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1. Stochastic convergence

1.1. Basic definitions

1.1 Definition Let {X, = Xy(w) :n=1, 2, ...} a sequence of real r.v.s defined
on a probability spacQ, <f, P) andX = X(w) another real r.v. defined on the
same space.

(a) X, convergesn probabilityto X asn — oo (denotedX, 5 X) iff
limP[|X,—X| > €] =0, Ve > 0. (1.1)

Nn—oo
(b) X, convergesaimost surelyto X asn — o (denotedX, = X) iff

P[limxn:x} —1. (1.2)

n—oo

(c) Supposee|X,|" < o« ,Vn , wherer > 0. X, convergesn mean of order to
X (denotedK, — X) iff

lim E [|X, — X|'] = 0. (1.3)

n—oo

In this case, we also say th¥t convergedo X in L. If r = 2, we sayX,
converge$o X in quadratic meafg.m.).

(d) Let R, (x) andF(x) be the distribution functions of, andX respectivelyX,
convergesn law (or in distribution to X asn — o (denotedX, 5 X) iff

lim F,(X) = F(x) at all continuity points oF (X) . (1.4)
Nn—oo
An important specila case of the above concepts is the one ihera fixed

real constant.

1.2 Definition Let {X, = X,(w) :n=1, 2, ...} a sequence of real r.v.’s defined on
a probability spac€Q, </, P) andc a real constant.



(a) X, convergesn probabilityto X asn — o (denotedX, 5 c) Iff

limP[|X,—c| >¢] =0, Ve > 0. (1.5)

N—oo
(b) X, convergesaimost surelyto ¢ asn — « (denotedk, = c) iff

P“mm:qu (1.6)

nN—oo

(c) SupposeE|X,|" < o ,Vn , wherer > 0. X, convergesn mean of order to
¢ (denotedk, — c) iff
limE X, —c['] = 0. (1.7)
In this case, we also say th¥t convergeso cinL,. If r =2, we sayX,
convergeso c in quadratic meafq.m.).

1.3 Proposition UNICITY OF PROBABILITY LIMIT. Let{X,:n=1,2,...} bea
sequence of real r.v.’s defined on a probability spdee<, P), and letX andY
be two real r.v.’s defined on the same probability space. Then

Xn = X andX, > Y = P[X #Y] =0. (1.8)

1.2. Relations between convergence concepts

1.4 AssumptionLet{X,} ={Xn:n=1,2, ...} be a sequence of real r.v.’s defined
on a probability spacéQ, </, P) andX another real r.v. defined on the same
space.

Unless stated otherwise, this assumption will hold for alidéBnitions, propo-
sitions and theorems in this section.

1.5 Proposition RELATIONS BETWEEN CONVERGENCE CONCEPTS



(3 X 23X = Xn B X = Xy = X.
(B) %o X = Xo > X forallssuch thadD < s<r = Xn > X = Xn = X.

1.6 Remark In general, the implications ih.5 (b) and(c) cannot be reversed.
1.3. Convergence of expectations and functions of random xiables

1.1 AssumptionLet{X,:n=1, 2, ...} be a sequence of real r.v. %, a real r.v.
andg: R — R a function such thai(X) andg(X,), n=1, 2,..., are real r.v.’s.

Unless stated otherwise, this assumption will hold for alldinitions, propo-
sitions and theorems in this section.

1.2 PropositionLet g : R — R a continuous function everywhere &) except
possibly in a seA C R, and letX a r.v. such thaP[X € A|=0. Then

(8) %o = X = g(%) = 9(X);

(b) X2 = X = g(%) = 9(X);

(6) X0 = X = g(%) = g(X).

1.3 Proposition Let {X,} and{Y,} two sequences of random variables. Then
(@) Xn = X and¥, 2 Y = Xo+ Yo 2 X+Y;

(b) %o B X and¥p Y = X+ Ya S X +Y;
(

c) Xn B X andY, > Y = 9(Xn, Yn) B g(X,Y) for any continuous function
g(%, y).



1.4 Proposition Let {X,} and{Y,} two sequences of r.v.’s such that = X and
Y, > ¢, whereX isar.v. anct is a real constarft-o < ¢ < +). Then

(a) Xq Xo+Ya = X +C;

(b) XnYn—>Xc

(c) Xn/Yn—>X/c1fc;£O
(d) (%, Yo) = (X, ©).

1.5 Proposition Let {X,} and{Y,} two sequences of r.v.'s such th&t— Y, 2o
andy, 5 Y, and letg: R — R be a continuous function. Then

(&) X0 5 Y;

(b) 9(%) —9(Ya) = O;
(©) 9(%) = 9(Y).
1.4. Random series

1.6 Definition Let {X; : t € N} be a real-valued stochastic process and conside
the seriesy X .
=1

1.7 Definition We sayy X convergegaccording to given mode of convergehce
t=1

iff there exists a real r.) such that

N
X; — Y (according to the same mode of converggnce

& N—o0

1.8 Remark The mode of convergence : a.s., in probability or in mean ofrarde



2. Laws of large numbers

2.1 PropositionLet {X}—, a sequence of rv.’s such that < L, and
Cov(Xs, X) =0Tfors+#t, and letu, = E(X). Then

(a) E IVar (X,) < o0 = X, — [, n%é 0 (Chebychev law

n=1

whereX, = § X, /n andp, = % u./n, and
t=1

(b) § ('09”) Var(Xn)<w:>in—ﬁn%O.

n=1
In particular, if\/ar(Xt) =02< andE(Xt) = u for allt, then

n—>uand Xt—>ll

2.2 Theorem KHINTCHINE WEAK LAW OF LARGE NUMBERS. Let {X}{*,
a sequence of independent and identically distributed mitiose meait (X;)
exists. Then B

E(X)=H =X — U

NnN—oo

2.3 Theorem FIRST KOLMOGOROV' S STRONG LAW OF LARGE NUMBERS
Let {X }{, a sequence of independent r.v.'s such B@t) = u, andVar (%) =
o? exist for allt. Then

Z(an/n)2<m;»in—ﬁn%o.

n=1



2.4 Theorem SECOND KOLMOGOROV' S STRONG LAW OF LARGE NUMBERS
Let{X }i-, a sequence of independent and identically distributeg.r.vten

E(X) exists and is equal o < X, — [, :—S> 0.

3. Central limit theorems

3.1 Theorem LINDEBERG-LEVY CENTRAL LIMIT THEOREM. Let{X}Z, a
sequence of independent and identically distributed mA’s such thaE (X)) = u
andVar (X) = a2 > 0. Then

1
f;(xt W/ o=vaX-u/ oz

whereZ ~ N(0,1).

3.2 Theorem LIAPUNOV CENTRAL LIMIT THEOREM. Let{X}{, a sequence
of independent r.v.’s ibz such thaE (X;) = ., Var (%) = 02 #0, E[|X — y, ]3] =
B; for allt. Moreover,

i 1/3 i 1/2
Bn — <tzlﬁt> 7Cn — <tzlat2>

If lim (B,/ C,) =0, then

Nn—oo

S (% — Hp)/ Co = V(X% — 1)/ (Co/vN) O — 7

n—oo

whereZ ~ N(0,1).



3.3 Theorem LINDEBERG-FELLER CENTRAL LIMIT THEOREM. Let{X},a
sequence of independent r.v.’sLippsuch that

P[X <X =Gi(x) , E(X) = i, Var(X) = o7 #0,
for allt. Then

n

Z(X[ 1)/ Cq —>ZandI|m max(o;/ C,) =

n—oo 1<t<n
iff
jim = / (X— 1, )?dGi(x) = 0,Ve > 0.
|X— ut|>eCn

r]—>ooc:nt

3.1. Extension to random vectors

3.1 Definition STOCHASTIC CONVERGENCE FOR VECTORSLet{X,}>_; a se-
quence of vectors of dimensién

)<|’1 — (XlnaXZny "'7an)l7 n= 17 27

whose components are real random variables all defined on thepgabability
spac€g Q, Q, P), and

X = (X1, X2, ..., Xk)’
another random vector of dimensikmhose components are defined on the same
space.

(a) We sayX, converges tX in probability (almost surely, in mean of ordey
asn — oo jf each component oX, converges to the corresponding component
of X in probability (almost surely, in mean of ordey asn — o . Depending
on the case considered, we then wite™ X, X, 23 X or X, = X.

(b) We sayX, converges in law t&X (X, 5 X) iff
rI]im Fx,(X) = Fx(x) at all continuity points oFx(X) .



wherex = (X, Xo, ... , %)’ € R¥,

Fx,(X) = P Xin < X1, Xn <X, N=1,2,...
and
FX(X) — P[Xl < Xl,.-.,Xk < Xk] .

3.2 Theorem UNIVARIATE CHARACTERIZATION OF CONVERGENCE IN LAW

FOR A SEQUENCE OF VECTORS Let{X,}n_, be a sequence of random vectors
of dimensiork x 1 and letX be another random vector of dimenslor 1. Then

Xy — X < A%, - A'X, VA € RX.

Nn—oo n—oo

In particular, ifX ~ N[y, 2],

Xo 5 N[, ] & A%, 5 N[A'l, A'SA], VA € R

n—oo



3.2. Proofs and additional references

Proofs and further discussions of the results presented above enfayihd the
following references: Rao (1973), Lukacs (1975), Stout (1974), Loe¥é/()11
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