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1. Statistical models

1.1 Definition STATISTICAL MODEL. A statistical models a pair(Z, P) whereZ is

a set of possible observations aRda nonempty family of probability measures which
assign probabilities to subsets®f When the probability measuresihare all defined on
the samer-algebra of eventd z in Z, we shall also refer to the triplég€, Az, P) as a
statistical model

1.2 Definition DOMINATED MODEL. A statistical mode{Z, Az, P) is dominatedf all
the probability measures iR have a density with respect to the same meagwe Z.
is called thedominating measurand we say thatZ, P) is u-dominated.

1.3 Definition HOMOGENEOUS MODEL A statistical mode(Z, Az, P) is homoge-
neousif it is dominated and the dominating measurean be chosen so that the densities
are all strictly positive.

1.4 Definition PARAMETRIC MODEL. A statistical mode(Z, P) is said to bgparame-
trized by the elements of a nonempty getif the setP of probability measures has the
form

P = {P9 10 e @} .

If the setO is a subset oR? or we can define a one-to-one transformation betweemd
the elements of a subsetRf, we say thatZ, P) is aparametric modelOtherwise, the
model(Z, P) is said to benonparametric

1.5 Definition FUNCTIONAL PARAMETER. A functional parameteon a statistical model
(Z, P) is an application

g:P—06
which assigns to each elemdntc P a parametef = g(P) € ©, where© is a nonempty
set (the parameter space).

Functional parameters allow one to associate paramettdrshvel distributions of para-
metric or nonparametric models. The mean, variance, meeian of a probability distri-
bution may all be interpreted as functional parameters.

2. ldentification

Let (2, Az, P) a statistical model such th@ = {P, : 0 € O}.

2.1 Definition IDENTIFICATION OF A PARAMETER VALUE. We say that a parameter
value; € O is identifiableif there is no other valué, € © such that?y, = F,.



2.2 Definition IDENTIFICATION OF A MODEL. We say that the mode¢E, Az, P) is
identifiable if all the elements @ are identifiable.

2.3 Definition IDENTIFICATION OF A PARAMETRIC FUNCTION Letvy : 0 — ¥ be a
function ofd. We say that the function (0) is identifiableif

Y (01) # Y (02) = Py, # Fp, ,¥01,0, €O

or, equivalently,
Pgl = P92 :>77/)(61) :77/)(62) ,Vgl,igg € 6.

2.4 Definition LOCAL IDENTIFICATION. Suppose the sét has a set of neighborhoods
defined on it (a topology). Then we say that a parameter valge© is locally identifiable
if there is a neighborhoo (6,) of 6, such that

92€V(91) and¢927é01:>P917éP92.

3. Likelihood and score functions

3.1 Definition LIKELIHOOD FUNCTION. Let(Z, P) be a statistical model which satis-
fies the following assumptions:

(Al) (2, P) is ap-dominated model;

(A2) P ={Py:60€c06 CR};

(A3) L(z;0), z € Z, is the density functiofiwith respect tq.) associated witly.

The density functiorl. (z; 0) viewed as a function df is called thdikelihood functionof
model(Z, P). The symboﬂg? (+) refers to the expected value with respedt {provided it
exists) :

BIn(2) = [ hEdR () = [ L0 dule)

The vectorZ often has the form
Z = (YY), . .. Y

whereY;, € R™ is an “individual” observation vector angl = (01,92,...,9p)’ € O.
Usually, the density. (z; 6) is written in the form

n

L(z0) =] /i (2:0) = La (36) (3.1)

t=1



wheref; (z; 0) is a density for an “individual observation}; (z; #) usually has one of the
following forms :

fi(z;0) = f(y;0) , v €R™ (3.2)

fe(z:0) = f(ye | 2;0) (3.3)

wherex, is ak x 1 vector of conditioning variables (“explanatory variall)esnd f (v, ; .)
is the density function of; (givenz; ) as a function of the parameter vectoor

Li(2:0) = [ (gt | Ye1,24:0) (3.4)

wherey,_; = (%o, %1,...,%:.—1) iS a vector of past values gfandy, is a vector of “initial
conditions”.

3.2 Definition SCORE FUNCTION  Under the assumptiofAl) to (A3), suppose also
that:

(A4) O isanopen set ilR?;

(A5)  OL(z;0) /00 existsVz € Z ,V0 € O,

(A6) L(z;0)>0,Vz¢€ Z,V0c 6O,

(A7) [ G L0 du(z) = & | [, L(z:0)du(2)] .

Then the function
S(z;@):%[lnl}(z;ﬁ)] e, zeZ,

is called thescore functiorassociated with the likelihood (= ; ) .
3.3 Proposition MEAN OF A SCORE Under the assumptiofé1) to (A7), we have :

0

E[S(Z;H)]:/S(Z;H)L(Z;Q)d,u(z):o.

3.4 Definition INFORMATION MATRIX. In addition to(A1) to (A7), suppose also that:

(AB)  S(Z;0) has finite second moments with respecP§ove € O.



Then, the covariance matrix 6f(Z ;0) ,
1) = VylS(Z;0)]=E[S(Z:0)5(Z;0)]
— [ S:0SE0 LE0)
is called theFisher information matriassociated with. (z ; 6) .

3.5 Proposition INFORMATION MATRIX IDENTITY. Under the assumptiorf#\1) to
(A8), suppose also that:

(A9)  ZLE) eyistsy: € 2,0 € 6;

(A10) Vo€,
8L (2:6) o2 ‘
Z@mﬁwwww%uuwmmﬁ
Then 9 In L (Z;0)
nL(Z;
10)=F [_W] Vheo.

4. Efficiency bounds

4.1 Definition REGULAR ESTIMATOR. Under the assumptioris\1) to (A5), an estima-
torT (Z) of some function) () € R? is regularif it satisfies the following properties:

(a T(Z ) has finite second moments;
(b) f T (2) L(z;0)du(z) is differentiable with respect i
(c) %fZT( L(z;0)du(z)= [ T (2 (2:0)]du(z), forall§ € 6.

4.2 Theorem FRECHEFDARMOIS-CRAMER-RAO BOUND. Let the assumptiondAl)
to (A8) hold, lety) (9) € R? be a differentiable function df, and suppose that

(All)  the information matriX (0) is positive definitey € ©.
If g[T (Z)] = (0),V0 € O, then the difference
Vo [T(Z)] = P (0)1(0)" P(8)

is positive semi-definite for afl € ©, whereP (6) = 9¢ (6) /00’



4.3 Remark If ¢ (0) = 6, this means that [T (Z)] — I (/)" is positive semi-definite.
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