Jean-Marie Dufour March 3, 2010

McGill University Econ 469: Econometrics Mid-term exam

No documentation allowed Time allowed: 1.5 hour

20 points 1. Consider a MA(1) model:

$$X_t = \overline{\mu} + u_t - \theta u_{t-1}, \ t \in \mathbb{Z}$$

where u_t is a white noise process with mean zero and variance $\sigma^2 > 0$.

- (a) Prove that the first autocorrelation of this model cannot be greater than 0.5 in absolute value.
- (b) Find the values of the model parameters for which this upper bound is attained.
- 50 points 2. Consider the following models:

$$X_t = 10 + u_t - 0.75 u_{t-1} + 0.125 u_{t-2} \tag{1}$$

where $\{u_t : t \in \mathbb{Z}\}\$ is an *i.i.d.* N(0, 1) sequence. For each one of these models, answer the following questions.

- (a) Is this model stationary? Why?
- (b) Is this model invertible? Why?
- (c) Compute:
 - i. $E(X_t)$; ii. $\gamma(k)$, k = 1, ..., 8; iii. $\rho(k)$, k = 1, 2, ..., 8.
- (d) Graph $\rho(k)$, k = 1, 2, ..., 8.
- (e) Find the coefficients of u_t , u_{t-1} , u_{t-2} , u_{t-3} and u_{t-4} in the moving average representation of X_t .

- (f) Compute the first two partial autocorrelations of X_t .
- (g) Suppose you have the following information: $X_8 = 11$.
 - i. Compute the best forecast of X_9 (in the mean square error sense) based on the information you have.
 - ii. Compute the best linear forecast of X_9 (in the mean square error sense) based on the information you have.
- (h) Suppose you have the following information: $X_8 = 11, X_9 = 10.5$ and $X_{10} =$ 12.
 - i. Can you compute the best forecast of X_{15} (in the mean square error sense) based on the whole history of the process up to X_{10} ? If yes, provide the answer. Explain your answer.
 - ii. Can you compute the best linear forecast of X_{15} (in the mean square error sense) based on the whole history of the process up to X_{10} ? If yes, provide the answer. Explain your answer.

3. Let X_1, X_2, \ldots, X_T be a time series.

- (a) Define:
 - i. the sample autocorrelations for this series;
 - ii. the partial autocorrelations for this series.
- (b) Discuss the asymptotic distributions of these two sets of autocorrelations in the following cases:
 - i. under the hypothesis that X_1, X_2, \ldots, X_T are independent and identically distributed (i.i.d.);
 - ii. under the hypothesis that the process follows a moving average of finite order.
- (c) Describe how you would identify the process described in equation (1) in question 2.

30 points