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1. Random variables

1.1 In general, economic theory specifies exact relations between economic vari-
ables. Even a superficial examination of economic data indicates it is not (almost
never) possible to find such relationships in actual data. Instead, we have relations
of the form:

Ct = α +βYt + ε t

whereε t can be interpreted as a “random variable”.

1.2 Definition A random variable(r.v.) X is a variable whose behavior can be
described by a “probability law”. IfX takes its values in the real numbers, the
probability law ofX can be described by a “distribution function”:

FX(x) = P [X ≤ x]

1.3 If X is continuous, there is a “density function”fX (x) such that

FX (x) =
∫ x

−∞
fX(x) dx .

The mean and variance ofX are given by:

µX = E(X) =
∫ +∞

−∞
x dFX (x) (general case)

=
∫ +∞

−∞
x fX (x) dx (continuous case)

V(X) = σ2
X = E

[

(X −µX)2
]

=
∫ +∞

−∞
(x−µX)2dFX (x) (general case)

=
∫ +∞

−∞
(x−µX)2FX (x)dx

(continuous case)
= E

(

X2
)

− [E(X)]2

1.4 It is easy to characterize relations between two non-random variablesx and
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y :
g(x, y) = 0

or (in certain cases)
y = f (x) .

How does one characterize the links or relations between random variables? The
behavior of a pair(X ,Y )′ is described by a joint distribution function:

F(x,y) = P [X ≤ x, Y ≤ y]

=
∫ y

−∞

∫ x

−∞
f (x, y)dxdy (continuous case.)

We call f (x, y) the joint density function of(X , Y )′. More generally, if we
considerk v.a.′s X1, X2, . . . , Xk, their behavior can be described through ak-
dimensional distribution function:

F (x1,x2, . . . ,xk) = P [X1 ≤ x1,X2 ≤ x2, . . . , Xk ≤ xk]

=
∫ xk

−∞
· · ·

∫ x2

−∞

∫ x1

−∞
f (x1,x2, . . . ,xk) dx1dx2 · · ·dxk (continuous case)

where f (x1,x2, . . . , xk) is the joint density function ofX1,X2, . . . , Xk.

2. Covariances and correlations

2.1. Covariance and correlation between two random variables
We often wish to have a simple measure of association between two random vari-
ablesX andY . The notions of “covariance” and “correlation” provide such mea-
sures of association. LetX andY be twor.v.’s with meansµX andµY and finite
variancesσ2

X andσ2
Y . Belowa.s. means “almost surely” (with probability 1).

2.1 Definition The covariance betweenX andY is defined by

C(X ,Y ) ≡ σ XY ≡ E [(X −µX)(Y −µY )] .
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2.2 Definition Supposeσ2
X > 0 andσ2

Y > 0. Then the correlation betweenX and
Y is defined by

ρ (X ,Y ) ≡ ρXY ≡ σ XY/σ XσY .

Whenσ2
X = 0 or σ2

Y = 0, we setρXY = 0.

2.3 TheoremThe covariance and correlation betweenX andY satisfy the follow-
ing properties:

(a) σ XY = E(XY )−E(X)E(Y ) ;

(b) σ XY = σY X , ρXY = ρY X ;

(c) σ XX = σ2
X , ρXX = 1 ;

(d) σ2
XY ≤ σ2

Xσ2
Y ; (Cauchy-Schwarz inequality)

(e) −1≤ ρXY ≤ 1 ;

(f) X andY are independent⇒ σ XY = 0⇒ ρXY = 0 ;

(g) if σ2
X 6= 0 andσ2

Y 6= 0 ,

ρ2
XY = 1⇔

[

∃ two constantsa andb such thata 6= 0 andY = aX +b a.s.
]

PROOF (a)

σ XY = E [(X −µX)(Y −µY )]

= E [XY −µXY −XµY + µX µY ]

= E(XY )−µXE(Y )−E(X)µY + µX µY

= E(XY )−µX µY −µX µY + µX µy

= E(XY )−E(X)E(Y ) .

(b) et (c) are immediate. To get (d), we observe that

E

{

[Y −µY −λ (X −µX)]2
}

= E

{

[(Y −µY )−λ (X −µX)]2
}
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= E

{

(Y −µY )2−2λ (X −µX)(Y −µY )+λ 2(X −µX)2
}

= σ2
Y −2λσ XY +λ 2σ2

X ≥ 0 .

for any arbitrary constantλ . In other words, the second-order polynomialg(λ ) =

σ2
Y − 2λσ XY + λ 2σ2

X cannot take negative values. This can happen only if the
equation

λ 2σ2
X −2λσ XY +σ2

Y = 0 (2.1)

does not have two distinct real roots, i.e. the roots are either complex or identical.
The roots of equation (2.1). are given by

λ =
2σ XY ±

√

4σ2
XY −4σ2

Xσ2
Y

2σ2
X

=
σ XY ±

√

σ2
XY −σ2

Xσ2
Y

σ2
X

.

Distinct real roots are excluded whenσ2
XY −σ2

Xσ2
Y ≤ 0, hence

σ2
XY ≤ σ2

Xσ2
Y .

(e)

σ2
XY ≤ σ2

Xσ2
Y ⇒ −σ XσY ≤ σ XY ≤ σ XσY

⇒ −1≤ ρXY ≤ 1 .

(f)

σ XY = E{(X −µX)(Y −µY )} = E(X −µX)E(Y −µY )

= [E(X)−µX ] [E(Y )−µY ] = 0,

ρXY = σ XY

/

σ XσY = 0.

Note the reverse implication does not hold in general,i.e.,

ρXY = 0 6=> X andY are independent
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(g) 1) Necessity of the condition. IfY = aX +b, then

E(Y ) = aE(X)+b = aµX +b , σ2
Y = a2σ2

X ,

and

σ XY = E [(Y −µY )(X −µX)] = E [a(X −µX)(X −µX)] = aσ2
X .

Consequently,

ρ2
XY =

a2σ4
X

a2σ2
Xσ2

X

= 1 .

2) Sufficiency of the condition. Ifρ2
XY = 1, then

σ2
XY −σ2

Xσ2
Y = 0.

In this case, the equation

E

{

[(Y −µY )−λ (X −µX)]2
}

= σ2
Y −2λσ XY +λ 2σ2

X = 0

has one and only one root

λ =
2σ XY

2σ2
X

= σ XY/σ2
X ,

so that

E

{

[

(Y −µY )− σ XY

σ2
X

(X −µX)

]2
}

= 0

and

P

[

(Y −µY )− σ XY

σ2
X

(X −µX) = 0

]

= P

[

Y =
σ XY

σ2
X

X +

(

µY −
σ XY

σ2
X

µX

)]

= 1

We can thus write:
Y = aX +b with probability 1

wherea = σ XY/σ2
X andb = µY − σXY

σ2
y

µX .
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2.2. Covariances and correlations betweenk random variables
Consider nowk r.v.´s X1,X2, . . . ,Xk such that

E(Xi) = µ i , i = 1, . . . ,k ,

C(Xi,X j) = σ i j , i, j = 1, . . . ,k .

We often wish to compute the mean and variance of a linear combination of
X1, . . . ,Xk :

Σ k
i=1aiXi = a1X1+a2X2+ · · ·+akXk .

It is easily verified that
E

[

Σ k
i=1aiXi

]

= Σ k
i=1aiµ i

and

V
[

Σ k
i=1aiXi

]

= E
{[

Σ k
i=1ai (Xi−µ i)

][

Σ k
j=1a j

(

X j −µ j

)]}

= Σ k
i=1Σ k

j=1aia jσ i j .

Since such formulae may often become cumbersome, it will be convenient to use
vector and matrix notation

We define a random vectorX and its mean valueE(X) by:

X =





X1
...

Xk



 , E(X) =





E(X1)
...

E(Xk)



 =





µ1
...

µk



 ≡ µX .

Similarly, we define a random matrixM and its mean valueE(M) by:

M =











X11 X12 . . . X1n

X21 X22 . . . X2n
... ... ...

Xm1 Xm2 . . . Xmn











, E(M) =











E(X11) E(X12) . . . E(X1n)

E(X21) E(X22) . . . E(X2n)
... ... ...

E(Xm1) E(Xm2) . . . E(Xmn)











where theXi j are r.v.´s. To a random vectorX, we can associate a covariance
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matrixV (X) :

V (X) = E
{

[X−E(X)] [X−E(X)]′
}

= E
{

[X−µX ] [X−µX ]′
}

= E











(X1−µ1)(X1−µ1) (X1−µ1)(X2−µ2) . . . (X1−µ1)(Xk −µk)
... ... ...

(Xk −µk)(X1−µ1) (Xk −µk)(X2−µ2) . . . (Xk −µk)(Xk −µk)











=





σ11 σ12 . . . σ1k
... ... ...

σ k1 σ k2 . . . σ kk



 = Σ .

If a = (a1, . . . ,ak)
′, we see that:

Σ k
i=1aiXi = a′X .

Basic properties ofE(X) andV (X) are summarized by the following proposi-
tion.

2.4 PropositionLet X = (X1, . . . ,Xk)
′ a k × 1 random vector,α a scalar,a and

b fixed k×1 vectors, andA a fixedg× k matrix. Then, provided the moments
considered are finite, we have the following properties:

(a) E(X +a) = E(X)+a ;

(b) E(αX) = αE(X) ;

(c) E(a′X) = a′E(X) , E(AX) = AE(X) ;

(d) V (X +a) = V (X) ;

(e) V (αX) = α2V (X) ;

(f) V (a′X) = a′V (X)a , V (AX) = AV (X)A′ ;

(g) C(a′X, b′X) = a′V (X)b = b′
V (X)a .

2.5 TheoremLet X = (X1, . . . ,Xk)
′ be a random vector with covariance matrix

V (X) = Σ . Then we have the following properties:
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(a) Σ ′ = Σ ;

(b) Σ is a positive semidefinite matrix;

(c) 0≤ |Σ | ≤ σ2
1σ2

2 . . .σ2
k whereσ2

i = V (Xi) , i = 1, . . . ,k ;

(d) |Σ |= 0⇔ there is at least one linear relation between ther.v.́ sX1, . . . ,Xk, i.e.,
we can find constantsa1, . . . ,ak, b not all equal to zero such thata1X1+ · · ·+
akXk = b with probability 1;

(e) rank(Σ) = r < k ⇔ X can be expressed in the form

X = BY +c

whereY is a random vector of dimensionr whose covariance matrix isIr,B
is ak× r matrix of rankr, andc is ak×1 constant vector.

2.6 Remark We call the determinant|Σ | thegeneralized variance of X.

2.7 Definition If we consider two random vectorsX1 and X2 with dimensions
k1×1 andk2×1 respectively, the covariance matrix betweenX1 andX2 is defined
by:

C(X1,X2) = E
{

[X1−E(X1)] [X2−E(X2)]
′} .

The following proposition summarizes some basic properties ofC(X1,X2).

2.8 PropositionLet X1 and X2 two random vectors of dimensionsk1 × 1 and
k2×1 respectively. Then, provided the moments considered are finite we have the
following properties:

(a) C(X1,X2) = E [X1X′
2]−E(X1)E(X2)

′ ;

(b) C(X1,X2) = C(X2,X1)
′ ;

(c) C(X1,X1) = V (X1) , C(X2,X2) = V (X2) ;

(d) if a andb are fixed vectors of dimensionsk1×1 andk2×1 respectively,

C(X1+a,X2+b) = C(X1,X2) ;
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(e) if α andβ are two scalar constants,

C(αX1,βX2) = αβC(X1,X2) ;

(f) if a andb are fixedk1×1 andk2×1 vectors,

C(a′X1,b′X2) = a′C(X1,X2)b ;

(g) if A andB are fixed matrices matrices with dimensionsg1× k1 andg2× k2

respectively,
C(AX1,BX2) = AC(X1,X2)B′ ;

(h) if k1 = k2 andX3 is ak×1 random vector,

C(X1+X2,X3) = C(X1,X3)+C(X2,X3) ;

(i) if k1 = k2,

V (X1+X2) = V (X1)+V (X2)+C(X1,X2)+C(X2,X1) ,

V (X1−X2) = V (X1)+V (X2)−C(X1,X2)−C(X2,X1) .

3. Multinormal distribution

Consider two random vectorsX1 andX2 with dimensionsk1× 1 andk2× 1 re-
spectively. IfX1 andX2 are independent, then

C(X1,X2) ≡ E

[

(

X1−µX1

)(

X2−µX2

)′
]

= 0

The reverse implication is not true in general, except in specialcases. One such

case is the one where the random vectorX =
(

X
′
1,X

′
2

)′
follows a multinormal

distribution.

3.1 Definition We say that thek×1 random vectorX follows a multinormal dis-
tribution with meanµ and covariance matrixΣ , denotedX ∼ Nk [µ,Σ ], if the
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characteristic function ofX has the form:

E

[

eit′X
]

= eiµ ′t−1
2t′Σ t , t ∈ R

k , i =
√
−1 .

3.2 When|Σ | 6= 0, the vectorX has a density function of the form:

f (x) =
1

(2π)k/2 |Σ |1
2

exp

[

−1
2

(x−µ)′Σ−1(x−µ)

]

If k = 1, thenΣ = σ2 and

f (x) =
1√
2πσ

exp

[

−1
2

(x−µ)
1

σ2
(x−µ)

]

=
1√
2πσ

exp

[

−1
2
(x−µ)2

σ2

]

.

Some important properties of the multinormal distribution are summarized in the
following theorem.

3.3 TheoremIf X ∼ Nk [µ,Σ ] , then

(a) X +c∼ Nk [µ +c,Σ ] , for any fixedk×1 vectorc;

(b) a′X ∼ N1 [a′µ,a′Σa] , for any fixedk×1 vectora;

(c) AX ∼ Ng [Aµ,AΣA′] , for any fixedg× k matrix A ;

(d) if

X =

(

X1

X2

)

∼ Nk

[(

µ1

µ2

)

,

(

Σ11 Σ12

Σ21 Σ22

)]

,

whereX1 andX2 are vectors of dimensionsk1×1 andk2×1,

µ1 = E(X1) ,µ2 = E(X2) , Σ11 = C(X1,X1) , Σ22 = C(X2,X2) ,

Σ12 = C(X1,X2) = Σ
′
21 ,

then

(i) X1 ∼ Nk1 [µ1,Σ11] , X2 ∼ Nk2 [µ2,Σ22] ;

(ii) X1 andX2 are independent⇔ Σ12 = 0 ;
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(iii ) the conditional distribution ofX2 givenX1 is normal with mean and et
variance

E [X2 |X1] = µ2+Σ21Σ−1
11 (X1−µ1) ,

V [X2 |X1] = Σ22−Σ21Σ−1
11 Σ12 ,

i.e.

X2 |X1 ∼ Nk2

[

µ2+Σ21Σ−1
11 (X1−µ1) ,Σ22−Σ21Σ−1

11 Σ12
]

.

3.4 TheoremIf X ∼ Nk [µ, Σ ] with |Σ | 6= 0, then

(X−µ)′Σ−1(X−µ) ∼ χ2(k) .

PROOF SinceΣ is a positive definite matrix(|Σ | 6= 0), there exists a nonsingular
matrix P such that

PΣP′ = Ik

hence

Σ = P−1(P′)
−1

= (P′P)
−1

,

Σ−1 = P′P .

Consequently,

(X−µ)′Σ−1(X−µ) = (X−µ)′P′P(X−µ)

= [P(X−µ)]′ [P(X−µ)] = v′v = Σ k
i=1v2

i

where
v ≡ P [X−µ] = (v1,v2, . . . ,vk)

′ .

SinceX ∼ N [µ,Σ ] , we haveX−µ ∼ N [0,Σ ] , hence

P [X−µ] ∼ N [0,PΣP′] ,

and
v = P [X−µ] ∼ N [0, Ik] .
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Thusv1, . . . ,vk are i.i.d.N [0,1] and(X−µ)′Σ−1(X−µ) = Σ k
i=1v2

i ∼ χ2(k) .
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