Jean-Marie Dufour February 2009 Compiled: February 11, 2009

ECONOMETRIC THEORY EXERCISES 1 DECISION THEORY

Reference: Gouriéroux and Monfort (1995, Chapter 2)

- 1. Describe the main statistical problems as decision problems.
 - (a) Explain the difference between a *nonrandomized* decision rule and a *randomized* decision rule.
 - (b) Define the risk function for each one of these two types of rule.
 - (c) When is a decision rule admissible?
- 2. If a randomized decision rule m_1 is preferable to another randomized decision rule m_2 , show that m_1 is preferable to m_2 in the Bayesian sense.
- 3. Is a decision rule optimal in the Bayesian sense always admissible? Justify your answer. [You can limit yourself to the case of a discrete distribution.]
- 4. Exercise 2.1 in Gouriéroux and Monfort (1995, chap. 2).
- 5. Exercise 2.2 in Gouriéroux and Monfort (1995, chap. 2).
- 6. Exercise 2.3 in Gouriéroux and Monfort (1995, chap. 2).
- 7. Let Y be a Bernoulli random variable $B(1, \theta)$ where θ can take the values $\frac{1}{3}$ or $\frac{1}{2}$. We consider the problem of estimating θ using a single observation Y.
 - (a) How many nonrandomized decision rules do exist for this problem? Describe these rules.
 - (b) Describe the set of randomized rules for this problem.

- (c) Compute the risk function associated with each one of the nonrandomized decision rules. Represent in a graph the risks associated with the different rules. Which rules are admissible? [Remark: there is an error in Figure 2.1 of Gouriéroux and Monfort (1995, page 57).]
- (d) Compute the risk function associated with each one of the randomized decision rules. Represent in a graph these different risks. Which rules are admissible?

References

GOURIÉROUX, C., AND A. MONFORT (1995): Statistics and Econometric Models, Volumes One and Two. Cambridge University Press, Cambridge, U.K.