent model.

b) Find the conditional expectation of this log-likelihood function
given the Y;’s.
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¢) Find the limit of the estimator obtained by maximizing the func-
tion in b) with respect to 6.

EXERCISE 13.5: Determine the iteration formula of the EM algorithm
for a Tobit model where the latent model is linear and Gaussian. That
is, the latent model is Y;* = 2:;b + u; where the errors u; are indepen-
dently and identically distributed N(0,02). The observed variables Y;
are related to the latent variables by V; = Y"1y >0).

EXERCISE 13.6: -Consider applying the EM algorithm to a model where
(i) the log-likelihood function L(#) is bounded above,
(ii) there exists a strictly positive scalar X such that
Q8D 9y — (9@, @) > A[|gletD) — 9@ |2,
where @ is defined in equation (13.17).

a) Use the proof of Property 13.5 to show that

Z 199D — 9|2 < 4o0.
g

Conclude that there exists a converging subsequence #(%) .

b) Suppose that the latent model is a Gaussian model defined by Y;* =
z;0 + u;, i = 1,...,n, where the error terms u; are independently
and identically distributed N(0,1). Show that

Q(olt1) g0y — Q69,09 = (gla+1) — gDy X X (gla+D) — 6(@)),
Conclude that a condition of type (ii) above is satisfied.

c) Consider observations such that

(%)= ()~ ((5) 9

Take as initial values
60\ _ ( Y1+ 2 )
o Y2 '
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13.7. EXERCISES
First, verify that
0§q) = Y1 + T COS g,

04D =y, + TqSin ag,

where

1 1
rq—1+1+q and aq-.kz;:—l—:—k-.

Second, verify that

g1

( Tg+1 ) = M(rq, 0q),

where

21
M(r,a)=(a+1:l )ﬂr>1+( a+§—-—1— )ﬂrsl-
r ka

Conclude that the limit points of the sequence 8(9) are all the points
on a circle with radius one centered at (y1,y2). Conclude that the
sequence #(? does not converge.

EXERCISE 13.7: Generalize Example 13.2 to a pth order autoregressive
model defined by

2~ P18gg — e — ¢pzt—p = Ut.

In particular, verify that we can let 8, = (2,...,24—p+1) so that the
transition matrix F is :
b1+ by
I,., 0 )°
EXEﬁCISE 13.8: Generalize Example 13.3 to a gth-order moving
average defined by
2z = U — O1up—1 - — OgUp—q.

In particular, show that we can let 8; be the g + 1 dimensional vector
defined by

Bt = (2, =b1us — -+ — OgqUupy1-qy . . ., —Oquz)’.
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Show that the transition matrix F becomes

(57%)

EXEeRCISE 13.9: Consider an ARMA (p, q) defined by
2= 121 — = Ppat—p = U — OrUsq — -+ - — OgUs—q.

Show that a state space representation of this model is obtained by
letting the state vector be the p + ¢ dimensional vector defined by

Bt = (21, 2¢-1, . . 3 Zept13Ety Efnly e e sEt-q+1)I-
Show that the transition matrix F is the (p + g) x (p + g) matrix

br-bp —0y---—0
Ip_.l o 0
0---0
0
I.: 0

EXERCISE 13.10: Consider the linear system

yt=ztﬂ’ t=1,...,T,

where (8 is an unknown vector of dimension K. Show that the Kalman
covariance filter can be used to solve this system. Interpret geometrically
the recursion formulae of the filter when f;g = 0 and %)q = Ig.

13.8 References

Anderson, B.D. and Moore, J.B. (1979). Optimal Filtering, Prentice
Hall.

Berndt, E.K., Hall, B.H., Hall, L.R.E., and Hausman, J.A. (1974). “Es-
timation and Inference in Nonlinear Structural Models,” Annals of
Economic and Social Measurement, 3, 653-666.

Boyles, R. (1983). “On the Convergence of the Optimization,” Journal
of the Royal Statistical Society, B, 45, 47-50.

490



13.8. REFERENCES

Brown, R.L., Durbin, J., and Evans, J.M. (1975). “Techniques for Test-
ing the Constancy of Regression Relationships Over Time,” Jour-
nal of the Royal Statistical Society, Series 13, 37, 149-192.

Dempster, A.P.N., Laird, N.M., and Rubin, D.B. (1977). “Maximum
Likelihood from Incomplete Data Via the E.M. Algorithm,” Jour-
nal of the Royal Siatistical Society, B 39, 1-38.

Fair, R. (1977). “A Note on the Computation of the Tobit Estimation,”
Econometrica, 45, 1723-1727.

Fletcher, R. (1980). Practical Methods of Optimization, Wiley.

Fletcher, R. and Powell J. D. (1963). “A Rapidly Convergent Descent
Method for Minimization”, Computer Journal, 6, 163-168

Fletcher, R. and Reeves, C. (1964). “Function Minimization by Conju-
gate Gradients,” The Computer Journal, 7, 149-153.

Goldfeld, S.M. and Quandt, R.E. (1972). Nonlinear Methods in Econo-
metrics, North-Holland.

Goldfeld, S., Quandt, R.E., and Trotter, H. (1966). “Maximization by
Quadratic Hill-Climbing,” Econometrica, 34, 541-551.

Goldstein, (1967). Constructive Real Analysis, Harper Row.

Gourieroux, C. and Monfort A. (1995). Time Series and Dynamic
Models, Cambridge University Press.

Marquardt, D. W. (1963). “An Algorithm for Least Squares Estimation
of Nonlinear Parameters ”, SIAM Journal, 11, 431-441

Phillips, G.D.A. and Harvey, A.C. (1974). “A Simple Test for Serial
Correlation in Regression Analysis,” Journal of the American Sta-
tistical Association, 69, 935-939.

Powell, M. (1964). “An Efficient Method for Finding the Minimum of
a Function of Several Variables Without Calculating Derivatives,”
The Computer Journal, 7, 155-162.

Quandt, R.E. (1983). “Computational Problems and Methods,” Hand-
book of Econometics, Vol 1, North-Holland.

Theil, H. (1971). Principles of Econometrics, Wiley.

491



1wato | oustieo | 1S866°0 | o1 w0 ) [ 1u 8660 6lueeo | stauve | og
208660 | L0660 | €6266'0 | 88.266°0 | 182660 194660 62660 | VY2660 | 8T
98 L66'0 | BTLE60 | 022660 | 11166°0 | 201660 £8966°0 ¥9966°0 | £9966'0 | LG
€P966'0 | Z£966°0 | 1C966'0 | 60966°0 | 86966°0 £L966°0 Ly Q66'0 | vES66°0 | 92
02S66'0 | 90666°0 | 26 V66’0 | LLVE6'0 | 19V66°0 Qe ¥66'0 96666°0 | 6L€66'0 | 42
19€66°0 | EPE66°0 | v2£66°0 | SOE66'0 | 9926670 Sp 2660 202660 | 081660 | ¥'2
891660 | PET66'0 | 111660 | ITI66°0 | 980660 010660 98686'0 | 826860 | €2
66886°0 | 02886°0 | OV886'0 | 60886°0 | 821860 £1.186°0 SP986'0 | 019860 | 2T
$LG86°0 | LES86°0 | 00S86°0 | 19V86°0 | 221860 1V €860 LST86°0 | PIC860 | T'C
69186°0 | ¥2186°0 | L0860 | 080860 | 286.60 288L6°0 8LLL6°0 | G2LL60 ] 02
0L926°0 | ST9L6°0 | 89GL6'0 | 00G26'C | TP PL6'0 | I8€L6°0 | 028460 | 282260 | €612670 821.60 | 6'1
%90L6°0 | S6696'0 | 92696'0 | 99896°0 | ¥8L96°0 | 2I1L96°0 | 8€996'0 | 799960 | S8 V960 209960 | 81
LTE96'0 | OVZ96'0 | PO T96'0 | 080960 | $6696'0 | L0660 | 618960 | 821860 | LE£9%60 €P886°0 | LT
6P vS6°0 | 29€86°0 | PG2S6'0 | PSTIS6'0 | £5086°0 | 0S6¥6°0 | S¥8P6'0 | 884¥6'0 | 089V60 0zS¥6°0 | 91
80V¥6°0 | S6CV6'0 | 6LT1F6°0 | ¢90¥6°0 | EF6E6'0 | 5T8E6°0 | 66966'0 | vL986°0 | svveso 61¢£6°0 | 91
681€6°0 | 9S086°0 | 52 626'0 | 982260 | Lv926°0 | 20526°0 | $9€26'0 | 022260 20260 | ¥Z616'0 | ¥'1
PLLI60 | T2916°0 | 99V16'0 | 60LI6°0 | 6V 116°0 | 886060 | Y2 R06'0 | 889060 | 06¥060 | 0Z £0670 | €1
LV 106'0 | €L668°0 | 96,680 | L1968°0 | 962680 | 162680 | 990680 | L2988°0 | 989880 £6¥88°0 | T'1
86288°0 | 00188'0 | 006L8'0 | 869.8°C | €6V28°0 | 98228'0 | 920480 | v9gos80 | og 998'0 | €2¥98°0 | I'T
VIZ98'0 | £6698°0 | 69.68°0 | €SS0 | PIESE'0 | €80S8'0 | 098¥8°0 | FT9PR0 | QL€P80 VEIPS0 | O'1
I68E8'0 | 9V OE8'0 | 86£E88°0 | LPTE8'0 | ¥6828°0 | 6£928°0 | 182280 | 121280 | 6¢ 8180 | V68180 | 60
LTEI8'0 | LS0I8'0 | 981080 | TTS080 | 112080 | SS66L°0 | £L96L°0 | 68€6L°0 | €0 1640 | ¥188L0 | 80
VESRL'G | 08C8L°0 | SE6LL°0 | 28922°0 | L88LL°0 | SE0LL0 | T€292°0 | y2¥92°0 | STTI9L0 PORSLO | L0
06VSL°0 | SLISL'0 | 298VL°0 | LeSVL0 | s12vl0 | 168820 | goces0 LETEL0 | LO6TL0 | GL62L0 | 90
OVeeL 0 | YOGIL'0 | 998140 | 928120 | ¥880L°0 | oveoLso | ¥610L0 LVB69°0 | L6V69°0 | 9¥ 1690 | S0
€6.89°0 | 6EV89°0 | 28089°0 | $CLL9°0 | 99€29°0 | £0029'0 | 0v9990 | 92 2990 | 016590 | Zv6s9'0 | ¥O
€L199°0 | €08YO'0 | TEPYO'0 | 8SOVO'0 | £8989°0 | L0SE90 | 0£629°0 | 289290 | 241290 162190 | €0
60719°0 | 92019°0 | 2v909°0 | LS209°0 | 1L869°0 | P8FP6S0 | 960650 | 902890 LIE8%°0 | 926480 | 20
SEGLS0 | SVTL9°0 | 05299°0 | 99£99°0 | 29689°0 | 29969°0 | ZA1SS°0 | 942980 | 08 E¥S°0 | £8689°0 | 10
986€9'0 | 881690 | 064280 | Z6€25°0 | ¥661S°0 | S6SIG0 | L6T1S0 | 862080 | 66€09°0 000080 | 00

600 800 200 90°0 800 ¥0°0 £0°0 200 100 000 T

oo+ x 0 oo —
e 7))
Pz n-2 0] (@)d

(04

UonNqLISI(Y [BWION PIEPUe)S 843 JO UOHOUN] UOHNQLIISI(] SATYR[IWN,)

T slqEL,




¢z10°0 | 1920°0 | 9.€0°0 | 0S0°0 | 22900 | €520°0 | 8.80°0 | ¥0OT'0 | OEIT'0 | L&GT'0 | 6°0
£88T°0 | 0TST'0 | L€9T°0 | P9LT0 | 6181°0 | 6102°0 | L¥IG'0 | SL2T°0 | ¥OVTO | €€92°0 | 8°0
£992'0 | €642°0 | ¥262°0 | 000€°0 | 981€0 | 6TEEL°0 | TSPE'0 | GBSE0 | 6ILE0 | €G8E°0 | L0
6868°0 | S2T7°0 | 19250 | 668F°0 | 89P0 | LL97°0 | LI8%'0 | 69670 | TOTS'O | ¥¥2S°0 | 9°0
8888°0 | $£9C°0 | 189S0 | 8289°0 | 8690 | 82190 | 08290 | €€¥9°0 | 88390 | S¥L9°0 | G0
£069°0 | €90.°0 | 99TL°0 | 888L°0 | ¥SGL0 | €TLL'O | P908°0 | T6BL'0 | 6€C8'0 | 9T¥80 | V'O
9688°0 | 6L.8°0 | S968'0 | ¥SI6°0 | 9¥€6°0 | TPS6'0 | TPLE0 | S¥66°0 | CSTI0'T | POEO'T | €0
18G0°T | €080°T | T€OT'T | $92T'T | €OST'T | 0SLT'T | $00C'T | 998C'T | 9€S¢'T | 918C'T | €0
90TS'T | 80¥E'T | TCLE'T | TSOP'T | S6EP'T | 8SL¥'T | TPIST | 8PSS'T | T869°T | 6VP9'T | T'0
$G69'T | L0S4°T | 61181 | 8088'T | 0096'T | LES0°C | TOLT'G | €9ZET | 89LEC o0 00
60°0 80°0 100 800 600 ¥0'0 €00 00 100 000 it
oo+ nd Q n—  oo—
4 4
o o

(o= (n <| Z |)¢d Teus yons Z jo enfea = n) UOINQLISI(] [EULION PIEpuelS 9y} Jo safijuent)

¢ 9qEL




(z = value of x* such that Pr(x® > z) = a)

Table 3
Quantiles of the Chi-Square Distribution with v Degrees of Freedom

“ 0.990 0.975 0.950 0.900 | 0.100 | 0.050 | 0.025 | 0.010 | 0.001
v

1 0.0002 { 0.0010 | 0.0039 | 00158 | 271 | 3.84 | 5.02 | 6.63 | 10.83
2 0.02 0.05 0.10 0.21 461 | 599 | 7.38 | 9.21 | 13.82
3 0.12° 0.22 0.35 0.58 6.25 | T.81 | 9.35 ] 11.34 | 16.27
4 0.30 0.48 0.71 1.06 7.78 | 9.94 | 11.14 | 13.28 | 18.47
5 0.55 0.83 115 1.61 9.24 | 11.07 | 12.83 | 15.09 | 20.52
6 0.87 1.24 1.64 2.20 10.64 | 12.59 | 14.45 | 16.81 | 22.46
7 1.24 1.69 2.17 2.83 12.02 | 14.07 | 16.01 | 1847 | 24.32
8 1.65 2.18 2.73 3.49 13.36 | 15.51 | 17.53 | 20.09 | 26.13
9 2.09 2.70 3.33 4.17 14.68 | 16.92 | 19.02 | 21.67 | 27.88
10 2.56 3.25 3.94 4.87 15.99 | 18.31 | 20.48 | 23.21 | 20.59
11 3.05 3.82 4.57 5.58 17.27 | 19.67 | 21.92 | 24.72 | 31.26
12 3.57 4.40 5.23 6.30 18.55 | 21.03 | 23.34 | 26.22 | 32.91
13 | 411 5.01 5.89 7.04 19.81 | 22.36 | 24.74 | 27.69 | 34.53
14 4.66- 5.63 6.57 7.79 21.06 | 23.68 | 26.12 | 20.14 | 36.12
15 5.23 6.26 7.26 8.55 22.31 | 25.00 | 27.49 | 30.58 | 37.70
16 5.81 6.91 7.96 9.31 23.54 | 26.30 | 28.84 | 32.00 | 39.25
17 6.41 7.56 8.67 10.08 24.77 | 27.59 | 30.19 | 33.41 | 40.79
18 7.01 8.23 9.39 10.86 25.99 | 28.87 | 31.53 | 34.80 | 42.31
19 7.63 8.91 10.12 11.65 27.20 | 30.14 | 32.85 | 36.19 | 43.82
20 8.26 9.59 10.85 12.44 28.41 | 31.41 | 34.17 | 37.57 | 45.32
21 8.90 10.28 11.59 13.24 29.61 | 32.67 | 35.48 | 38.93 | 46.80
22 9.54 10.98 12.34 14.04 30.81 | 33.92 | 36.78 | 40.29 | 48.27
23 10.20 ] 11.69 13.09 14.85 32.01 | 35.17 | 38.08 | 41.64 | 49.73
24 10.86 12.40 13.85 15.66 33.20 | 36.41 | 39.37 | 42.98 | 51.18
25 11.52 13.12 14.61 16.47 34.38 | 37.65 | 40.65 | 44.31 | 52.62
26 12.20 13.84 15.38 17.29 35.56 | 38.88 | 41.92 | 45.64 | 54.05
27 12.88 14.57 16.15 18.11 36.74 | 40.11 | 43.19 | 46.96 | 55.48
28 13.57 15.31 16:93 18.94 37.92 | 41.34 | 44.46 | 48.28 | 56.89
29 14.26 16.05 17.71 19.77 39.09 | 42.56 | 45.72 | 49.59 | 58.30
30 14.95 16.79 18.49 20.60 40.26 | 43.77 | 46.98 | 50.89 | 59.70

when v > 30. then /2x? — /20 = 1 is approximately N(0.1).




Table 4

Quantiles of the Student Distribution with v Degrees of Freedom
(t = value of T such that Pr(| T |> t) = a)

a a
2 2
—o0 -t 0 t + 00
“ 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.05 0.02 0.01 0.001
v

1 0.158 1 0.325 | 0.510 | 0.727 [ 1.000 | 1.376 | 1.963 | 3.078 | 6.314 | 12.706 | 31.801 | 63. 657 | 636.619
2 10.142 | 0.289 | 0.445 | 0.617 | 0.816 | 1.061 | 1.386 | 1.886 | 2.920 4.303 6.965 9.925 31.598
3 10137 | 0.277 | 0.424 | 0.584 | 0.765 | 0.978 | 1.250 | 1.638 | 2.353 3.182 4.541 5.841 12.929
4 | 0134 ) 0271 | 0414 | 0.569 | 0.741 | 0.941 | 1.190 | 1.533 | 2.132 2.776 3.747 4.604 8.610
5 {0.132 | 0.267 | 0.408 | 0.559 | 0.727 | 0.920 | 1.156 | 1.476 | 2.015 2.571 3.365 4.032 6.869
6 10131 | 0.265 | 0.404 | 0.533 | 0.718 | 0.906 | 1.134 | 1.440 | 1.943 2,447 3.143 3.707 5.959
7 10130 | 0.263 | 0.402 | 0.549 | 0.711 | 0.806 | 1.119 | 1.415 | 1.895 2.365 2.998 3.499 5.408
8 | 0.130 | 0.262 | 0.399 | 0.546 | 0.706 | 0.889 | 1.108 | 1.397 | 1.860 2.306 2.896 3.355 5.041
9 10129 | 0.261 | 0.398 | 0.543 | 0.703 | 0.883 | 1.100 | 1.383 | 1.833 2.262 2.821 3.250 4.781
10 { 0.129 | 0.260 | 0.397 | 0.542 | 0.700 | 0.879 | 1.093 | 1.372 | 1.812 2.228 2.764 3.169 4.587
11 0.129 | 0.260 | 0.396 | 0.540 | 0.697 | 0.876 | 1.088 | 1.363 | 1.796 2.201 2.718 3.106 4.437
12 | 0.128 | 0.259 | 0.395 | 0.539 | 0.695 | 0.873 | 1.083 | 1.356 | 1.782 2.179 2.681 3.055 4.318
13 1 0.128 | 0.259 | 0.394 | 0.538 | 0.694 | 0.870 | 1.079 | 1.350 | 1.771 2.160 2.650 3.012 4.221
14 | 0.128 | 0.258 | 0.393 | 0.537 | 0.692 | 0.868 | 1.076 | 1.345 | 1.761 2.145 2.624 2,977 4,140
15 | 0.128 | 0.258 | 0.393 | 0.536 | 0.691 | 0.866 | 1.074 | 1.341 { 1.753 2.131 2.602 2.947 4.073
16 | 0.128 | 0.258 | 0.392 | 0.535 | 0.690 | 0.865 | 1.071 | 1.377 | 1.746 2.120 2.583 2.921 4.015
17 1 0.128 | 0.257 | 0.392 { 0.534 | 0.689 | 0.863 | 1.069 | 1.333 | 1.740 2.110 2.567 2.898 3.965
18 | 0.127 | 0.257 | 0.392 | 0.534 | 0.688 | 0.862 | 1:.067 | 1.330 | 1.734 2.101 2.552 2.878 3.922
19 | 0.127 } 0.257 | 0.391 | 0.533 | 0.688 | 0.861 | 1.066 | 1.328 | 1.729 2.093 2.539 2.861 3.883
20 | 0.127 | 0.257 | 0.391 | 0.533 | 0.687 | 0.860 | 1.064 | 1.325 | 1.725 2.086 2.528 2.845 3.850
21 | 0.127 | 0.257 | 0.391 | 0.532 | 0.686 | 0.859 | 1.063 | 1.323 | 1.721 2.080 2,518 2.831 3.819
22 | 0.127 | 0.256 | 0.390 | 0.532 | 0.686 | 0.858 | 1.061 | 1.321 | 1.717 2.074 2.508 2.819 3.792
23 | 0.127 | 0.256 | 0.390 | 0.532 | 0.685 | 0.858 | 1.060 | 1.319 | 1.714 2.069 2.500 2.807 3.767
24 | 0.127 | 0.256 | 0.390 | 0.531 | 0.685 | 0.857 | 1.059 | 1.318 | 1.711 2.064 2,492 2.797 3.745
25 | 0.127 | 0.256 | 0.390 | 0.531 | 0.684 | 0.856 | 1.058 | 1.316 | 1.708 2.060 2.485 2.787 3.725
26 | 0.127 | 0.256 | 0.390 | 0.531 | 0.684 | 0.856 | 1.058 | 1.315 | 1.706 2.056 2479 2.779 3.707
27 | 0.137 | 0.256 | 0.389 | 0.531 | 0.684 | 0.855 | 1.057 | 1.314 | 1.703 2.052 2473 2.771 3.690
28 | 0.127 | 0.256 | 0.389 | 0.530 | 0.683 | 0.855 | 1.056 | 1.313 | 1.701 2,048 2.467 2.763 3.674
29 | 0.127 | 0.256 | 0.389 | 0.530 | 0.683 | 0.854 | 1.055 | 1.311 | 1.699 2.045 2.462 2.756 3.649
30 [ 0.127 | 0.256 | 0.389 | 0.530 | 0.683 | 0.854 | 1.055 | 1.310 | 1.697 2.042 2,457 2.750 3.656
40 | 0.127 | 0.255 | 0.388 | 0.529 | 0.681 | 0.851 | 1.050 | 1.303 | 1.684 2.021 2423 2.704 3.551
80 | 0.126 | 0.254 | 0.387 | 0.527 | 0.679 | 0.848 | 1.046 | 1.296 | 1.671 2.000 2.390 2.660 3.460
120 | 0.126 | 0.254 | 0.386 | 0.526 | 0.677 | 0.845 | 1.041 | 1.289 [ 1.658 1.980 2.358 2.617 3.373
oo 0.126 | 0.253. | 0.385 | 0.524 | 0.674 | 0.842 | 1.036 | 1.282 | 1.645 1.960 2.326 2.576 3.291




Table 5

Quantiles of the Fisher-Snedecor Distribution with »; and v2 Degrees of Freedom
(f = value of F such that Pr(F > f) = a)

=1 vy =2 v =3 =4 vy =)
va | P=005] P=001]P=005]| P=001] P=005]| P=0.01 ]| P=005| P=0.01}| P=0.05 P=0J01
1 1614 4052 199.5 4999 215.7 5403 224.6 5625 230.2 5764
2 18.51 98.49 19.00 99.00 19.16 99.17 19.25 . 99.25 19.30 99.30
3 10.13 34.12 9.55 30.81 9.28 29.46 9.12 28.71 9.01 28.24
4 7.71 21.20 6.94 18.00 6.39 16.69 6.39 15.98 6.26 15.52
5 6.61 16.26 5.79 13:27 5.41 12.06 5.19 11.39 5.06 10.97
6 5.99 13.74 5.14 10.91 4.76 9.78 4.53 9.15 4.39 8.75
7 5.59 12.15 4.74 9.55 4.35 8.45 4.12 7.85 3.97 745
8 5.32 11.26° 4.46 8.65 4.07 7.59 3.84 7.01 3.69 6.63
9 5.12 10.56 4.26 8.02 3.86 6.99 3.63 6.42 3.48 6.06
10 4.96 10.04 4.10 7.56 3.71 6.55 3.48 5.99 3.33 5.64
11 4.84 9.65 3.98 7.20 3.59 6.22 3.36 5.67 3.20 5.32
12 4.75 9.33 3.88 6.93 3.49 5.95 3.26 5.41 3.11 5.06
13 4.67 9.07 3.80 6.70 3.41 5.74 3.18 5.20 3.02 4.86
14 4.60 8.86 3.74 6.51 3.34 5.56 3.11 5.03 2.96 4.69
15 4.54 8.86 3.68 6.36 3.29 5.42 3.06 4.89 2.90 4.56
16 4.49 8.53 3.63 6.23 3.24 5.29 3.01 4.77 2.85 4.44
17 4.45 8.40 3.58 6.11 3.20 5.18 2.96 4.67 2.81 4.43
18 441 8.28 3.55 6.01 3.16 5.09 2.93 4.58 2.77 4.25
19 4.38 8.18 3.52 5.93 3.13 5.01 2.90 4.50 2.74 4.17
20 4.35 8.10 3.49 5.85 3.10 4.94 2.87 4.43 2.71 4.10
21 4.32 8.02 347 5.78 3.07 4.87 2.84 4.37 2.68 4.04
22 4.30 7.94 3.44 5.72 3.05 4.82 2.82 4.31 2.66 3.99
23 4.28 7.88 3.42 5.66 3.03 4.76 2.80 4.26 2.64 3.94
24 4.26 7.82 3.40 5.61 3.01 4.72 2.78 4.22 2.62 3.90
25 4.24 7.77 3.38 5.57 2.09 4.68 2.76 4.18 2.60 3.86
26 4.22 7.72 3.37 5.53 2.98 4.64 2.74 4.14 2.59 3.82
27 4.21 7.68 3.35 5.49 2.96 4.60 2.73 4.11 2.57 3.70
28 4.20 7.64 3.34 5.45 2.95 4.57 271 4.07 2.56 3.75
29 4.18 7.60 3.33 5.42 2.93 4.54 2.70 4.04 2.54 353
30 4.17 7.56 3.32 5.39 2,92 4.51 2.69 4.02 2.53 3.70
40 4.08 7.31 3.23 5.18 2.84 4.31 2.61 3.83 2.45 3.51
60 4.00 7.08 3.15 4.98 27 4.13 2.52 3.65. 2.37 3.34
120 3.92 6.85 3.07 4.79 2.68 3.95 245 3.48 2.29 317
=] 3.84 6.64 2.99 4.60 2.60 3.78 2.37 3.32 2.21 3.02




Table 5 Continued

P
L o
f o
vy = vy = v =12 vy =24 vy =00
v2 | P=005]| P=001] P=005] P=001 | P=005] P=001 ] P= 005 ] P=001 | P=0.05] P=0.01
1 234.0 5859 238.9 5981 243.9 6106 249.0 6234 254.3 6366
2 19.33 99.33 19.37 99.36 19.41 99.42 19.45 99.46 19.50 99.50
3 8.94 27.91 8.84 27.49 8.74 27.05 8.64 26.60 8.53 26.12
4 6.61 15.21 6.04 14.80 5.91 14.37 5.77 13.93 5.63 13.46
5 4.95 10.67 4.82 10.27 4.68 9.89 4.53 947 4.36 9.02
6 4.28 8.47 4.15 8.10 4.00 7.72 3.84 7.31 3.67 6.88
7 3.87 7.19 3.73 6.84 3.57 6.47 3.41 6.07 3.23 5.65
8 3.58 6.37 3.44 6.03 3.28 5.67 3.12 5.28 2.93 4.86
9 3.37 5.80 3.23 547 3.07 5.11 2.90 4.73 2.71 4.31
10 3.22 5.39 3.07 5.06 2.81 4.71 2.74 4.33 2.54 3.91
11 3.09 5.07 2.95 4.74 2.79 4.40 2.61 4.02 2.40 3.60
12 3.00 4.82 2.85 4.50 2.69 4.16 2.50 3.78 2.30 3.36
13 2.92 4.62 2.77 4.30 2.60 3.96 2.42 3.59 2.21 3.16
14 2.85 4.46 2.70 4.14 2.53 3.80 2.35 3.43 2.13 3.00
15 2.79 4.32 2.64 4.00 2.48 3.67 2.29 3.29 2.07 2.87
16 2.74 4.20 2.59 3.89 2.42 3.55 2.24 3.18 2.01 2.75
17 2.70 4.10 2.55 3.79 2.35 3.45 2.19 3.08 1.96 2.65
18 2.66 4.01 2.51 3.71 2.34 3.37 2.15 3.00 1.92 2.57
19 2.63 3.94 2.48 3.63 2.31 3.30 211 2.92 1.88 2.49
20 2.60 3.87 2.45 3.56 2.28 3.23 2.68 2.86 1.84 242
21 2.57 3.81 2.42 3.51 2.25 3.17 2.05 2.80 1.81 2.36
22 2.55 3.76 2.40 3.45 2.23 3.12 2.03 2.75 1.78 2.31
23 2.53 3.71 2.38 3.41 2.20 3.07 2.00 2.70 1.76 2.26
24 2.51 3.67 2.36 3.36 2.18 1.03 1.98 2.66 173 2.21
25 2.49 3.63 2.34 3.32 2.16 2.99 1.96 2.62 171 217
26 247 3.59 2.32 3.29 2.15 2.96 1.95 2.58 1.69 2.13
27 2.46 3.56 2.30 3.26 2.13 2.93 1.93 2.55 1.67 2.10
28 2.44 3.53 2.29 3.23 2.12 2.90 1.91 2.52 1.65 2.06
29 2.43 3.50 2.28 3.20 2.10 2.87 1.90 2.49 1.64 2.03
30 2.42 3.47 2.27 3.17 2.09 2.84 1.89 247 1.62 2.01
40 2.34 3.29 2.18 2.99 2.00 2.66 1.79 2.29 1.51 1.80
60 2.25 3.12 2.10 2.82 1.92 2.50 1.70 212 1.39 1.60
120 2.17 2.96 2.01 2.66 1.83 2.34 1.61 1.95 1.25 1.38
) 2.09 2.80 1.94 2.51 L75 2.18 1.52 1.79 1.09 1.00
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Admissible
decision rule, 54, 60
linear estimator, 429
Ancillarity
Bayesian framework, 106
classical framework, 79,86
Asymptotic criteria, 121
Asymptotic efficiency, 180
Asymptotic least squares
estimation, 279, 322, 339
best, 282, 286, 310

Bayesian approach, 11, 59, 101, 123,
364, 393

empirical, 12 , 61

Bayesian estimation, 393
asymptotic results, 413
best linear unbiased, 426
linear, 429

Berkson method, 288, 320

Bernt-Hall-Hall-Hausman
algorithm, 455, 457

Bias
asymptotic, 235, 237
sample selection, 235
squared, 116

Box~Cox transformation, 22, 192

Causality, 28

Granger, 30

instantaneous, 28

Sims, 30
CES function, 219
Cobb-Douglas function, 4, 10
Coherency conditions, 17, 23
Common root, 328
Compiete statistics, 80, 98, 141
Conditioning, 24, 76
Conditioning variable, 24
Confidence region, 43
Consistency, see Convergence
Constraints, 10

equality, 168, 325

498

explicit, 326, 329, 341, 345, 353
explicit linear, 331 .
identifying, 91
implicit, 326, 329, 342, 346, 351
implicit linear, 334
inequality, 23
linear, 197, 203, 331, 334, 356,

357
misspecified, 355
mixed form, 326, 340, 350, 352,
353; 356
zero, 330, 349
Consumption model, 2, 3, 12, 39, 206,
295

Contingency table, 327

Controlled experiments, 5

Control matrix, 410

Convergence
almost sure, 122
in probablility, 121, 122
in quadratic mean, 121, 122, 125

Cumulative distribution, 37

Cut, 195
Bayesian, 105, 107
classical, 77
maximum likelihood estimation

and, 195

Davidson~Fletcher—Powell algorithm,
451
Decision rule
admissible, 54, 60, 62
complete class of, 62
correct, 48
definition, 44
dominated, 52, 59
improving, 75, 104, 113
minimal complete class, 62
nonrandomized;y 45, 51, 55, 113
optimal, 54, 60, 119
ordering, 48, 51, 53, 59
randomized, 48, 53, 56, 75
Decision theory, 43, 113



Degree of
overidentification, 93
underidentification, 93
Discrepancy,
Kullback, 13, 87, 95, 165
Chi-square, 39
Disequilibrium model, 20, 40, 205, 375
Distribution, see also Prior
distribution, Posterior
distribution
Bernoulli, 55, 63, 68, 82, 129,
139, 406
beta, 406, 410, 438
binomial, 1, 68, 244, 249
Cauchy, 163, 264, 423
exponential, 37, 71, 165, 191, 418,
432, 434
Fisher, 424
gamma, 188, 192, 244, 249, 251,
407, 410, 434, 441
linear exponential, 239, 242, 272
logistic, 167, 278
log-normal, 4, 12
multinomial, 97, 168, 188, 244,
327, 357
multivariate normal, 14, 98
multivariate Student, 422
normal, 70, 74, 79, 80, 97, 102,
139, 142, 244, 249, 251, 253,
396, 399, 401, 410
normal gamma, 412
Pareto, 4, 408, 410, 437, 440
Poisson, see Poisson
pseudo true, 14, 249
quadratic exponential, 252
Sargan, 274
Student, 423
true, 13
uniform, 72, 110, 154, 278
Disturbance, 3
Dominated model, 6
Dominating measure, 6
Dynamic model
ARMA, 490
autoregressive, 126, 189, 289, 293,
320, 468, 489
definition, 27
examples, 28, 32, 35, 39, 91, 206,
295, 301, 309, 328, 354, 355
formulation, 33
moving average, 468, 478, 489
pediction, 377

E M algorithm, 462, 488

INDEX

Equi-correlation model, 193
Equilibrium model, 20, 23, 26, 28, 32,
35, 78, 90, 177, 203, 297,
301, 309
Error
error-in-variable model, 294
term, 3, 91
measurement, 294
mean squared prediction, 362, 370
prediction, 361, 372
specification, 13, 234, 355
type I, 53
type II, 53
Estimating equations, 279, 289, 312,
317, 322
Estimation, see also Bayesian
estimation, Estimation
under equality
constraints,
Generalized method of
moments,
Instrumental variable
estimation, Least
squares estimation,
Maximum likelihood
estimation,
M-estimation, Method
of moments,
Pseudo maximum
likelihood estimation
conditional median and, 255
constrained two-step, 350
interval, 43, 44, 46
Laplace transform and, 284
least absolute deviation, 255, 269
maximum score, 264, 270
minimum chi-square, 288
point, 43, 44, 46, 49, 50, 52
principles, 119 .
Estimation under equality constraints,
325
asymptotic properties, 336
two-step, 350
Estimator, see also Unbiaised estima-
tor
asymptotically efficient, 180, 185,
201, 273, 286