Complements on classical linear model *

Jean-Marie Dufour ${ }^{\dagger}$
McGill University

First version: April 1995
Revised: February 2002, July 2011
This version: July 2011
Compiled: November 22, 2011, 19:08

[^0]
Contents

1. Formulas for partitioned regression

2. Updating formulas for linear regressions 2
3. Orthogonal decompositions of least squares estimators 3

1. Formulas for partitioned regression

$$
\begin{align*}
y & =X \beta+\varepsilon \\
& =\left(X_{1}, X_{2}\right)\binom{\beta_{1}}{\beta_{2}}+\varepsilon \\
& =X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon \tag{1.1}\\
\hat{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime} y=\binom{\hat{\beta}_{1}}{\hat{\beta}_{2}} \tag{1.2}
\end{align*}
$$

where

$$
\begin{align*}
& X: T \times k, X_{1}: T \times k_{1}, X_{2}: T \times k_{2} \\
\beta_{1} & : k_{1} \times 1, \beta_{2}: k_{2} \times 1, k=k_{1}+k_{2} \\
\hat{\beta}_{1}= & \left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} y-\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} X_{2} D^{-1} X_{2}^{\prime} M_{1} y \\
& =b_{1}-\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} X_{2} D^{-1} X_{2}^{\prime} M_{1} y \tag{1.3}
\end{align*}
$$

where

$$
\begin{gather*}
b_{1}=\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} y \tag{1.4}\\
M_{1}=I_{T}-X_{1}\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} \tag{1.5}\\
D=X_{2}^{\prime} M_{1} X_{2} \tag{1.6}\\
\hat{\beta}_{2}=D^{-1} X_{2}^{\prime} M_{1} y=\left(X_{2}^{\prime} M_{1} X_{2}\right)^{-1} X_{2}^{\prime} M_{1} y \tag{1.7}\\
\hat{\beta}_{1}=\left(X_{1}^{\prime} M_{2} X_{1}\right)^{-1} X_{1}^{\prime} M_{2} y \tag{1.8}
\end{gather*}
$$

where

$$
\begin{equation*}
M_{2}=I_{T}-X_{2}\left(X_{2}^{\prime} X_{2}\right)^{-1} X_{2}^{\prime} \tag{1.9}
\end{equation*}
$$

For further discussion, the reader may con consult Schmidt (1976) and Seber
(1977).

2. Updating formulas for linear regressions

$$
\begin{equation*}
y_{t}=x_{t}^{\prime} \beta+\varepsilon_{t} \quad, \quad t=1, \ldots, T \tag{2.1}
\end{equation*}
$$

where

$$
\begin{gather*}
x_{t}: k \times 1, \tag{2.2}\\
\left.Y_{r}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{r}
\end{array}\right) \quad, \quad \begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
\vdots \\
x_{r}^{\prime}
\end{array}\right] \quad, \quad r=k, k+1, \ldots, T . \tag{2.3}\\
b_{r}=\left(X_{r}^{\prime} X_{r}\right)^{-1} X_{r}^{\prime} Y_{r} \tag{2.4}
\end{gather*}
$$

is the estimator of β based on the first r observations. Then the following updating formulas hold [see Brown, Durbin and Evans (1975)] :

$$
\begin{gather*}
b_{r}=b_{r-1}+\left(X_{r}^{\prime} X_{r}\right)^{-1} x_{r}\left(y_{r}-x_{r}^{\prime} b_{r-1}\right), k+1 \leq r \leq T \tag{2.5}\\
\left(X_{r}^{\prime} X_{r}\right)^{-1}=\left(X_{r-1}^{\prime} X_{r-1}\right)^{-1}-\frac{\left(X_{r-1}^{\prime} X_{r-1}\right)^{-1} x_{r} x_{r}^{\prime}\left(X_{r-1}^{\prime} X_{r-1}\right)^{-1}}{1+x_{r}^{\prime}\left(X_{r-1}^{\prime} X_{r-1}\right)^{-1} x_{r}} \tag{2.6}
\end{gather*}
$$

Further,

$$
\begin{align*}
V\left(b_{r}\right)-V\left(b_{r-1}\right) & =\sigma^{2}\left(X_{r}^{\prime} X_{r}\right)^{-1}-\sigma^{2}\left(X_{r-1}^{\prime} X_{r-1}\right)^{-1} \\
& =-\sigma^{2} \frac{\left(X_{r-1}^{\prime} X_{r-1}\right)^{-1} x_{r} x_{r}^{\prime}\left(X_{r-1}^{\prime} X_{r-1}\right)^{-1}}{1+x_{r}^{\prime}\left(X_{r-1}^{\prime} X_{r-1}\right)^{-1} x_{r}} \tag{2.7}
\end{align*}
$$

is a negative semidefinite matrix.

3. Orthogonal decompositions of least squares estimators

Consider $\hat{\beta}$ and $\hat{\beta}_{0}$, respectively the unrestricted estimator of β and the restricted estimator of β under the constraint $R \beta=r$:

$$
\begin{gather*}
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y \tag{3.1}\\
\hat{\beta}_{0}=\hat{\beta}+Q_{R}[r-R \hat{\beta}] \tag{3.2}
\end{gather*}
$$

where

$$
\begin{equation*}
Q_{R}=\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} \tag{3.3}
\end{equation*}
$$

Then, we see easily that

$$
\begin{align*}
R \hat{\beta}-r & =R\left[\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon\right]-r \tag{3.4}\\
& =(R \beta-r)+R_{X} \varepsilon \tag{3.5}
\end{align*}
$$

where

$$
\begin{gather*}
R_{X}=R\left(X^{\prime} X\right)^{-1} X^{\prime} \tag{3.6}\\
\hat{\beta}-\hat{\beta}_{0}=Q_{R}[R \hat{\beta}-r] \\
=Q_{R}\left[(R \beta-r)+R_{X} \varepsilon\right] \\
=Q_{R}(R \beta-r)+Q_{R} R_{X} \varepsilon \\
=Q_{R}(R \beta-r)+Q \varepsilon \tag{3.7}
\end{gather*}
$$

and

$$
\begin{align*}
\hat{\beta}_{0} & =\hat{\beta}+\left(\hat{\beta}_{0}-\hat{\beta}\right) \\
& =\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon-Q_{R}(R \beta-r)-Q \varepsilon \\
& =\beta+Q_{R}(r-R \beta)+\left[\left(X^{\prime} X\right)^{-1} X^{\prime}-Q\right] \varepsilon \tag{3.8}
\end{align*}
$$

where

$$
\begin{equation*}
Q=Q_{R} R_{X}=Q_{R} R\left(X^{\prime} X\right)^{-1} X^{\prime} \tag{3.9}
\end{equation*}
$$

Since

$$
\begin{gather*}
R_{X} X\left(X^{\prime} X\right)^{-1}=R\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1}=R\left(X^{\prime} X\right)^{-1} \tag{3.10}\\
R_{X} R_{X}^{\prime}=R\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1} R^{\prime}=R\left(X^{\prime} X\right)^{-1} R^{\prime} \tag{3.11}
\end{gather*}
$$

and

$$
\begin{align*}
R_{X} Q^{\prime} & =R_{X} R_{X}^{\prime} Q_{R}^{\prime} \\
& =R\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(X^{\prime} X\right)^{-1} \tag{3.12}\\
& =R\left(X^{\prime} X\right)^{-1} \tag{3.13}
\end{align*}
$$

it follows that

$$
\begin{align*}
\mathrm{C}\left(R \hat{\beta}-r, \hat{\beta}_{0}\right) & =\mathrm{C}\left(R_{X} \varepsilon,\left[\left(X^{\prime} X\right)^{-1} X^{\prime}-Q\right] \varepsilon\right) \\
& =\mathrm{E}\left[R_{X} \varepsilon \varepsilon^{\prime}\left[\left(X^{\prime} X\right)^{-1} X^{\prime}-Q\right]^{\prime}\right] \\
& =\sigma^{2} R_{X}\left[\left(X^{\prime} X\right)^{-1} X^{\prime}-Q\right]^{\prime} \\
& =\sigma^{2} R_{X}\left[X\left(X^{\prime} X\right)^{-1}-Q^{\prime}\right] \\
& =\sigma^{2}\left[R\left(X^{\prime} X\right)^{-1}-R\left(X^{\prime} X\right)^{-1}\right]=0 . \tag{3.14}
\end{align*}
$$

and

$$
\begin{aligned}
\mathrm{C}\left(\hat{\beta}-\hat{\beta}_{0}, \hat{\beta}_{0}\right) & =\mathrm{C}\left(Q_{R}[R \hat{\beta}-r], \hat{\beta}_{0}\right) \\
& =Q_{R} \mathrm{C}\left(R \hat{\beta}-r, \hat{\beta}_{0}\right)=0
\end{aligned}
$$

Thus $\hat{\beta}_{0}$ and $R \hat{\beta}-r$ are uncorrelated under the assumptions of the classical linear model, and similarly for $\hat{\beta}_{0}$ and $\hat{\beta}-\hat{\beta}_{0}$. This holds even if the normality assumption or the restriction $R \beta=r$ do not hold. Consequently, the identity

$$
\begin{equation*}
\hat{\beta}=\hat{\beta}_{0}+\left(\hat{\beta}-\hat{\beta}_{0}\right) \tag{3.15}
\end{equation*}
$$

provides a decomposition of $\hat{\beta}$ as the sum of two uncorrelated random vectors, so that

$$
\begin{equation*}
\mathrm{V}(\hat{\beta})=\mathrm{V}\left(\hat{\beta}_{0}\right)+\mathrm{V}\left(\hat{\beta}-\hat{\beta}_{0}\right) \tag{3.16}
\end{equation*}
$$

More explicitly, we have

$$
\begin{equation*}
\hat{\beta}=\hat{\beta}_{0}+Q_{R}(r-R \beta)-Q \varepsilon \tag{3.17}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{C}\left[\hat{\beta}_{0}, Q y\right]=\mathrm{C}\left[\hat{\beta}_{0}, Q \varepsilon\right]=0 . \tag{3.18}
\end{equation*}
$$

An interesting special case of the latter results is the one where

$$
\begin{equation*}
y=X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon \tag{3.19}
\end{equation*}
$$

and the restrictions take the form

$$
\begin{equation*}
\beta_{2}=0, \tag{3.20}
\end{equation*}
$$

with

$$
\begin{equation*}
R=\left[0, I_{k_{2}}\right], r=0 . \tag{3.21}
\end{equation*}
$$

Then

$$
\begin{equation*}
\hat{\beta}=\binom{\hat{\beta}_{1}}{\hat{\beta}_{2}}, \quad \hat{\beta}_{0}=\binom{\hat{\beta}_{10}}{\hat{\beta}_{20}}=\binom{\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} y}{0} \tag{3.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\beta}_{1}=\hat{\beta}_{10}-Q_{20} R \hat{\beta}=\hat{\beta}_{10}-Q_{20} \hat{\beta}_{2} \tag{3.23}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{\beta}_{2}=\left(X_{2}^{\prime} M_{1} X_{2}\right)^{-1} X_{2}^{\prime} M_{1} y \tag{3.24}
\end{equation*}
$$

and $\hat{\beta}_{2}$ is independent of $\hat{\beta}_{10 .}{ }^{1}$

[^1]
References

Brown, R. L., Durbin, J. and Evans, J. M. (1975), 'Techniques for testing the constancy of regression relationships over time', Journal of the Royal Statistical Society, Series B 37, 149-192.

Danilov, D. and Magnus, J. R. (2001), On the harm that pretesting does, Technical report, CentER, Tilburg University.

Maddala, G. S. (1977), Econometrics, McGraw-Hill, New York.
Magnus, J. R. and Durbin, J. (1999), 'Estimation of regression coefficients of interest when other regression coefficients are of no interest', Econometrica 67, 639-643.

Schmidt, P. (1976), Econometrics, Marcel Dekker, New York.
Seber, G. A. F. (1977), Linear Regression Analysis, John Wiley \& Sons, New York.

Theil, H. (1971), Principles of Econometrics, John Wiley \& Sons, New York.

[^0]: *This work was supported by the William Dow Chair in Political Economy (McGill University), the Bank of Canada (Research Fellowship), a Guggenheim Fellowship, a Konrad-Adenauer Fellowship (Alexander-von-Humboldt Foundation, Germany), the Canadian Network of Centres of Excellence [program on Mathematics of Information Technology and Complex Systems (MITACS)], the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada, and the Fonds de recherche sur la société et la culture (Québec).
 ${ }^{\dagger}$ William Dow Professor of Economics, McGill University, Centre interuniversitaire de recherche en analyse des organisations (CIRANO), and Centre interuniversitaire de recherche en économie quantitative (CIREQ). Mailing address: Department of Economics, McGill University, Leacock Building, Room 519, 855 Sherbrooke Street West, Montréal, Québec H3A 2T7, Canada. TEL: (1) 514398 8879; FAX: (1) 514 398 4938; e-mail: jeanmarie.dufour@mcgill.ca. Web page: http://www.jeanmariedufour.com

[^1]: ${ }^{1}$ See Magnus and Durbin (1999) and Danilov and Magnus (2001) for further discussion.

