Solution to Econ 763 Midterm (Winter 2017)

Jean-Marie Dufour* and Vinh Nguyen† 2017-03-08

Question 1 [20 points]

(a) If a random variable has finite second moments, it has finite moments at all highest orders.

False. A Student's t-distribution with 3 degrees of freedom has a finite second moment but no moments of order 3 or above.

- (b) Any stationary process of order 5 is also stationary of order 2. **True**. Suppose that $\{X_t\}_{t\in T}$ satisfies stationarity of order 5. That is,
 - (i) $E(|X_t|^5) < \infty$, for all $t \in T$;
 - (ii) $E[X_{t_1}^{m_1} \dots X_{t_n}^{m_n}] = E[X_{t_1+k}^{m_1} \dots X_{t_n+k}^{m_n}]$ for any $k \ge 0$, any subset $\{t_1, \dots, t_n\} \in T^n$ and all non-negative integers m_1, \dots, m_n s.t. $m_1 + m_2 + \dots + m_n \le 5$.

By Jensen's inequality and the convexity of the map $z \mapsto z^{5/2}$, we have

$$[E(|X_t|^2)]^{5/2} \le E[(|X_t|^2)^{5/2}] = E(|X_t|^5) \stackrel{\text{(i)}}{<} \infty$$

implying that $E(|X_t|^2) < \infty$. Next, for any $k \ge 0$, any subset $\{t_1, \ldots, t_n\} \in T^n$ and all non-negative integers m_1, \ldots, m_n s.t. $m_1 + m_2 + \cdots + m_n \le 2$, it is trivially true that $m_1 + m_2 + \cdots + m_n \le 5$. Therefore, by (ii) above, we have $E[X_{t_1}^{m_1} \ldots X_{t_n}^{m_n}] = E[X_{t_1+k}^{m_1} \ldots X_{t_n+k}^{m_n}]$.

(c) Any strictly stationary process is in L_2 .

False. Suppose that $\{y_t\}_{t=1}^{\infty}$ is a sequence of i.i.d. random variables each of which follows a Student's t-distribution with 2 degrees of freedom. The i.i.d. assumption implies strict stationarity. Yet, each y_t does not possess a finite second moment.

 $^{{\}rm *Department\ of\ Economics,\ McGill\ University.\ Email:\ jean-marie.dufour@mcgill.ca}$

[†]Department of Economics, McGill University. Email: vinh.nguyen3@mail.mcgill.ca

(d) The Wold theorem holds for finite-order moving average processes but not autoregressive processes.

False. The theorem holds for all second-order stationary processes which do include moving average processes and which do **not** exclude autoregressive processes.

(e) Non-invertible moving processes have no covariance generating function. False. For example, take $X_t = u_t - 2u_{t-1}$ where $u_t \sim \text{WN}(0, \sigma^2)$. Then, $\{X_t\}$ is not invertible but has covariance generating function $z \mapsto \sigma^2(1-2z)(1-2z^{-1})$.

Question 2 [20 points]

Let $\gamma(k)$ the autocovariance function of second-order stationary process on the integers. Prove that:

(a)
$$\gamma(0) = \operatorname{Var}(X_t)$$
 and $\gamma(k) = \gamma(-k)$, for all $k \in \mathbb{Z}$;

- (b) $|\gamma(k)| \leq \gamma(0), \forall k \in \mathbb{Z};$
- (c) the function $\gamma(k)$ is positive semi-definite.

Proof.

(a) By definition, we have $Cov(X_s, X_t) = \gamma(t - s)$ for all $s, t \in T$. By the second-order stationarity, the autocovariance function γ is well-defined. In particular,

$$\gamma(0) = \operatorname{Cov}(X_t, X_t) = \operatorname{Var}(X_t)$$

and (s below is any integer)

$$\gamma(k) = \operatorname{Cov}(X_s, X_{s+k}) = \operatorname{Cov}(X_{s+k}, X_s) = \gamma(s - (s+k)) = \gamma(-k).$$

(b) That $|\gamma(k)| \leq \gamma(0)$ is a consequence of the Cauchy-Schwarz inequality. We provide here a direct proof for completeness. With a fixed $k \in \mathbb{Z}$ and any $z \in \mathbb{R}$, we have

$$0 \le \text{Var}(X_s - zX_{s+k}) = \text{Var}(X_s) - 2z \,\text{Cov}(X_s, X_{s+k}) + z^2 \,\text{Var}(X_{s+k}).$$

The rightmost expression above is a quadratic polynomial in z so it is nonnegative for all real z iff the discriminant is nonpositive:

$$0 \le [-2\operatorname{Cov}(X_s, X_{s+k})]^2 - 4\operatorname{Var}(X_s)\operatorname{Var}(X_{s+k}) \iff \gamma(k)^2 \le \gamma(0)^2$$

from which $|\gamma(k)| \le |\gamma(0)| = \gamma(0)$ follows immediately.

(c) We have to show that: for any positive integer N and for all vectors $a=(a_1,\ldots,a_N)'\in\mathbb{R}^N$ and $\tau=(t_1,\ldots,t_N)'\in T^N$, it holds that $\sum_{i=1}^N\sum_{j=1}^N a_ia_j\gamma(t_i-t_j)\geq 0$. This follows by considering $Z\equiv a_1X_{t_1}+\cdots a_NX_{t_N}$. We have

$$0 \le \operatorname{Var}(Z) = \operatorname{Cov}(Z, Z) = \operatorname{Cov}\left(\sum_{i=1}^{N} a_i X_{t_i}, \sum_{j=1}^{N} a_j X_{t_j}\right)$$
$$= \sum_{i=1}^{N} \sum_{j=1}^{N} \operatorname{Cov}(a_i X_{t_i}, a_j X_{t_j}) = \sum_{i=1}^{N} \sum_{j=1}^{N} a_i a_j \operatorname{Cov}(X_{t_i}, X_{t_j}) = \sum_{i=1}^{N} \sum_{j=1}^{N} a_i a_j \gamma(t_i - t_j).$$

Question 3 [60 points]

Consider the following models:

$$X_t = 10 + u_t - 0.75u_{t-1} + 0.125u_{t-2},\tag{1}$$

where $\{u_t: t \in \mathbb{Z}\}$ is an i.i.d. N(0,1) sequence. Answer the following questions.

(a) Is this model stationary? Why?

Answer. Stationarity is automatic for all finite-order MA processes. \Box

(b) In this model invertible? Why?

Answer. Write the process in (1) as

$$X_t = \mu + u_t - \theta_1 u_{t-1} - \theta_2 u_{t-2}, \quad \mu = 10, \quad \theta_1 = \frac{3}{4}, \quad \theta_2 = -\frac{1}{8}.$$

This MA(2) process is invertible because $\theta(z) = 1 - \theta_1 z - \theta_2 z^2$ has 2 roots: 2 and 4, which are both outside the unit circle.

(c) Compute:

i.
$$E(X_t)$$
;

ii.
$$\gamma(k), k = 1, ..., 8;$$

iii.
$$\rho(k), k = 1, ..., 8$$
.

Answer. We have:

i.
$$E(X_t) = \mu = 10$$
.

ii. We have

$$\gamma(0) = \text{Var}(X_t) = \sigma^2(1 + \theta_1^2 + \theta_2^2) = \frac{101}{64}$$

$$\gamma(1) = \sigma^2(-\theta_1 + \theta_1\theta_2) = \frac{-27}{32},$$

$$\gamma(2) = \sigma^2(-\theta_2) = \frac{1}{8},$$

$$\gamma(3) = \gamma(4) = \dots = \gamma(8) = 0.$$

iii. It follows that

$$\rho(0) = 1;$$

$$\rho(1) = \frac{\gamma(1)}{\gamma(0)} = -\frac{54}{101},$$

$$\rho(2) = \frac{\gamma(2)}{\gamma(0)} = \frac{8}{101},$$

$$\rho(3) = \rho(4) = \dots = \rho(8) = 0.$$

(d) Graph $\rho(k), k = 1, ..., 8$.

Answer.

(e) Find the coefficients of u_t , u_{t-1} , u_{t-2} , u_{t-3} , and u_{t-4} in the moving average representation of X_t .

Answer. This is trivial for an MA(2) process: the coefficients of u_t , u_{t-1} , u_{t-2} , u_{t-3} , and u_{t-4} , respectively, are 1, $-\frac{3}{4}$, $\frac{1}{8}$, 0, and 0.

(f) Find the autocovariance generating function of X_t .

Answer. The autocovariance generating function is

$$\gamma_x(z) = 1^2 \theta(z) \theta(1/z) = \frac{(8 - 6z + z^2)(1 - 6z + 8z^2)}{64z^2}.$$

(g) Find and graph the spectral density of X_t .

Answer. The spectral density is

$$f_x(\omega) = \frac{1^2}{2\pi} \theta(e^{i\omega}) \theta(e^{-i\omega}) = \frac{101 - 108\cos(\omega) + 16\cos(2\omega)}{128\pi}.$$

which we can graph as

(h) Compute the first two partial autocorrelations of X_t .

Answer. Let $\phi(k)$ denote the partial autocorrelation of order k. Then,

$$\phi(1) = 1^{-1}\rho(1) = -\frac{54}{101},$$

$$\begin{pmatrix} \dots \\ \phi(2) \end{pmatrix} = \begin{pmatrix} 1 & \rho(1) \\ \rho(1) & 1 \end{pmatrix}^{-1} \begin{pmatrix} \rho(1) \\ \rho(2) \end{pmatrix} = \begin{pmatrix} \dots \\ -\frac{68}{235} \end{pmatrix}.$$

(i) If $X_{10} = 1$ and assuming the parameters of the model are known, can you compute the best linear forecasts of X_{10} , X_{11} , X_{12} , and X_{13} based on X_{10} (only)? If so, compute these.

Answer. The best linear forecast of X_{10} is trivially 1 itself. The best linear forecast for X_{11} based on X_{10} is

$$P_L(X_{11}|X_{10}) = (E(X_{11}) - E(X_{10})\rho(1)) + \rho(1)X_{10}$$
$$= \left(10 + 10\frac{54}{101}\right) - \frac{54}{101}1 = \frac{1496}{101} = 14.8119.$$

Similarly,

$$P_L(X_{12}|X_{10}) = (E(X_{12}) - E(X_{10})\rho(2)) + \rho(2)X_{10}$$

$$= \left(10 - 10\frac{8}{101}\right) + \frac{8}{101}1 = \frac{938}{101} = 9.28713,$$

$$P_L(X_{13}|X_{10}) = (E(X_{13}) - E(X_{10})\rho(3)) + \rho(3)X_{10} = (10 - 10 \times 0) + 0 \times 1 = 10.$$

(j) If $X_{10} = 1$, $u_{10} = 2$, $u_{9} = 1$, $u_{8} = 0.99$, $u_{7} = 1.2$, and assuming the parameters of the model are known, can you compute the best linear forecasts of X_{11}, X_{12}, X_{13} based on the history of the process up to X_{10} ? If so, compute these.

Answer. Let Ω_t be the information set that is available at period 10. Then, because

$$X_{11} = 10 + u_{11} - 0.75u_{10} + 0.125u_{9},$$

$$X_{12} = 10 + u_{12} - 0.75u_{11} + 0.125u_{10},$$

$$X_{13} = 10 + u_{13} - 0.75u_{12} + 0.125u_{11};$$

we have

$$P_{10}X_{11} = 10 + E(u_{11}|\Omega_{10}) - 0.75E(u_{10}|\Omega_{10}) + 0.125E(u_{9}|\Omega_{10})$$

$$= 10 + 0 - 0.75 \times u_{10} + 0.125 \times u_{9} = 8.625,$$

$$P_{10}X_{12} = 10 + 0 - 0.75 \times 0 + 0.125 \times u_{10} = 10.25,$$

$$P_{10}X_{13} = 10 + 0 - 0.75 \times 0 + 0.125 \times 0 = 10.$$

References