McGill University ECN 706 Special topics in econometrics Mid-term exam

No documentation allowed Time allowed: 1.5 hour

30 points

- 1. Provide brief answers to the following questions (maximum of 1 page per question).
 - (a) Explain the difference between the "level" of a test and its "size".
 - (b) Explain the difference between the "level" of a confidence set and its "size".
 - (c) Discuss the link between tests and confidence sets: how confidence sets can be derived from tests, and vice-versa.

40 points

- 2. Provide brief answers to the following questions (maximum of 1 page per question).
 - (a) Explain the notion of weak identification.
 - (b) Discuss the consequences of the possible lack of identification on the construction of confidence sets.
 - (c) Explain the notion of "identification-robust" method.
 - (d) In the context of a linear simultaneous equations model, provide an example of a method which is identification-robust and a method which is not identification-robust.

30 points

3. Consider the linear regression model

$$y = X\beta + u \tag{0.1}$$

where y is a $T \times 1$ vector of observations on a dependent variable, X is a $T \times k$ fixed matrix of explanatory variables (observed), $\beta = (\beta_1, \ldots, \beta_k)'$, and u is a $T \times 1$ vector of unobserved error terms.

- (a) Suppose the elements of u are independent and identically distributed according to a $N[0,\,\sigma^2]$ distribution, where σ^2 is an unknown constant, and k>1. We wish to build a confidence interval with level 0.95 for the ratio $\theta=\beta_2/\beta_1$. Propose a method for doing this.
- (b) Suppose the elements of u are independent and identically distributed according to a $\sigma t(1)$ distribution, where t(1) represents a Student t distribution with 1 degree of freedom and σ is an unknown constant. Propose a method for testing the hypothesis $H_0: \beta_1 = 1$ at level $\alpha = 0.05$ in the context of this model such the size of the test is exactly equal to $\alpha = 0.05$.