McGill University
 ECN 706

 Special topics in econometrics

 Special topics in econometrics
 Final exam

No documentation allowed
Time allowed: 3 hours

30 points 1. Consider the model

$$
\begin{equation*}
X_{t}=\beta_{0}+\sum_{k=1}^{p} \lambda_{k} X_{t-k}+u_{t}, t=1, \ldots, n \tag{1}
\end{equation*}
$$

and the problem of testing the hypothesis

$$
\begin{equation*}
H_{0}: \sum_{k=1}^{p} \lambda_{k}=1 \tag{2}
\end{equation*}
$$

in the context of model (1).
(a) If $u_{t} \stackrel{i . i . d .}{\sim} N\left[0, \sigma^{2}\right]$ and p is known, propose an exact method for testing H_{0}.
(b) If $u_{t} \stackrel{i . i . d .}{\sim} \sigma t(1)$ and p is known, propose an exact method for testing H_{0}. [$t(1)$ represents a Student t variable with 1 degree of freedom.]
(c) Discuss the problem of testing H_{0} when p is unknown.

40 points
2. Consider the following simultaneous equations model:

$$
\begin{align*}
y & =Y \beta+X_{1} \gamma+u \tag{3}\\
Y & =X_{1} \Pi_{1}+X_{2} \Pi_{2}+V \tag{4}
\end{align*}
$$

where y and Y are $T \times 1$ and $T \times G$ matrices of endogenous variables, X_{1} and X_{2} are $T \times k_{1}$ and $T \times k_{2}$ matrices of exogenous variables, β and γ are $G \times 1$ and $k_{1} \times 1$ vectors of unknown coefficients, Π_{1} and Π_{2} are $k_{1} \times G$ and $k_{2} \times G$ matrices of
unknown coefficients, $u=\left(u_{1}, \ldots, u_{T}\right)^{\prime}$ is a $T \times 1$ vector of random disturbances, $V=\left[V_{1}, \ldots, V_{T}\right]^{\prime}$ is a $T \times G$ matrix of random disturbances,

$$
\begin{equation*}
X=\left[X_{1}, X_{2}\right] \text { is a } T \times k \text { full-column rank matrix, } \tag{5}
\end{equation*}
$$

where $k=k_{1}+k_{2}$, and

$$
\begin{gather*}
u \text { and } X \text { are independent, } \tag{6}\\
\quad u \sim N\left[0, \sigma_{u}^{2} I_{T}\right] . \tag{7}
\end{gather*}
$$

(a) Discuss the conditions under which the parameters of equation (3) are identified;
(b) if $G=1$, propose an exact confidence region for β;
(c) if $G \geq 2$, propose an exact confidence region for β;
(d) if $G \geq 2$, propose an exact confidence region for each component of β;
(e) describe an exact procedure for testing an hypothesis of the form:

$$
\begin{equation*}
H_{0}: \beta=\beta_{0} \text { and } \gamma=\gamma_{0} \tag{8}
\end{equation*}
$$

where β_{0} and γ_{0} are given values;
(f) propose an exact confidence region for γ.

30 points 3. Consider the process described by the following model:

$$
X_{t}=\left[\begin{array}{l}
X_{1 t} \tag{9}\\
X_{2 t}
\end{array}\right]=\left[\begin{array}{cc}
1-0.5 B & 0 \\
-0.5 B & 1-0.2 B
\end{array}\right]\left[\begin{array}{l}
a_{1 t} \\
a_{2 t}
\end{array}\right]
$$

où $t \in \mathbb{Z}, a_{t}=\left[a_{1 t}, a_{2 t}\right]^{\prime}$ is a sequence of i.i.d. $N[0, \Sigma]$ random vectors with

$$
\Sigma=\left[\begin{array}{ll}
1 & 0 \tag{10}\\
0 & 1
\end{array}\right]
$$

(a) What is the type of this process?
(b) Is this process strictly stationary? Why?
(c) Does this process have a Wold representation? If so, give it.
(d) Is this process invertible? Why?
(e) Does this process has an autoregressive representation? If so, give it.
(f) Does the variable $X_{2 t}$ cause $X_{1 t}$ in the sense of Granger? Justify your answer.
(g) Does the variable $X_{1 t}$ cause $X_{2 t}$ in the sense of Granger? Justify your answer.
(h) Does the variable $X_{2 t}$ cause $X_{1 t}$ at all horizons? Justify your answer.
(i) Does the variable $X_{1 t}$ cause $X_{2 t}$ at all horizons? Justify your answer.

