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1. Graphical examination of the OLS residuals

After estimating a model, it is usually important to examihe residuals
g,i=1,...,T (1.1)

¢; Is an estimator of;.
In principle, the residuals; should behave approximately like i.i.d. random variables.
One should notice:

a) “very large” residuals;
b) systematic relations between residuals and certain \lasab
c) heteroskedasticity in the errors;

d) autocorrelation in the errors.



2. Properties and standardization of OLS residuals

2.1. Basic structure of the residuals
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> (1-h) = [y — H]

= tr(Iy) —tr(H)=T - K, (2.9)
and the “average value” df; is
1 i h; = 5 (2.10)
T =1 L T . .
Since
€= (IT - H)E,
we have
T
éi:€i_zhij<€j y Z:]_, ,T. (211)
7j=1

Each residuat; is the difference between the “true” errgrand a weighted average of all
the errors.



2.2. Graphical methods

We usually proceed to a preliminary examination of the naasislby graphical methods.

A) For time series, we graph:
¢, against timgt) . (2.12)

B) More generally, we graph:
1. <, againsty;
2. ¢; against each explanatory variable

(21,1 < k < K) (2.13)

or against other variables.



2.3. Standardized and Studentized residuals

If one wishes to obtain residuals with the same variance,ameconsider:

g=g/L—h)"?, i=1,...,T,
Var (3;) = o?.

If we wish to make them more easily interpretable, we cardéitlys = [¢¢ /(T — K]

& .
ri=¢&/s=————, i=1...,T
/ S[l—hi]l/z

“Internally Studentized residuals

We wish to determine whethey is “large”.
r; does not follow a Student law.

(2.14)
(2.15)

1/2 .



Let

Yoy = W1, - YimtsYir1s -5 yr) s i=1,...,T
X(Z) = [Xla ey X’i—lyXi—i-l, e XT]/
Ba = [ XyXw] Xy  OLS estimator of} based ory withouty;
£6) = Yo — X@Pw
—1
di = X] [ Xy X)) X;
vi =y = Xifly
One can check easily that

Var(v;) = o°[1+d;]

i Externall i
t, = U—m ~HT — K —1) xterna ){StUdentlzed
s@y [1+ di residuals
We can also show that
b= X(XX)X = %
o T 144
O
- 1+d;

hence




t; iIs a monotonic nondecreasing transformation;and
—t; ~t(T— K —1). (2.16)
To test whether a given residuglis large, it is sufficient to compute

ri=2&/s[l— hz’]l/2 (2.17)

_ 1/2 T
ti=(T—-K-1)" Tk 7 (2.18)

and see whether
ti] > toje(T — K — 1)

This test is however only applicable for a given single reald



3. Test for an outlier

If we observe one or several residuals which appear “lange”’may wish to declare that
these correspond to “outlying observations”.

If we make a tests at level on a residuat;, we can reject the latter if
il > toy(T — K — 1),

Problem: If we makeT tests, the probability of rejecting at least one observedi® “out-
lying” (even if there is none) is larger than
To control the level, we adopt a rule of the following type:

il >
Mgl = co

or
/ 2
Maz [ti] > c;

The observations which are declared “outlying” are thosd shat
[t > cq OF 7 >c2.

Difficulty : The distribution ofM ax |t;| is difficult to determine.
However, we can show (using the Boole-Bonferroni inequpthat

A < Far (1,T =K = 1) = [tajor 1,7 — K —1)]*.
If we declare an observation as outlying when
Max t; > For (1, T — K — 1)

or
Max |tz| Z ta/QT(t—K— 1)



4. Tests for heteroskedasticity

ytzxéﬁ—‘—ft y t= 1, e T (419)
o} =V(e) = E(g}) (4.20)
Hy:02=05=---=0%=0" (Homoskedasticity) (4.21)

Suppose we have reasons to believe that the variance iesredts time.
Var(e) > Var(ei—1)

This can be informally checked by plotting the residuals

Figure 1. Residuals with increasing variance



Let us divide the sample in two parts:

t=1,...,T , t=Ty+1,...,T (4.22)

_ Tv+Ty=T

T obs. T5 obs.

(eg. TV =T/2="T,)

Under the hypothesis of an increasing variance, we have:
iE 2 2
T Gt + )
2
1 &
2
x4

1 &
ngg] - B
L =T +1

If we kneweq, ..., er, we could compute:

1
FlE(g§+~-~+g%) <

E

1. One-sided tests
(@) Againsts? increasing, we rejedt, when
F>F,(Ty,T) . (4.23)
(b) Againsto? decreasing, we rejedf, when
F<F_o(Ty,T)) . (4.24)
2. Two-sided test — We rejeét, when

F>Fo (T, Ty) or FF < Fi_2(13,Th) . (4.25)
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It is tempting to replace; by &, in F.
Difficulty : theé, are not independent.
Goldfeld-Quandt solution:

TyA = XA6+5A:><€A:yA—XA3A , 3A:(X.{4XA)_1XA'3/A (426)
1x1
TyBl = XB6+5B:><€B:yB—XBBB , BB:(X/BXB)—IXByB (427)
2 X
Estalo’ ~ XA(T - K) (4.28)
deplo® ~ XYTy—K) (4.29)

épép/(Th— K) Ty — K égép
éAéA/(Tl — K) n T2 - K1 é/AE;X
We rejectH, when:

F = ~F(T,— K,T,—K) Goldfeld-Quandt test

F>F,

F<F } One-sided tests
F>F,0uF< Fl_%} Two-sided test

Notes:

1. If we think that
EE)=0’X2 t=1,...,T,

we can reorder the observations according to the ordappf

2. Itis recommended to suppress a small group of obsengitiotine middle to make
the contrast more visible.

11



5. Tests against autocorrelation

Let X1, ..., X7 bei.i.d. random variables with distributia¥i [u, o2].
We wish to test whethek’;, ... , X are i.i.d. against

C(Xy, Xy 1) >0 ,t=2,...,T (positive autocorrelation)
or

C(Xy, X4 1) >0 ,t=2...,T (negative autocorrelation).

An alternative would be:
e.9. Xy = pXi 1+,

The von Neumann statistic for testing the absence of segj@iaddence is:

(X — X )2)(T — 1)
VN == =
(X, — X)2/T

Rl %

M=

t=1

_ T
whereX = > X,/T.

(5.30)

(5.31)

t=1
If there positive (negative) autocorrelatidn)V will tend take small (large) values.

One-sided tests:

reject H, (against positive autocorrelation)ifN < CE£

reject H, (against negative autocorrelation}iftv > CY
Two-sided test:

rejectH, if VN < CL, or VN >CJ,

«

Tables in Theil (1971, pp. 726-727).
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If we kneweq, ..., e, we could replaceX; by ¢, and test whether the errors are auto-

correlated. ,

> (e —ea-1)?/(T=1)

VN = =2

M=

(ee —€)%/T
t=1
Difficulty: the e, are unknown.
Durbin-Watson proposed to use instead:

A PN 2
Et — E—
DIV — tzzg( ! 1) VS. pos. autocor.DW < d,
N T, vS. neg. autocor.DW > d,,
> &
t=1
g, t=1,..., T are notindependent (even undé):

e=[I-X(X'X)"'X]e=M ¢

Problem: the distribution of DW depends on the mafixHowever, Durbin-Watson could
establish bounds for the critical values.
For « given, we havéd,, d;) such that

if DW < d; werejectH,
if DW > dy we accepiH,
d;, < DW < dy thetestisinconclusive

Against an alternative of negative autocorrelation, we @ampute4 — DW and use the
same test.

13



Generalizations to other lags

1. j =4; see Wallis (1972).
2. j=2,3,4, with binary variables; seeVinod (1973).

3. Tests with a trend and seasonal dummies: King (1981).
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