Jean-Marie Dufour February 21, 2017

McGill University ECON 763 Financial econometrics Mid-term exam

No documentation allowed Time allowed: 1.5 hour

- 20 points 1. Answer by TRUE, FALSE or UNCERTAIN to each one of the following statements. Justify briefly your answer. (Maximum: one page per question.)
 - (a) If a random variable has finite second moments, it has finite moments at all higher orders.
 - (b) Any stationary process of order 5 is also stationary of order 2.
 - (c) Any strictly stationary process is in L_2 .
 - (d) The Wold theorem holds for finite-order moving average processes but not autoregressive processes.
 - (e) Non-invertible moving processes have no covariance generating function.
- 20 points 2. Let $\gamma(k)$ the autocovariance function of second-order stationary process on the integers. Prove that:
 - (a) $\gamma(0) = Var(X_t)$ et $\gamma(k) = \gamma(-k)$, $\forall k \in \mathbb{Z}$;
 - (b) $|\gamma(k)| \leq \gamma(0), \forall k \in \mathbb{Z};$
 - (c) the function $\gamma(k)$ is positive semi-definite.
- 60 points 3. Consider the following models:

$$X_t = 10 + u_t - 0.75 u_{t-1} + 0.125 u_{t-2}, \tag{1}$$

where $\{u_t : t \in \mathbb{Z}\}\$ is an *i.i.d.* N(0,1) sequence. For each one of these models, answer the following questions.

- (a) Is this model stationary? Why?
- (b) Is this model invertible? Why?
- (c) Compute:
 - i. $E(X_t)$; ii. $\gamma(k), k = 1, ..., 8;$
 - iii. $\rho(k), k = 1, 2, ..., 8.$
- (d) Graph $\rho(k)$, k = 1, 2, ..., 8.
- (e) Find the coefficients of u_t , u_{t-1} , u_{t-2} , u_{t-3} and u_{t-4} in the moving average representation of X_t .
- (f) Find the autocovariance generating function of X_t .
- (g) Find and graph the spectral density of X_t .
- (h) Compute the first two partial autocorrelations of X_t .
- (i) If $X_{10} = 1$ and assuming the parameters of the model are known, can you compute the best linear forecasts of X_{10} , X_{11} , X_{12} and X_{13} based on X_{10} (only)? If so, compute these.
- (j) If $X_{10} = 1$, $u_{10} = 2$, $u_9 = 1$, $u_8 = 0.99$, $u_7 = 1.2$, and assuming the parameters of the model are known, can you compute the best linear forecasts of X_{11} , X_{12} and X_{13} based on the history of the process up to X_{10} ? If so, compute these.