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1. Graphical examination of the OLS residuals

After estimating a model, it is usually important to examinethe residuals

ε̂i, i = 1, . . . , T. (1.1)

ε̂i is an estimator ofεi.
In principle, the residualŝεi should behave approximately like i.i.d. random variables.
One should notice:

a) “very large” residuals;

b) systematic relations between residuals and certain variables;

c) heteroskedasticity in the errors;

d) autocorrelation in the errors.
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2. Properties and standardization of OLS residuals

2.1. Basic structure of the residuals

y = Xβ + ε , ε ∼ N
[
0, σ2IT

]
(2.2)

y : T × 1, X : T × k , ε : T × 1 (2.3)

ε̂ = y −Xβ̂ = MXε (2.4)

MX = IT −X(X ′X)−1X ′ = IT −H

H = X(X ′X)−1X ′

E(ε̂) = 0 (2.5)

V (ε̂) = σ2MX (2.6)

ε̂ = (ε̂1, . . . , ε̂T )
′ (2.7)

ε̂1, . . . , ε̂T do not have the same variance and are not independent.

X =








X ′
1

X ′
2

...
X ′

T








V (ε̂i) = σ2
[
1−X ′

i(X
′X)−1Xi

]
= σ2(1− hi) ≤ σ2

hi = X ′
i(X

′X)−1Xi

Cov (ε̂i, ε̂j) = σ2 (−hij) , for i 6= j

hij = X ′
i(X

′X)−1Xj

Notehi = hii is thei-th diagonal element ofH, hence

T∑

i=1

hi = tr[H ]

= tr[X(X ′X)−1X ′]

= tr[(X ′X)−1X ′X ] = tr[IK ] = K , (2.8)
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T∑

i=1

(1− hi) = tr[IT −H ]

= tr(IT )− tr(H) = T −K , (2.9)

and the “average value” ofhi is

1

T

T∑

i=1

hi =
K

T
. (2.10)

Since
ε̂ = (IT −H)ε,

we have

ε̂i = εi −

T∑

j=1

hijεj , i = 1, . . . , T. (2.11)

Each residual̂εi is the difference between the “true” errorεi and a weighted average of all
the errors.
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2.2. Graphical methods

We usually proceed to a preliminary examination of the residuals by graphical methods.
A) For time series, we graph:

ε̂t against time(t) . (2.12)

B) More generally, we graph:

1. -̂εt against̂yi

2. ε̂i against each explanatory variable

(xki, 1 ≤ k ≤ K) (2.13)

or against other variables.
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2.3. Standardized and Studentized residuals

If one wishes to obtain residuals with the same variance, we can consider:

ε̃i = ε̂i/ [1− hi]
1/2 , i = 1, . . . , T , (2.14)

V ar (ε̃i) = σ2 . (2.15)

If we wish to make them more easily interpretable, we can divide bys = [ε̂ε̂ /(T −K )]1/2 :

ri = ε̃i/s =
ε̂i

s [1− hi]
1/2

, i = 1, . . . , T

“Internally Studentized residuals”

We wish to determine whetherri is “large”.
ri does not follow a Student law.
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Let

y(i) = (y1, . . . , yi−1, yi+1, . . . , yT )
′ , i = 1, . . . , T

X(i) = [X1, . . . , Xi−1, Xi+1, . . . , XT ]
′

β̂(i) =
[
X ′

(i)X(i)

]−1
X ′

(i)y(i) OLS estimator ofβ based ony withoutyi

ε(i) = y(i) −X(i)β̂(i)

s2(i) = ε′(i)ε(i)/(T −K − 1)

di = X ′
i

[
X ′

(i)X(i)

]−1
Xi

vi = yi −X ′
iβ̂(i)

One can check easily that

V ar(vi) = σ2 [1 + di]

ti ≡
vi

s(i) [1 + di]
1/2

∼ t(T −K − 1)
Externally Studentized

residuals

We can also show that

hi ≡ X ′
i(X

′X)−1Xi =
di

1 + di

ε̂i =
v(i)

1 + di
(T −K)s2 = (T −K − 1)s2(i) + (1 + di)t

2
i

hence
ti = (T −K − 1)1/2

ri
(T −K − r2i )

1/2
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ti is a monotonic nondecreasing transformation ofri and

−ti ∼ t(T −K − 1) . (2.16)

To test whether a given residualε̂i is large, it is sufficient to compute

ri = ε̂i/s [1− hi]
1/2 (2.17)

ti = (T −K − 1)1/2
ri

[T −K − r2i ]
1/2

(2.18)

and see whether
|ti| ≥ tα/2(T −K − 1)

This test is however only applicable for a given single residual.
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3. Test for an outlier

If we observe one or several residuals which appear “large”,we may wish to declare that
these correspond to “outlying observations”.

If we make a tests at levelα on a residual̂εi, we can reject the latter if

|ti| ≥ tα/2(T −K − 1) .

Problem: If we makeT tests, the probability of rejecting at least one observation as “out-
lying” (even if there is none) is larger thanα.
To control the level, we adopt a rule of the following type:

Max
1≤i≤T

|ti| ≥ cα

or
Max
1≤i≤T

|t′i| ≥ c2α

The observations which are declared “outlying” are those such that

|ti| ≥ cα or t2i ≥ c2α .

Difficulty : The distribution ofMax |ti| is difficult to determine.
However, we can show (using the Boole-Bonferroni inequality) that

c2α ≤ Fα/T (1, T −K − 1) =
[
tα/2T (1, T −K − 1)

]2
.

If we declare an observation as outlying when

Max t2i ≥ Fα/T (1, T −K − 1)

or
Max |ti| ≥ tα/2T (t−K − 1) .

8



4. Tests for heteroskedasticity

yt = x′
tβ + εt , t = 1, . . . , T (4.19)

σ2
t = V (εt) = E(ε2t ) (4.20)

H0 : σ
2
1 = σ2

2 = · · · = σ2
T = σ2 (Homoskedasticity) (4.21)

Suppose we have reasons to believe that the variance increases with time.

V ar(εt) > V ar(εt−1)

This can be informally checked by plotting the residualsε̂t .

Figure 1. Residuals with increasing variance
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Let us divide the sample in two parts:

t = 1, . . . , T
︸ ︷︷ ︸

T1 obs.

, t = T1 + 1, . . . , T
︸ ︷︷ ︸

T2 obs.
T1 + T2 = T

(4.22)

(e.g. T1 = T/2 = T2)

Under the hypothesis of an increasing variance, we have:

1

T1

E
(
ε21 + · · ·+ ε2T1

)
<

1

T2

E
(
ε2T1+1 + · · ·+ ε2T

)

E

[

1

T1

T1∑

t=1

ε2t

]

< E

[

1

T2

T2∑

t=T1+1

ε2t

]

If we knewε1 , . . . , εT , we could compute:

F =

T∑

t=T1+1

ε2t/T2

T1∑

t=1

ε2t/T1

=
T1

T2

T∑

t=T1+1

ε2t

T1∑

t=1

ε2t

∼ F (T2, T1)

1. One-sided tests

(a) Againstσ2
t increasing, we rejectH0 when

F > Fα (T2, T1) . (4.23)

(b) Againstσ2
t decreasing, we rejectH0 when

F ≤ F1−α (Tα, T1) . (4.24)

2. Two-sided test – We rejectH0 when

F ≥ Fα

α

(T2, T1) or F ≤ F1−α

α

(T2, T1) . (4.25)
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It is tempting to replaceεt by ε̂t in F .
Difficulty : the ε̂t are not independent.
Goldfeld-Quandt solution:

yA
T1×1

= XAβ + εA ⇒ ε̂A = yA −XAβ̂A , β̂A = (X ′
AXA)

−1
XAyA (4.26)

yB
T2×1

= XBβ + εB ⇒ ε̂B = yB −XBβ̂B , β̂B = (X ′
BXB)

−1
XByB (4.27)

ε̂′Aε̂A/σ
2 ∼ X 2(T1 −K) (4.28)

ε̂′B ε̂B/σ
2 ∼ X 2(T2 −K) (4.29)

F =
ε̂′Bε̂B/(T2 −K)

ε̂′Aε̂A/(T1 −K)
=

T1 −K

T2 −K1

ε̂′B ε̂B
ε̂′Aε

′
A

∼ F (T2 −K, T1,−K) Goldfeld-Quandt test

We rejectH0 when:
F ≥ Fα

F ≤ F1−α

}

One-sided tests

F ≥ Fα/2 ou F ≤ F1−α

2

}
Two-sided test

Notes:

1. If we think that
E(ε2t ) = σ2X2

tk t = 1, . . . , T ,

we can reorder the observations according to the order ofX2
tk.

2. It is recommended to suppress a small group of observations in the middle to make
the contrast more visible.
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5. Tests against autocorrelation

Let X1, . . . , XT be i.i.d. random variables with distributionN [µ, σ2].
We wish to test whetherX1, . . . , XT are i.i.d. against

C(Xt, Xt−1) > 0 , t = 2, . . . , T (positive autocorrelation) (5.30)

or
C(Xt, Xt−1) > 0 , t = 2, . . . , T (negative autocorrelation). (5.31)

An alternative would be:
e.g.Xt = ρXt−1 + µτ

The von Neumann statistic for testing the absence of serial dependence is:

V N =

T∑

t=2

(Xt −Xt−1)
2/(T − 1)

N∑

t=1

(Xt − X̄)2/T

=
δ2

σ̂2

whereX̄ =
T∑

t=1

Xt/T.

If there positive (negative) autocorrelation,V N will tend take small (large) values.
One-sided tests:

rejectH0 (against positive autocorrelation) ifV N ≤ CL
α

rejectH0 (against negative autocorrelation) ifV N ≥ CU
α

Two-sided test:

rejectH0 if V N ≤ CL
α/2 or V N ≥ CU

α/2

Tables in Theil (1971, pp. 726-727).
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If we knewε1, . . . , εT ,we could replaceXt by ετ and test whether the errors are auto-
correlated.

V N =

T∑

t=2

(εt − εt−1)
2/(T − 1)

T∑

t=1

(εt − ε̄)2/T

Difficulty: the ετ are unknown.
Durbin-Watson proposed to use instead:

DW =

T∑

t=2

(ε̂t − ε̂t−1)
2

T∑

t=1

ε̂2t

vs. pos. autocor.:DW ≤ dα
vs. neg. autocor.:DW ≥ dα

ε̂τ , t = 1, . . . , T are not independent (even underH0):

ε̂ =
[
I −X(X ′X)−1X

]
ε = M ε

Problem: the distribution of DW depends on the matrixX. However, Durbin-Watson could
establish bounds for the critical values.

Forα given, we have(dL, dU) such that

if DW ≤ dL we rejectH0

if DW ≥ dU we acceptH0

dL < DW < dU the test is inconclusive

Against an alternative of negative autocorrelation, we cancompute4 − DW and use the
same test.
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Generalizations to other lags

dj =
T∑

t=j+1

(êt − êt−j)
2 /

T∑

t=1

ê2t

1. j = 4; see Wallis (1972).

2. j = 2, 3, 4, with binary variables; seeVinod (1973).

3. Tests with a trend and seasonal dummies: King (1981).
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