Jean-Marie Dufour April 17, 2008

McGill University Department of Economics ECON 467 Econ 467D2: Econometrics Final exam

No documentation allowed Time allowed: 3 hours

- 1. Answer by TRUE, FALSE or UNCERTAIN to each one of the following statements, 40 points and justify briefly your answers (maximum: 1 page per statement).
 - (a) In the classical linear model, disturbances (errors) are uncorrelated but least squares residuals are correlated.
 - (b) By Studentizing least squares residuals, outliers are eliminated.
 - (c) The Durbin-Watson test is a test meant to detect heteroskedastic errors.
 - (d) The seemingly unrelated regression method is a method for correcting serial dependence in linear regressions.
 - (e) The generalized least squares method is a special case of the instrumental variables method.
 - (f) Maximum likelihood estimators can be obtained by setting the score function to zero.
 - (g) When specifying an ARMA model, minimizing Akaike's criterion is equivalent to minimizing the estimated standard error of the innovations of the process.
 - (h) The Ljung-Box statistic is always larger than the Box-Pierce statistic.
- 2. Consider the model described by the following assumptions: 10 points

(1) $Y_t = \sum_{j=1}^p \varphi_j Y_{t-j} + u_t, \quad t = p+1, \ldots, T;$ (2) $\{u_t: t=1, \ldots, T\} \sim IID(0, \sigma^2);$ (3) the polynomial $\varphi(z) = 1 - \varphi_1 z - \varphi_1 z^2 - \dots - \varphi_p z^p$ has all its roots outside the unit circle except possibly for one which may be equal to 1. Describe a procedure for testing the hypothesis that the polynomial $\varphi(z)$ has a root circle.

10 points 3. Let X_1, X_2, \ldots, X_T be a second order stationary time series whose autocovariance function $\gamma(k)$ is known.

- (a) Give the best linear forecast (in the mean square sense) of X_t given X_{t-1} .
- (b) If $E(X_t) = 0$, $\gamma(k) = (.25)^k$, k = 0, 1, 2, ..., and $X_3 = 2$, compute the best linear forecast of X_4 .
- 20 points 4. Consider the linear regression model

$$y = X\beta + u \tag{1}$$

where y is a $T \times 1$ vector of observations on a dependent variable, X is a $T \times k$ nonstochastic matrix of rank k, and u is a $T \times 1$ vector of disturbances (errors) such that

$$\mathsf{E}(u) = 0, \qquad (2)$$

$$\mathsf{V}(u) = \sigma^2 V \,, \tag{3}$$

and V is a known $T \times T$ positive definite matrix.

- (a) Is the least squares estimator of β unbiased for this model? Justify your answer.
- (b) Derive the best linear unbiased estimator of β for this model. How is this estimator called?
- (c) Define the "weighted least squares" estimator for this model and explain why this terminology is being used.
- (d) If *u* follows a Gaussian distribution, what is the distribution of the "weighted least squares"?
- 20 points 5. Consider the following demand and supply model:

$$q_t = a_1 + b_1 p_t + c_1 Y_t + u_{t1},$$
 (demand function) (4)

$$q_t = a_2 + b_2 p_t + c_2 R_t + u_{t2}$$
, (supply function) (5)

where

 q_t = quantity (at time t), p_t = price, Y_t = income, R_t = rain volume,

 u_{t1} and u_{t2} are random disturbances.

- (a) Derive the reduced form of this model.
- (b) Explain why applying least squares to the equations (4)-(5) may not be an appropriate method to estimate the parameters of these two equations.

- (c) Are the parameters of equations (4)-(5) identified? Explain your answer.
- (d) Propose an estimation method for the parameters of equations (4)-(5) and discuss its properties.