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1. Hypothesis testing and nuisance parameters

Testing an hypothesisH0 usually involves finding a test statisticT (H0) with 2 characteris-
tics:

1. the stochastic behavior (distribution) ofT (H0) underH0 must be known;

2. the general way in which the distribution ofT (H0) is affected under the alternative
must also be known (e.g.T (H0) may tend to takelarge or small values with greater
possibilities under the alternative)
−→ Fundamental that the quantiles of the distribution function ofT (H0) be either
uniquely definedor (at least)bounded

Otherwise, the behavior ofT (H0) underH0 is not interpretable andT (H0) cannotbe the
basis of avalid test ofH0

Common difficulty: nuisance parameters

θ =

(
θ1

θ2

)
(1.1)

H0 : θ1 = θ0
1 (1.2)

Test:T
(
θ0

1

)
> c(α) (1.3)

If the distribution ofT (θ0
1) does not depend onθ2, it is uniquely determined and can be

found either by analytical methods or by simulation.
If the distribution ofT (θ0

1) depends onθ2, it is not uniquely determined:
θ2 is a nuisance parameter.

In many econometric and statistical problems, it is difficult to find the exact distribution
of test statistics and confidence sets.

Two basic reasons:

1. deriving the relevant distributions may require complex calculations;

and / or

2. distribution may involve nuisance parameters.

Most common approach to such distributional problems: use alarge-sample approxi-
mation.
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Important characteristic of such approximations in many situations, the asymptotic dis-
tribution does not involve nuisance parameters [e.g. N(0,1), chi-square]
−→ great flexibility.

Main interest of asymptotic approximations: generate approximations useful in finite-
samples

Shortcomings:

1. Finite-sample distribution may involve nuisance parameters

2. Accuracy of the approximation is typically unknown and may bearbitrarily bad
especially with nuisance parameters (non-uniform convergence)

Approximation arbitrarily bad=⇒ Tests statistic not interpretable

2. Basic techniques to deal with nuisance parameters

1. Transforming :
Find a transformation that reduces the data for a statisticT (θ0

1) whose distribution
does not depend onθ2 [e.g. reduction to a maximal invariant statistic]

- t andF -statistics in classical linear regression

- reduction of observations in cash or signs

2. Conditioning
on a statisticS such that the conditional distribution ofT (θ0

1) givenS does not depend
on θ2:

- tests with Neyman structure;

- permutation tests;

- conditioning on explanatory variables.

3. Bounding:
find a bound on the distribution ofT (θ0

1) which is valid irrespective of the unknown
value ofθ2:

sup
θ2

P(θ0
1,θ2)

[
T (θ0

1) > x
] ≤ Bθ0

1
(x)

inf
θ2

P(θ0
1,θ2)

[
T (θ0

1) > x
] ≥ Cθ0

1
(x)
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3. Approaches for building bounds procedures

Four approaches:

1. Bounding the statistics of interest by other random variables with more tractable
distributions
−→ Bounds on distribution functions

2. Bounding directly the distribution function of interest (or its tail areas) by some func-
tion (not necessarily obtained as the distribution function of random variable)

3. Sequential confidence procedures

4. Projection techniques

3.1. Bounding the statistic of interest by other statistics

Given a statisticT used in building a test on confidence set with a complicated distribution
(possibly involving nuisance parameters), one tries to find other statisticsT1 andT2 with
more tractable distributions and such that

T1 ≤ T ≤ T2 ,

P [T1 ≥ x] ≤ P [T ≥ x] ≤ P [T2 ≥ x] .

Approach applied in:

DUFOUR, J.-M. (1989): “Nonlinear Hypotheses, Inequality Restrictions, and Non-Nested
Hypotheses: Exact Simultaneous Tests in Linear Regressions,”Econometrica, 57, 335–
355.

3.1. Bounding tail areas by some function

Pθ [T ≥ x] ≤ G(x)

whereG(x) is not necessarily obtained from the distribution of a random variables.

1. Exponential inequalities;

2. Chebyshev inequalities (based on second and higher-order moments);

3. Berry-Esseen bounds.
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There are cases (e.g. in nonparametric statistics) where such bounds can be used and
combined to get fairly tight bounds on tail areas.

Approach used in:

DUFOUR, J.-M. (1991): “Kimball’s Inequality and Bounds Tests for Comparing Several
Regressions under Heteroskedasticity,” inEconomic Structural Change. Analysis and
Forecasting, ed. by P. Hackl,andA. Westlund, pp. 49–57. Springer-Verlag, Berlin.

DUFOUR, J.-M., AND S. MAHSEREDJIAN (1993): “Tabulation of Farebrother’s Test of
Linear Restrictions: A Solution,”Econometric Theory, 9, 697–702.

DUFOUR, J.-M., AND M. HALLIN (1991): “Nonuniform Bounds for Nonparametrict
Tests,”Econometric Theory, 7, 253–263.

DUFOUR, J.-M., AND M. HALLIN (1992): “Improved Berry-Esseen-Chebyshev Bounds
with Statistical Applications,”Econometric Theory, 8, 223–240.

DUFOUR, J.-M., AND M. HALLIN (1992): “Simple Exact Bounds for Distributions of
Linear Signed Rank Statistics,”Journal of Statistical Planning and Inference, 31, 311–
333.

DUFOUR, J.-M., AND M. HALLIN (1993): “Improved Eaton Bounds for Linear Combi-
nations of Bounded Random Variables, with Statistical Applications,”Journal of the
American Statistical Association, 88, 1026–1033.

3.1. Projection techniques

3.2. Sequential confidence procedure

Useful with nuisance parameters

θ =

(
θ1

θ2

)
(3.1)

where
θ1: vector of nuisance parameter
θ2: vector of parameters of interest

(3.2)

Problem: inference aboutθ2 (confidence set on test)
Suppose 2 conditions are satisfied:
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1. it is possible to build exact confidence setC1 for θ1

P [θ1 ∈ C1] = 1− α1 ; (3.3)

2. if θ1 is known, it is possible to build a confidence setC2(θ1) for θ2 such that

P [θ2 ∈ C2(θ1)] = 1− α2 . (3.4)

Procedure:

1. Build on exact confidence setC1 for θ1:

P [θ1 ∈ C1] =
(≥)

1− α1

2. Build a simultaneous confidence setC for θ1 andθ2:

C = {(θ1, θ2) : θ1 ∈ C1 , θ2 ∈ C2(θ1)}
P [(θ1, θ2) ∈ C] ≥ 1− (α1 + α2)

3. Use a projection (or an intersection) method to deduce conservative (or a liberal)
confidence set forθ2:

U = {θ2 : (θ1, θ2) ∈ C for someθ1 ∈ C1}
P [θ2 ∈ U ] ≥ 1− (α1 + α2)

L = {θ2 : (θ1, θ2) ∈ C for all θ1 ∈ C1} (3.5)

P [θ2 ∈ L] ≤ (1− α2) + α1 (3.6)

4. Conservative and liberal critical regions can be deduced from there confidence sets:
θ0

2 /∈ U is a conservative critical region forH0:θ2 = θ0
2 with levelα ≡ α1 + α2 ;

θ2 /∈ L is a liberal continual region forH0 : θ2 = θ0
2 with levelα = α1 − α2 .

5. By combining a conservative and a liberal confidence region with the same level one
gets a generalized bounds tests

Approach applied to linear regression with AR(1) errors in:

DUFOUR, J.-M. (1990): “Exact Tests and Confidence Sets in Linear Regressions with
Autocorrelated Errors,”Econometrica, 58, 475–494.
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