Coefficients of determination*

Jean-Marie Dufour ${ }^{\dagger}$ McGill University
First version: March 1983
Revised: February 2002, July 2011
This version: July 2011
Compiled: November 21, 2011, 11:07

[^0]
Contents

1. Coefficient of determination: R^{2} 1
2. \quad Significance tests and R^{2} 5
2.1. Relation of R^{2} with a Fisher statistic 5
2.2. General relation between R^{2} and Fisher tests 7
3. Uncentered coefficient of determination: \widetilde{R}^{2} 8
4. Adjusted coefficient of determination: \bar{R}^{2} 9
4.1. Definition and basic properties 9
4.2. Criterion for \bar{R}^{2} increase through the omission of an explanatory variable 10
4.3. Generalized criterion for \bar{R}^{2} increase through the imposition of linear constraints 12
5. Notes on bibliography 16
6. Chronological list of references 17

1. Coefficient of determination: R^{2}

Let $y=X \beta+\varepsilon$ be a model that satisfies the assumptions of the classical linear model, where y and ε are $T \times 1$ vectors, X is a $T \times k$ matrix and β is $k \times 1$ coefficient vector. We wish to characterize to which extent the variables included in X (excluding the constant, if there is one) explain y.

A first method consists in computing R^{2}, the "coefficient of determination", or $R=\sqrt{R^{2}}$, the "coefficient of multiple correlation". Let

$$
\begin{align*}
\hat{y} & =X \hat{\beta}, \hat{\varepsilon}=y-\hat{y}, \bar{y}=\sum_{t=1}^{T} y_{t} / T=i^{\prime} y / T \tag{1.1}\\
i & =(1,1, \ldots, 1)^{\prime} \text { the unit vector of dimension } T \tag{1.2}\\
S S T & =\sum_{t=1}^{T}\left(y_{t}-\bar{y}\right)^{2}=(y-i \bar{y})^{\prime}(y-i \bar{y}), \text { (total sum of squares) } \tag{1.3}\\
S S R & =\sum_{t=1}^{T}\left(\hat{y}_{t}-\bar{y}\right)^{2}=(\hat{y}-i \bar{y})^{\prime}(\hat{y}-i \bar{y}), \text { (regression sum of squares) } \tag{1.4}\\
S S E & =\sum_{t=1}^{T}\left(y_{t}-\hat{y}_{t}\right)^{2}=(y-\hat{y})^{\prime}(y-\hat{y})=\hat{\varepsilon}^{\prime} \hat{\varepsilon}, \text { (error sum of squares) } \tag{1.5}
\end{align*}
$$

We can then define "variance estimators" as follows:

$$
\begin{align*}
\hat{V}(y) & =S S T / T \tag{1.6}\\
\hat{V}(\hat{y}) & =S S R / T \tag{1.7}\\
\hat{V}(\varepsilon) & =S S E / T \tag{1.8}
\end{align*}
$$

1.1 Definition $R^{2}=1-(\hat{V}(\varepsilon) / \hat{V}(y))=1-(S S E / S S T)$.
1.2 Proposition $R^{2} \leq 1$.

Proof This result is immediate on observing that $S S E / S S T \geq 0$.
1.3 Lemma $y^{\prime} y=\hat{y}^{\prime} \hat{y}+\hat{\varepsilon}^{\prime} \hat{\varepsilon}$.

Proof We have

$$
\begin{equation*}
y=\hat{y}+\hat{\varepsilon} \text { and } \hat{y}^{\prime} \hat{\varepsilon}=\hat{\varepsilon}^{\prime} \hat{y}=0, \tag{1.9}
\end{equation*}
$$

hence

$$
y^{\prime} y=(\hat{y}+\hat{\varepsilon})^{\prime}(\hat{y}+\hat{\varepsilon})=\hat{y}^{\prime} \hat{y}+\hat{y}^{\prime} \hat{\varepsilon}+\hat{\varepsilon}^{\prime} \hat{y}+\hat{\varepsilon}^{\prime} \hat{\varepsilon}=\hat{y}^{\prime} \hat{y}+\hat{\varepsilon}^{\prime} \hat{\varepsilon} .
$$

1.4 Proposition If one of the regressors is a constant, then

$$
\begin{aligned}
S S T & =S S R+S S E, \\
\hat{V}(y) & =\hat{V}(\hat{y})+\hat{V}(\varepsilon) .
\end{aligned}
$$

Proof Let $A=I_{T}-i\left(i^{\prime} i\right)^{-1} i^{\prime}=I_{T}-\frac{1}{T} i i^{\prime}$. Then, $A^{\prime} A=A$ and

$$
A y=\left[I_{T}-\frac{1}{T} i i^{\prime}\right] y=y-i \bar{y} .
$$

If one of the regressors is a constant, we have

$$
i^{\prime} \hat{\varepsilon}=\sum_{t=1}^{T} \hat{\varepsilon}_{t}=0
$$

hence

$$
\begin{aligned}
\frac{1}{T} \sum_{t=1}^{T} \hat{y}_{t} & =\frac{1}{T} i^{\prime} \hat{y}=\frac{1}{T} i^{\prime}(y-\hat{\varepsilon})=\frac{1}{T} i^{\prime} y=\bar{y}, \\
A \hat{\varepsilon} & =\hat{\varepsilon}-\frac{1}{T} i i^{\prime} \hat{\varepsilon}=\hat{\varepsilon}, \\
A \hat{y} & =\hat{y}-\frac{1}{T} i i^{\prime} \hat{y}=\hat{y}-i \bar{y},
\end{aligned}
$$

and, using the fact that $A \hat{\varepsilon}=\hat{\varepsilon}$ and $\hat{y}^{\prime} \hat{\varepsilon}=0$,

$$
\begin{aligned}
S S T & =(y-i \bar{y})^{\prime}(y-i \bar{y})=y^{\prime} A^{\prime} A y=y^{\prime} A y \\
& =(\hat{y}+\hat{\varepsilon})^{\prime} A(\hat{y}+\hat{\varepsilon}) \\
& =\hat{y}^{\prime} A \hat{y}+\hat{y}^{\prime} A \hat{\varepsilon}+\hat{y}^{\prime} A \hat{\varepsilon}+\hat{\varepsilon}^{\prime} A \hat{\varepsilon} \\
& =\hat{y}^{\prime} A \hat{y}+\hat{\varepsilon}^{\prime} \hat{\varepsilon} \\
& =(A \hat{y})^{\prime}(A \hat{y})+\hat{\varepsilon}^{\prime} \hat{\varepsilon}=S S R+S S E .
\end{aligned}
$$

1.5 Proposition If one of the regressors is a constant,

$$
R^{2}=\frac{\hat{V}(\hat{y})}{\hat{V}(y)}=\frac{S S R}{S S T} \quad \text { and } \quad 0 \leq R^{2} \leq 1 .
$$

Proof By the definition of R^{2}, we have $R^{2} \leq 1$ and

$$
R^{2}=1-\frac{\hat{V}(\varepsilon)}{\hat{V}(y)}=\frac{\hat{V}(y)-\hat{V}(\varepsilon)}{\hat{V}(y)}=\frac{\hat{V}(\hat{y})}{\hat{V}(y)}=\frac{S S R}{S S T}
$$

hence $R^{2} \geq 0$.
1.6 Proposition If one of the regressors is a constant, the empirical correlation between y and \hat{y} is non-negative and equal to $\sqrt{R^{2}}$.

Proof The empirical correlation between y and \hat{y} is defined by

$$
\hat{\rho}(y, \hat{y})=\frac{\hat{C}(y, \hat{y})}{[\hat{V}(y) \hat{V}(\hat{y})]^{1 / 2}}
$$

where

$$
\hat{C}(y, \hat{y})=\frac{1}{T} \sum_{t=1}^{T}\left(y_{t}-\bar{y}\right)\left(\hat{y}_{t}-\bar{y}\right)=\frac{1}{T}(A y)^{\prime}(A \hat{y})
$$

and $A=I_{T}-\frac{1}{T} i i^{\prime}$. Since one of the regressors is a constant,

$$
A \hat{\varepsilon}=\hat{\varepsilon}, A y=A \hat{y}+\hat{\varepsilon}, \hat{\varepsilon}^{\prime}(A \hat{y})=\hat{\varepsilon}^{\prime} \hat{y}=0
$$

and

$$
\begin{aligned}
& \hat{C}(y, \hat{y})=\frac{1}{T}(A \hat{y}+\hat{\varepsilon})^{\prime}(A \hat{y})=\frac{1}{T}(A \hat{y})^{\prime}(A \hat{y})=\hat{V}(\hat{y}), \\
& \hat{\rho}(y, \hat{y})=\frac{\hat{V}(\hat{y})}{[\hat{V}(y) \hat{V}(\hat{y})]^{1 / 2}}=\left[\frac{\hat{V}(\hat{y})}{\hat{V}(y)}\right]^{1 / 2}=\sqrt{R^{2}} \geq 0 .
\end{aligned}
$$

2. \quad Significance tests and R^{2}

2.1. Relation of R^{2} with a Fisher statistic

R^{2} is descriptive statistic which measures the proportion of the "variance" of the dependent variable y explained by suggested explanatory variables (excluding the constant). However, R^{2} can be related to a significance test (under the assumptions of the Gaussian classical linear model).

Consider the model

$$
y_{t}=\beta_{1}+\beta_{2} X_{t 2}+\cdots+\beta_{k} X_{t k}+\varepsilon_{t}, t=1, \ldots, T
$$

We wish to test the hypothesis that none of these variables (excluding the constant) should appear in the equation:

$$
H_{0}: \beta_{2}=\beta_{3}=\cdots=\beta_{k}=0
$$

The Fisher statistic for H_{0} is

$$
F=\frac{\left(S_{\omega}-S_{\Omega}\right) / q}{S_{\Omega} /(T-k)} \sim F(q, T-k)
$$

where $q=k-1, S_{\Omega}$ is the error sum of squares from the estimation of the unconstrained model

$$
\Omega: y=X \beta+\varepsilon
$$

where $X=\left[i, X_{2}, \ldots, X_{k}\right]$ and S_{ω} s the error sum of squares from the estimation of the constrained model

$$
\omega: y=i \beta_{1}+\varepsilon
$$

where $i=(1,1, \ldots, 1)^{\prime}$. We see easily that

$$
\begin{aligned}
& S_{\Omega}=(y-X \hat{\beta})^{\prime}(y-X \hat{\beta})=S S E \\
& \hat{\beta}_{1}=\left(i^{\prime} i\right)^{-1} i^{\prime} y=\frac{1}{T} \sum_{t=1}^{T} y_{t}=\bar{y},(\text { under } \omega)
\end{aligned}
$$

$$
S_{\omega}=(y-i \bar{y})^{\prime}(y-i \bar{y})=S S T
$$

and

$$
\begin{aligned}
F & =\frac{(S S T-S S E) /(k-1)}{S S E /(T-k)}=\frac{\left[1-\frac{S S E}{\left.\frac{S S T}{}\right] /(k-1)}\right.}{\frac{S S E}{S S T} /(T-k)} \\
& =\frac{R^{2} /(k-1)}{\left(1-R^{2}\right) /(T-k)} \sim F(k-1, T-k) .
\end{aligned}
$$

As R^{2} increases, F increases.

2.2. General relation between R^{2} and Fisher tests

Consider the general linear hypothesis

$$
H_{0}: C \beta=r
$$

where $C: q \times k, \beta: k \times 1, r: q \times 1$ and $\operatorname{rank}(C)=q$. The values of R^{2} for the constrained and unconstrained models are respectively:

$$
R_{0}^{2}=1-\frac{S_{\omega}}{S S T}, R_{1}^{2}=1-\frac{S_{\Omega}}{S S T}
$$

hence

$$
S_{\omega}=\left(1-R_{0}^{2}\right) S S T, S_{\Omega}=\left(1-R_{1}^{2}\right) S S T
$$

The Fisher statistic for testing H_{0} may thus be written

$$
\begin{aligned}
F & =\frac{\left(S_{\omega}-S_{\Omega}\right) / q}{S_{\Omega} /(T-k)}=\frac{\left(R_{1}^{2}-R_{0}^{2}\right) / q}{\left(1-R_{1}^{2}\right) /(T-k)} \\
& =\left(\frac{T-k}{q}\right) \frac{R_{1}^{2}-R_{0}^{2}}{1-R_{1}^{2}}
\end{aligned}
$$

If $R_{1}^{2}-R_{0}^{2}$ is large, we tend to reject H_{0}. If $H_{0}: \beta_{2}=\beta_{3}=\cdots=\beta_{k}=0$, then

$$
q=k-1, S_{\omega}=S S T, R_{0}^{2}=0
$$

and the formula for F above gets reduced of the one given in section 2.1.
3. Uncentered coefficient of determination: \widetilde{R}^{2}

Since R^{2} can take negative values when the model does not contain a constant, R^{2} has little meaning in this case. In such situations, we can instead use a coefficient where the values of y_{t} are not centered around the mean.
3.1 Definition $\quad \widetilde{R}^{2}=1-\left(\hat{\varepsilon}^{\prime} \hat{\varepsilon} / y^{\prime} y\right)$.
\tilde{R}^{2} is called the "uncentered coefficient of determination" on "uncentered R^{2} " and $\tilde{R}=\sqrt{\tilde{R}^{2}}$ the "uncentered coefficient of multiple correlation".
3.2 Proposition $\quad 0 \leq \tilde{R}^{2} \leq 1$.

PROOF This follows directly from Lemma 1.3: $y^{\prime} y=\hat{y}^{\prime} \hat{y}+\hat{\varepsilon}^{\prime} \hat{\varepsilon}$.
4. Adjusted coefficient of determination: \bar{R}^{2}

4.1. Definition and basic properties

An unattractive property of the R^{2} coefficient comes form the fact that R^{2} cannot decrease when explanatory variables are added to the model, even if these have no relevance. Consequently, choosing to maximize R^{2} can be misleading. It seems desirable to penalize models that contain too many variables.

Since

$$
R^{2}=1-\frac{\hat{V}(\varepsilon)}{\hat{V}(y)}
$$

where

$$
\hat{V}(\varepsilon)=\frac{S S E}{T}=\frac{1}{T} \sum_{t=1}^{T} \hat{\varepsilon}_{t}^{2}, \hat{V}(y)=\frac{S S T}{T}=\frac{1}{T} \sum_{t=1}^{T}\left(y_{t}-\bar{y}\right)^{2},
$$

Theil (1961, p. 213) suggested to replace $\hat{V}(\varepsilon)$ and $\hat{V}(y)$ by "unbiased estimators":

$$
\begin{aligned}
& s^{2}=\frac{S S E}{T-k}=\frac{1}{T-k} \sum_{t=1}^{T} \hat{\varepsilon}_{t}^{2}, \\
& s_{y}^{2}=\frac{S S T}{T-1}=\frac{1}{T-1} \sum_{t=1}^{T}\left(y_{t}-\bar{y}\right)^{2} .
\end{aligned}
$$

4.1 Definition R^{2} adjusted for degrees of freedom is defined by

$$
\bar{R}^{2}=1-\frac{s^{2}}{s_{y}^{2}}=1-\frac{T-1}{T-k}\left(\frac{S S E}{S S T}\right)
$$

4.2 Proposition $\quad \bar{R}^{2}=1-\frac{T-1}{T-k}\left(1-R^{2}\right)=R^{2}-\frac{k-1}{T-k}\left(1-R^{2}\right)$.

PRoOF

$$
\bar{R}^{2}=1-\frac{T-1}{T-k}\left(\frac{S S E}{S S T}\right)=1-\frac{T-1}{T-k}\left(1-R^{2}\right)
$$

$$
\begin{aligned}
& =1-\frac{T-k+k-1}{T-k}\left(1-R^{2}\right)=1-\left(1+\frac{k-1}{T-k}\right)\left(1-R^{2}\right) \\
& =1-\left(1-R^{2}\right)-\frac{k-1}{T-k}\left(1-R^{2}\right)=R^{2}-\frac{k-1}{T-k}\left(1-R^{2}\right) . \quad \text { Q.E.D. }
\end{aligned}
$$

4.3 Proposition $\quad \bar{R}^{2} \leq R^{2} \leq 1$.

Proof The result follows from the fact that $1-R^{2} \geq 0$ and (4.2).
4.4 Proposition $\quad \bar{R}^{2}=R^{2} \quad$ iff $\quad\left(k=1 \quad\right.$ or $\left.\quad R^{2}=1\right)$.
4.5 Proposition $\quad \bar{R}^{2} \leq 0 \quad$ iff $R^{2} \leq \frac{k-1}{T-1}$.
\bar{R}^{2} can be negative even if $R^{2} \geq 0$. If the number of explanatory variables is increased, R^{2} and k both increase, so that \bar{R}^{2} can increase or decrease.
4.6 Remark When several models are compared on the basis of R^{2} or \bar{R}^{2}, it is important to have the same dependent variable. When the dependent variable (y) is the same, maximizing \bar{R}^{2} is equivalent to minimizing the standard error of the regression

$$
s=\left[\frac{1}{T-k} \sum_{t=1}^{T} \hat{\varepsilon}_{t}^{2}\right]^{1 / 2} .
$$

4.2. Criterion for \bar{R}^{2} increase through the omission of an explanatory variable

Consider the two models:

$$
\begin{equation*}
y_{t}=\beta_{1} X_{t 1}+\cdots+\beta_{k-1} X_{t(k-1)}+\varepsilon_{t} \quad, t=1, \ldots, T, \tag{4.1}
\end{equation*}
$$

$$
\begin{equation*}
y_{t}=\beta_{1} X_{t 1},+\cdots+\beta_{k-1} X_{t(k-1)}+\beta_{k} X_{t k}+\varepsilon_{t} \quad, t=1, \ldots, T . \tag{4.2}
\end{equation*}
$$

We can then show that the value of \bar{R}^{2} associated with the restricted model (4.1) is larger than the one of model (4.2) if the t statistic for testing $\beta_{k}=0$ is smaller than 1 (in absolute value).
4.7 Proposition If \bar{R}_{k-1}^{2} and \bar{R}_{k}^{2} are the values of \bar{R}^{2} for models (4.1) and (4.2), then

$$
\begin{equation*}
\bar{R}_{k}^{2}-\bar{R}_{k-1}^{2}=\frac{\left(1-\bar{R}_{k}^{2}\right)}{(T-k+1)}\left(t_{k}^{2}-1\right) \tag{4.3}
\end{equation*}
$$

where t_{k} is the Student t statistic for testing $\beta_{k}=0$ in model (4.2), and

$$
\bar{R}_{k}^{2} \leq \bar{R}_{k-1}^{2} \quad \text { iff } \quad t_{k}^{2} \leq 1 \quad \text { iff } \quad\left|t_{k}\right| \leq 1
$$

If furthermore $\bar{R}_{k}^{2}<1$, then

$$
\bar{R}_{k}^{2} \lesseqgtr \bar{R}_{k-1}^{2} \quad \text { iff } \quad\left|t_{k}\right| \lesseqgtr 1 .
$$

Proof By definition,

$$
\bar{R}_{k}^{2}=1-\frac{s_{k}^{2}}{s_{y}^{2}} \quad \text { and } \quad \bar{R}_{k-1}^{2}=1-\frac{s_{k-1}^{2}}{s_{y}^{2}}
$$

where $s_{k}^{2}=S S_{k} /(T-k) \quad$ and $\quad s_{k-1}^{2}=S S_{k-1} /(T-k+1) . S S_{k}$ and $S S_{k-1}$ are the sums of squared errors for the models with k and $k-1$ explanatory variables. Since t_{k}^{2} is the Fisher statistic for testing $\beta_{k}=0$, we have

$$
\begin{aligned}
t_{k}^{2} & =\frac{\left(S S_{k-1}-S S_{k}\right)}{S S_{k} /(T-k)} \\
& =\frac{\left[(T-k+1) s_{k-1}^{2}-(T-k) s_{k}^{2}\right]}{s_{k}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(T-k+1)\left(1-\bar{R}_{k-1}^{2}\right)-(T-k)\left(1-\bar{R}_{k}^{2}\right)}{1-\bar{R}_{k}^{2}} \\
& =(T-k+1)\left(\frac{1-\bar{R}_{k-1}^{2}}{1-\bar{R}_{k}^{2}}\right)-(T-k)
\end{aligned}
$$

for $s_{k-1}^{2}=s_{y}^{2}\left(1-\bar{R}_{k-1}^{2}\right) \quad$ and $\quad s_{k}^{2}=s_{y}^{2}\left(1-\bar{R}_{k}^{2}\right)$. Consequently,

$$
1-\bar{R}_{k-1}^{2}=\left(1-\bar{R}_{k}^{2}\right) \frac{\left[t_{k}^{2}+(T-k)\right]}{T-k+1}
$$

and

$$
\begin{aligned}
\bar{R}_{k}^{2}-\bar{R}_{k-1}^{2} & =\left(1-\bar{R}_{k-1}^{2}\right)-\left(1-\bar{R}_{k}^{2}\right) \\
& =\left(1-\bar{R}_{k}^{2}\right)\left[\frac{t_{k}^{2}+(T-k)}{T-k+1}-1\right] \\
& =\left(1-\bar{R}_{k}^{2}\right)\left[\frac{t_{k}^{2}-1}{T-k+1}\right] .
\end{aligned}
$$

4.3. Generalized criterion for \bar{R}^{2} increase through the imposition of linear constraints

We will now study when the imposition of q linearly independent constraints

$$
H_{0}: C \beta=r
$$

will raise or decrease \bar{R}^{2}, where $C: q \times k, r: q \times 1$ and $\operatorname{rank}(C)=q$. Let $\bar{R}_{H_{0}}^{2}$ and \bar{R}^{2} be the values of \bar{R}^{2} for the constrained (by H_{0}) and unconstrained models, similarly, s_{0}^{2} and s^{2} are the values of the corresponding unbiased estimators of the error variance.
4.8 Proposition Let F be the Fisher statistic for testing H_{0}. Then

$$
s_{0}^{2}-s^{2}=\frac{q s^{2}}{T-k+q}(F-1)
$$

and

$$
s_{0}^{2} \lesseqgtr s^{2} \quad \text { iff } \quad F \lesseqgtr 1 .
$$

Proof If $S S_{0}$ and $S S$ are the sum of squared errors for the constrained and unconstrained models, we have:

$$
s_{0}^{2}=\frac{S S_{0}}{T-k+q} \quad \text { and } \quad s^{2}=\frac{S S}{T-k} .
$$

The F statistic may then be written

$$
\begin{aligned}
F & =\frac{\left(S S_{0}-S S\right) / q}{S S /(T-k)} \\
& =\frac{\left[(T-k+q) s_{0}^{2}-(T-k) s^{2}\right]}{q s^{2}}=\frac{T-k+q}{q}\left(\frac{s_{0}^{2}}{s^{2}}\right)-\frac{T-k}{q}
\end{aligned}
$$

hence

$$
\begin{aligned}
s_{0}^{2} & =s^{2} \frac{[q F+(T-k)]}{(T-k)+q}, \\
s_{0}^{2}-s^{2} & =s^{2} \frac{q(F-1)}{(T-k)+q},
\end{aligned}
$$

and

$$
s_{0}^{2} \lesseqgtr s^{2} \quad \text { iff } \quad F \lesseqgtr 1 .
$$

4.9 Proposition Let F be the Fisher statistic for testing H_{0}. Then

$$
\bar{R}^{2}-\bar{R}_{H_{0}}^{2}=\frac{q\left(1-\bar{R}^{2}\right)}{T-k+q}(F-1)
$$

and

$$
\bar{R}_{H_{0}}^{2} \gtreqless \bar{R}^{2} \quad \text { iff } \quad F \lesseqgtr 1 .
$$

Proof By definition,

$$
\bar{R}_{H_{0}}^{2}=1-\frac{s_{0}^{2}}{s_{y}^{2}}, \bar{R}^{2}=1-\frac{s^{2}}{s_{y}^{2}} .
$$

Thus,

$$
\begin{aligned}
\bar{R}^{2}-\bar{R}_{H_{0}}^{2} & =\frac{s^{2}-s_{0}^{2}}{s_{y}^{2}} \\
& =\frac{q}{T-k+q}\left(\frac{s^{2}}{s_{y}^{2}}\right)(F-1) \\
& =\frac{q\left(1-\bar{R}^{2}\right)}{T-k+q}(F-1)
\end{aligned}
$$

hence

$$
\bar{R}_{H_{0}}^{2} \gtreqless \bar{R}^{2} \quad \text { iff } \quad F \lesseqgtr 1 .
$$

On taking $q=1$, we get property (4.3). If we test an hypothesis of the type

$$
H_{0}: \beta_{k}=\beta_{k+1}=\cdots=\beta_{k+l}=0,
$$

it is possible that $F>1$, while all the statistics $\left|t_{i}\right|, i=k, \ldots, k+l$ are smaller than 1 . This means that \bar{R}^{2} increases when we omit one explanatory variable at a time, but decreases when they are all excluded from the regression. Further, it is
also possible that $F<1$, but $\left|t_{i}\right|>1$ for all i : \bar{R}^{2} increases when all the explanatory variables are simultaneously excluded, but decreases when only one is excluded.

5. Notes on bibliography

The notion of \bar{R}^{2} was proposed by Theil (1961, p. 213). Several authors have presented detailed discussions of the different concepts of multiple correlation: for example, Theil (1971, Chap. 4), Schmidt (1976) and Maddala (1977, Sections 8.1, 8.2, 8.3, 8.9). The \bar{R}^{2} concept is criticized by Pesaran (1974). The mean and bias of R^{2} were studied by Cramer (1987) in the Gaussian case, and by Srivastava, Srivastava and Ullah (1995) in some non-Gaussian cases.

6. Chronological list of references

1. Theil (1961, p. 213) _ The \bar{R}^{2} nation was proposed in this book.
2. Theil (1971, Chap. 4) _ Detailed discussion of R^{2}, \bar{R}^{2} and partial correlation.
3. Pesaran (1974) _ Critique of \bar{R}^{2}.
4. Schmidt (1976)
5. Maddala (1977, Sections 8.1, 8.2, 8.3, 8.9) _ Discussion of R^{2} and \bar{R}^{2} along with their relation with hypothesis tests.
6. Hendry and Marshall (1983)
7. Cramer (1987)
8. Ohtani and Hasegawa (1993)
9. Srivastava et al. (1995)

References

Cramer, J. S. (1987), 'Mean and variance of R^{2} in small and moderate samples', Econometric Reviews 35, 253-266.
Hendry, D. F. and Marshall, R. C. (1983), 'On high and low R^{2} contributions', Oxford Bulletin of Economics and Statistics 45, 313-316.
Maddala, G. S. (1977), Econometrics, McGraw-Hill, New York.
Ohtani, L. and Hasegawa, H. (1993), 'On small-sample properties of R^{2} in a linear regression model with multivariate t errors and proxy variables', Econometric Theory 9, 504-515.

Pesaran, M. H. (1974), 'On the general problem of model selection', Review of Economic Studies 41, 153-171.

Schmidt, P. (1976), Econometrics, Marcel Dekker, New York.
Srivastava, A. K., Srivastava, V. K. and Ullah, A. (1995), ‘The coefficient of determination and its adjusted version in linear regression models', Econometric Reviews 14, 229-240.

Theil, H. (1961), Economic Forecasts and Policy, 2nd Edition, North-Holland, Amsterdam.

Theil, H. (1971), Principles of Econometrics, John Wiley \& Sons, New York.

[^0]: *This work was supported by the William Dow Chair in Political Economy (McGill University), the Bank of Canada (Research Fellowship), a Guggenheim Fellowship, a Konrad-Adenauer Fellowship (Alexander-von-Humboldt Foundation, Germany), the Canadian Network of Centres of Excellence [program on Mathematics of Information Technology and Complex Systems (MITACS)], the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada, and the Fonds de recherche sur la société et la culture (Québec).
 ${ }^{\dagger}$ William Dow Professor of Economics, McGill University, Centre interuniversitaire de recherche en analyse des organisations (CIRANO), and Centre interuniversitaire de recherche en économie quantitative (CIREQ). Mailing address: Department of Economics, McGill University, Leacock Building, Room 519, 855 Sherbrooke Street West, Montréal, Québec H3A 2T7, Canada. TEL: (1) 514398 8879; FAX: (1) 514 398 4938; e-mail: jeanmarie.dufour@mcgill.ca. Web page: http://www.jeanmariedufour.com

