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1. Hypothesis testing and nuisance parameters

Testing an hypothesid,, usually involves finding a test statistit H,) with 2 characteris-
tics:

1. the stochastic behavior (distribution)BfH,) underH, must be known;

2. the general way in which the distribution ©f H,) is affected under the alternative
must also be known (e.g!(H,) may tend to takéarge or small values with greater
possibilities under the alternative)

— Fundamental that the quantiles of the distribution functio"6f{,) be either
uniquely definedor (at leastpounded

Otherwise, the behavior af( Hy) underH, is not interpretable and7'( H,) cannotbe the
basis of avalid test of H,

Common difficulty: nuisance parameters

01
0= (0) (1.1)

Hy: 6, =69 (1.2)
Test:T (6)) > () (1.3)

If the distribution of 7°(6?) does not depend ofh, it is uniquely determined and can be
found either by analytical methods or by simulation.

If the distribution of7"(6?) depends o#, it is not uniquely determined:

0, Is a nuisance parameter.

In many econometric and statistical problems, it is difficult to find the exact distribution
of test statistics and confidence sets.
Two basic reasons:

1. deriving the relevant distributions may require complex calculations;
and/ or

2. distribution may involve nuisance parameters.

Most common approach to such distributional problems: Uaege-sample approxi-
mation.



Important characteristic of such approximations in many situations, the asymptotic dis-
tribution does not involve nuisance parameters [e.g. N(0,1), chi-square]
— great flexibility.

Main interest of asymptotic approximations: generate approximations useful in finite-
samples

Shortcomings:

1. Finite-sample distribution may involve nuisance parameters

2. Accuracy of the approximation is typically unknown and mayabeitrarily bad
especially with nuisance parameters (non-uniform convergence)

Approximation arbitrarily bad—> Tests statistic not interpretable

2. Basic techniques to deal with nuisance parameters

1. Transforming:
Find a transformation that reduces the data for a stafigtif) whose distribution
does not depend daf} [e.g. reduction to a maximal invariant statistic]

- t andF'-statistics in classical linear regression
- reduction of observations in cash or signs

2. Conditioning
on a statisticS such that the conditional distribution 8{6¢") given.S does not depend
onfs:

- tests with Neyman structure;

- permutation tests;
- conditioning on explanatory variables.

3. Bounding:
find a bound on the distribution @f(?) which is valid irrespective of the unknown
value offs:

IN

Sélpp(eg,eg) [T(H?) > x] Byo()

1



3. Approaches for building bounds procedures
Four approaches:

1. Bounding the statistics of interest by other random variables with more tractable
distributions
— Bounds on distribution functions

2. Bounding directly the distribution function of interest (or its tail areas) by some func-
tion (not necessarily obtained as the distribution function of random variable)

3. Sequential confidence procedures

4. Projection techniques

3.1. Bounding the statistic of interest by other statistics

Given a statistid” used in building a test on confidence set with a complicated distribution
(possibly involving nuisance parameters), one tries to find other statistiaad7; with
more tractable distributions and such that

7" < T<T,
P>z < PI'>x]<P[Ty>a].

Approach applied in:

DUFOUR, J.-M.(1989): “Nonlinear Hypotheses, Inequality Restrictions, and Non-Nested
Hypotheses: Exact Simultaneous Tests in Linear Regressieosiiometrica57, 335—
355.

3.1. Bounding tail areas by some function
Py [T > z] < G(x)
whereG (z) is not necessarily obtained from the distribution of a random variables.
1. Exponential inequalities;
2. Chebyshev inequalities (based on second and higher-order moments);

3. Berry-Esseen bounds.



There are cases (e.g. in nonparametric statistics) where such bounds can be used and
combined to get fairly tight bounds on tail areas.

Approach used in:

DUFOUR, J.-M. (1991): “Kimball's Inequality and Bounds Tests for Comparing Several
Regressions under Heteroskedasticity, Hoonomic Structural Change. Analysis and
Forecasting ed. by P. HacklandA. Westlund, pp. 49-57. Springer-Verlag, Berlin.

DUFOUR, J.-M., AND S. MAHSEREDJIAN (1993): “Tabulation of Farebrother's Test of
Linear Restrictions: A Solution Econometric Theoryd, 697—702.

DUFOUR, J.-M., AND M. HALLIN (1991): “Nonuniform Bounds for Nonparametric
Tests,”"Econometric Theory7, 253-263.

DUFOUR, J.-M., AND M. HALLIN (1992): “Improved Berry-Esseen-Chebyshev Bounds
with Statistical Applications,Econometric Theory8, 223-240.

DUFOUR, J.-M., AND M. HALLIN (1992): “Simple Exact Bounds for Distributions of
Linear Signed Rank StatisticsJournal of Statistical Planning and Inferencgl, 311—
333.

DUFOUR, J.-M., AnD M. HALLIN (1993): “Improved Eaton Bounds for Linear Combi-

nations of Bounded Random Variables, with Statistical Applicatiodstirnal of the
American Statistical Associatip88, 1026—1033.

3.1. Projection techniques

3.2. Sequential confidence procedure

0= (Z;) (3.1)

6. vector of nuisance parameter
6,: vector of parameters of interest

Useful with nuisance parameters

where
(3.2)

Problem: inference abodt (confidence set on test)
Suppose 2 conditions are satisfied:



1. itis possible to build exact confidence &gtfor 6,

P [91 & Cl] =1- a (33)

2. if 01 is known, it is possible to build a confidence 6&t6, ) for 6, such that

P[QQ S 02(81)} =1—qay. (34)

Procedure:
1. Build on exact confidence séf for 6;:

P[91 601] =1—-—o
(=)

2. Build a simultaneous confidence géfor 6, andés:

C = {(91,92) :0,e€Cy, 05 € 02(91)}
P[(@l,eg) < C} Z 1-— (Oél + 042)

3. Use a projection (or an intersection) method to deduce conservative (or a liberal)
confidence set fof,:

U={0,:(61,0;) € C forsomed, € C,}
Pl e Ul >1— (a1 + o)

L= {92 : (91,92) e C forall 0, € Cl} (35)
P [92 < L] S (1 — 062) + aq (36)

4. Conservative and liberal critical regions can be deduced from there confidence sets:
05 ¢ U is a conservative critical region fdi,:0, = 65 with levela = a; + ay;
0, ¢ L is aliberal continual region foH,, : , = 65 with levela = o, — iy .

5. By combining a conservative and a liberal confidence region with the same level one
gets a generalized bounds tests

Approach applied to linear regression with AR(1) errors in:

DUFOUR, J.-M. (1990): “Exact Tests and Confidence Sets in Linear Regressions with
Autocorrelated Errors Econometricab8, 475-494.
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