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1. Model-free linear regression and ordinary least squares

1.1. Notations

We wish to explain or predict a variabley throughk otherx1,x2, . . . , xk. We T observations on each
variable:

y =











y1

y2
...

yT











: dependent variable (to explain)

xi =











x1i

x2i
...

xTi











, i = 1, . . . , k : explanatory variables.

Usually, the explanatory variables are represented by theT ×k matrix

X = [x1,x2, . . . , xk] =











x11 x12 · · · x1k

x21 x22 · · · x2k
...

...
...

xT1 xT2 · · · xTk











=











X′
1

X′
2
...

X′
T











,

whereXt is ak×1 vector:

X′
t = (xt1,xt2, . . . , xtk) , t = 1, . . . , T .

We wish to represent each observationyt as a function ofxt1, . . . , xtk:

yt = xt1β 1 +xt2β 2 + · · ·+xtkβ k + ε t , t = 1, . . . , T (1.1)

whereε t is a “residual” which is left unexplained by the explanatory variables. Thismodel can also
be written in the following matrix form:

y = Xβ + ε (1.2)

whereε = (ε1, ε2, . . . , εT)′.
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1.2. The least squares problem

1.2.1 In general, we cannot obtain a “perfect fit”(ε t = 0 , t = 1, . . . , T) . In view of this, a natural
approach (proposed by Gauss) consists in minimizing the sum of squared residuals:

T

∑
t=1

ε2
t =

T

∑
t=1

[yt −xt1β 1−·· ·−xtkβ k]
2

= (y−Xβ )′ (y−Xβ ) ≡ S(β ) .

We consider the problem:
Min

β
(y−Xβ )′ (y−Xβ ) .

Since
S(β ) =

(

y′−β ′X′
)

(y−Xβ ) = y′y−2β ′X′y+β ′X′Xβ ,

we have:
∂S(β )

∂β
= −2X′y+2X′Xβ .

To compute the above, we use the following result on differentiation with respect to a vectorx :

∂ (x′a)

∂x
= a, (1.3)

∂ (x′Ax)
∂x

=
(

A+A′
)

x. (1.4)

For any pointβ = β̂ such thatS(β ) is a minimum, we must have:

∂S(β )

∂β
|β=β̂ = −2X′y+2X′Xβ̂ = 0

hence
(

X′X
)

β̂ = X′y : normal equations.

1.2.2 Whenrank(X) = k, we must haverank(X′X) = k so that(X′X)−1 exists. In this case, the
normal equations have a unique solution:

β̂ =
(

X′X
)−1

X′y. (1.5)

Onceβ̂ is known, we can compute the “fitted values” and the “residuals” of the model.

1.2.3 The model fitted values are

ŷ = Xβ̂ = X
(

X′X
)−1

X′y = Py ,
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where

P = X
(

X′X
)−1

X′ (projection matrix)

P′ = P , PP= P (symmetric idempotent matrix).

1.2.4 The model residuals are:

ε̂ = y−Xβ̂ = y− ŷ = y−Py= (I −P)y = My

where

PX = X , MX = 0 , (1.6)

PM = P(I −P) = 0 , MP = 0. (1.7)

1.2.5 Each column ofM is orthogonal with each column ofX :

X′M = 0,

x′iM = 0 , i = 1, . . . , k .

Residuals and regressors are orthogonal:

X′ε̂ = X′My = 0

⇒ x′i ε̂ = 0 , i = 1, . . . , k

⇒ i′T ε̂ =
T

∑
t=1

ε̂ t = 0 , if the matrixX contains a constant.

whereε̂ = (ε̂1, ε̂2, . . . , ε̂T)′ et iT = (1,1, . . . , 1)′ .

1.2.6 Fitted values and residuals are orthogonal:

ŷ′ε̂ = y′PMy= 0. (1.8)

1.2.7 The vectory can be decomposed as the sum of two orthogonal vectors:

y = Py+(I −P)y = ŷ+ ε̂ . (1.9)

1.2.8 For any vectorβ ,

S(β ) ≡ (y−Xβ )′ (y−Xβ ) =
(

y−Xβ̂
)′(

y−Xβ̂
)

+
(

β̂ −β
)′

X′X
(

β̂ −β
)

≥
(

y−Xβ̂
)′(

y−Xβ̂
)

= S
(

β̂
)

for

(y−Xβ )′ (y−Xβ ) =
[

y−Xβ̂ +X
(

β̂ −β
)]′ [

y−Xβ̂ +X
(

β̂ −β
)]
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=
[

ε̂ +X
(

β̂ −β
)]′ [

ε̂ +X
(

β̂ −β
)]

= ε̂ ′ε̂ +2
(

β̂ −β
)′

X′ε̂ +
(

β̂ −β
)′

X′X
(

β̂ −β
)

= ε̂ ′ε̂ +
(

β̂ −β
)′

X′X
(

β̂ −β
)

.

This directly verifies thatβ = β̂ minimizesS(β ) .

2. Classical linear model

In order to establish the statistical properties ofβ̂ , we need assumptions onX andε. The following
assumptions define theclassical linear model(CLM).

2.1 Assumption y = Xβ + ε
wherey is aT ×1 vector of observations on a dependent variable ,
X is aT ×k matrix of observations on explanatory variables,
β is ak×1 vector of fixed parameters,
ε is aT ×1 vector of random disturbances.

2.2 Assumption E(ε) = 0 .

2.3 Assumption E[εε ′] = σ2IT .

2.4 Assumption X is fixed (non-stochastic).

2.5 Assumption rank(X) = k < T .

From the assumption 2.1 - 2.4, we see that:

E(y) = E(y | X) = Xβ =







X′
1β
...

X′
Tβ







= (x1,x2, . . . , xk)











β 1
β 2
...

β k











= x1β 1 +x2β 2 + · · ·+xkβ k ,

V (y) = V (y | X) = σ2IT

=











σ2 0 · · · 0
0 σ2 · · · 0
...

...
...

0 0 · · · σ2











= V (ε) .
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If, furthermore, we add the assumption thatε follows a multinormal (or Gaussian) distribution, we
get the normal classical linear model (NCLM).

2.6 Assumption ε follows a multinormal distribution.

3. Linear unbiased estimation

From the assumptions 2.1 - 2.5, we can make the following observations.

3.1 β̂ is linear with respect toy.

PROOF β̂ has the formβ̂ = Ay, whereA = (X′X)−1X′ is a non-stochastic matrix.

3.2 β̂ = (X′X)−1X′(Xβ + ε) = β +(X′X)−1X′ε .

3.3 β̂ is an unbiased estimator ofβ .

PROOF E
(

β̂
)

= β +(X′X)−1X′E(ε) = β .

3.4 V
(

β̂
)

= σ2(X′X)−1 .

PROOF

V
(

β̂
)

= E
[(

β̂ −β
)(

β̂ −β
)′]

= E
[(

X′X
)−1

X′εε ′X
(

X′X
)−1]

=
(

X′X
)−1

X′
E

(

εε ′
)

X
(

X′X
)−1

= σ2(

X′X
)−1

where the last identity follows from Assumption 2.3.

3.5 Theorem GAUSS-MARKOV THEOREM. β̂ is the best estimator ofβ in the class of linear
linear unbiased estimators(BLUE) of β , i.e. V

(

β̃
)

−V
(

β̂
)

is a positive semidefinite matrix for any
linear unbiased estimator(LUE) β̃ of β . In particular, ifβ̃ = Cy andD = C− (X′X)−1X′, then

V
(

β̃
)

= V
(

β̂
)

+σ2DD′ .
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PROOF Sinceβ̃ is unbiased and
C = D+

(

X′X
)−1

X′ ,

we have:

E
(

β̃
)

= E

{[

D+
(

X′X
)−1

X′
]

(Xβ + ε)
}

= DXβ +β
= β ,

hence
DX = 0 and CX = Ik .

Consequently,
β̃ = Cy= CXβ +Cε = β +Cε

and
β̃ −β = Cε ,

hence

V
(

β̃
)

= E
[(

β̃ −β
)(

β̃ −β
)′]

= E
[

Cεε ′C′
]

= σ2CC′

= σ2[D+
(

X′X
)−1

X′
][

D′ +X
(

X′X
)−1]

= σ2[DD′ +
(

X′X
)−1]

= σ2DD′ +σ2(

X′X
)−1

= σ2DD′ +V
(

β̂
)

and
V

(

β̃
)

−V
(

β̂
)

= σ2DD′ (3.1)

is a positive semidefinite matrix.

3.6 Corollary Let w be ak×1 vector of constants. Then,

V
(

w′β̃
)

≥ V
(

w′β̂
)

for any linear unbiased estimatorβ̃ of β .

PROOF SinceE
(

β̃
)

=E
(

β̂
)

= β , we have:

E

(

w′β̃
)

= E

(

w′β̂
)

= w′β ,

V

(

w′β̃
)

= w′
V

(

β̃
)

w = w′
[

σ2DD′ +V

(

β̂
)]

w

= σ2w′DD′w+w′
V

(

β̂
)

w
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= σ2w′DD′w+V

(

w′β̂
)

≥ V

(

w′β̂
)

,

for w′DD′w≥ 0.

In particular, we must have:

V
(

β̃ i

)

≥ V
(

β̂ i

)

, i = 1, . . .k .

3.7 Theorem GENERALIZED GAUSS-MARKOV THEOREM. Let L be ar × k fixed matrix and
γ = Lβ . Then γ̂ = Lβ̂ is the BLUEγ, i.e. V (γ̃)−V (γ̂) is a positive semidefinite matrix for any
linear unbiased estimatorγ̃ of γ. In particular, ifγ̃ = CyandD = C−L(X′X)−1X′, then

V (γ̃) = V (γ̂)+σ2DD′

and
C(γ̃ − γ̂, γ̂) = 0 .

PROOF Sinceγ̃ is unbiased and
C = D+L

(

X′X
)−1

X′

we have

E(γ̃) = E
{(

D+L
(

X′X
)−1

X′
]

(Xβ + ε)
}

= DXβ +Lβ = DXβ + γ
= γ ,

hence
DX = 0 and CX = L .

Consequently,

γ̃ = Cy= CXβ +Cε
= Lβ +Cε = γ +Cε

and

V (γ̃) = E
[

(γ̃ − γ)(γ̃ − γ)′
]

= E
[

Cεε ′C′
]

= σ2CC′

= σ2[D+L
(

X′X
)−1

X′
][

D′ +X
(

X′X
)−1

L′
]

= σ2[DD′ +L
(

X′X
)−1

L′
]

= σ2DD′ +σ2L
(

X′X
)−1

L′ = σ2DD′ +V
(

Lβ̂
)

= σ2DD′ +V
(

γ̂
)

,
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so
V

(

γ̃
)

−V
(

γ̂
)

= σ2DD′ (3.2)

is a positive semidefinite matrix, and

C
(

γ̃, γ̂
)

= E
[

Cεε ′X
(

X′X
)−1

L′
]

= σ2CX
(

X′X
)−1

L′ = σ2L
(

X′X
)−1

L′ = V
(

γ̂
)

,

C
(

γ̃ − γ̂, γ̂
)

= C
(

γ̃, γ̂
)

−C
(

γ̂, γ̂
)

= V
(

γ̂
)

−V
(

γ̂
)

= 0 . (3.3)

3.8 Corollary QUADRATIC GAUSS-MARKOV OPTIMALITY . Let Q be ar × r positive semidefi-
nite fixed matrix andL a r ×k fixed matrix,γ = Lβ andγ̂ = Lβ̂ . Then

E
[(

γ̃ − γ
)′

Q
(

γ̃ − γ
)]

≥ E
[(

γ̂ − γ
)′

Q
(

γ̂ − γ
)]

for any linear unbiased estimatorγ̃ of γ.

PROOF Let γ̃ = Cγ andD = C−L(X′X)−1X′. Then

E
[(

γ̃ − γ
)′

Q
(

γ̃ − γ
)]

= E
[

trQ(γ̃ − γ)(γ̃ − γ)′
]

= trQE
[

(γ̃ − γ)(γ̃ − γ)′
]

= trQ
[

σ2DD′ +V (γ̂)
]

= σ2tr
(

QDD′
)

+ tr [QV (γ̂)]

= σ2tr
(

D′QD
)

+ trQE
[

(γ̂ − γ)(γ̂ − γ)′
]

= σ2tr
(

D′QD
)

+E
[

tr (γ̂ − γ)′Q(γ̂ − γ)
]

= σ2tr
(

D′QD
)

+E
[

(γ̂ − γ)′Q(γ̂ − γ)
]

≥ E
[

(γ̂ − γ)′Q(γ̂ − γ)
]

sinceQ is p.s.d.⇒ D′QD is p.s.d.⇒ tr D′QD≥ 0.

3.9 Corollary For any LUE ofγ̃ of γ = Lβ ,

trV (γ̃) ≥ trV (γ̂) .

PROOF

trV (γ̃) = trE
[

(γ̃ − γ)(γ̃ − γ)′
]

= E
[

tr (γ̃ − γ)(γ̃ − γ)′
]
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= E
[

(γ̃ − γ)′ (γ̃ − γ)
]

≥ E
[

(γ̂ − γ)′ (γ̂ − γ)
]

= trV (γ̂)

by Corollary 3.8 withQ = I .

3.10 Lemma PROPERTIES OF MATRIX DOMINANCE. If A = B+C whereB is a p.d. matrix and
C is a p.s.d. matrix, then

(a) A is p.d.,

(b) |B| ≤ |A| ,

(c) B−1−A−1 is p.s.d.

3.11 Corollary Let L be anr ×k fixed matrix,γ = Lβ andγ̂ = Lβ̂ . Then

|V (γ̃)| ≥ |V (γ̂)|

for any LUE γ̃ of γ.

PROOF Sinceγ̂ is the BLUE ofγ (by the generalized Gauss-Markov theorem), we have:

V (γ̃) = V (γ̂)+C (3.4)

whereC is p.s.d. If|V (γ̂) | = 0, then|V (γ̂) | ≤ |V (γ̃) |, for car|V (γ̃) | ≥ 0. If |V (γ̂) |> 0, thenV (γ̂)
is p.d. This entails thatV (γ̃) is also p.d. and|V (γ̂) | ≤ |V (γ̃) |.

3.12 ŷ = Xβ +Pε , ε̂ = My = Mε.

PROOF

ŷ = Py= P[Xβ + ε] = Xβ +Pε , carPX = X ,

ε̂ = My = M [Xβ + ε] = Mε , carMX = 0 .

3.13 E(ŷ) = Xβ , E(ε̂) = 0.

PROOF

E(γ̂) = E [Xβ +Pε] = Xβ +PE(ε) = Xβ ,

E(ε̂) = E(y− ŷ) = Xβ −Xβ = 0 .

9



3.14 V (ŷ) = σ2P , V (ε̂) = σ2M.

PROOF

V (ŷ) = V
(

Xβ̂
)

= XV
(

β̂
)

X′ = σ2X
(

X′X
)−1

X′ = σ2P ,

V (ε̂) = V (My) = MV (y)M′ = σ2M .

3.15 ŷ is the best linear unbiased estimator ofXβ .

PROOF This follows directly on takingL = X in the generalized Gauss-Markov theorem.

3.16 ε̂ is the best linear unbiased estimator (BLUE) ofε, in the sense thatE(ε̂ − ε) = 0 and

V (ε̃ − ε)−V (ε̂ − ε) is a p.s.d. matrix

for for LUE ε̃ of ε.

PROOF Sinceε̃ is a LUE ofε, we must have:

ε̃ = Ay and E(ε̃ − ε) = 0 .

Consequently,

E(ε̃) = E(Ay)

= E [A(Xβ + ε)] = AXβ = 0 ,∀β ,

which entails that

AX = 0,

ε̃ = A(Xβ + ε) = Aε .

Let
B = A−M where M = I −X

(

X′X
)−1

X′ .

Then
AX = [B+M]X = BX = 0 , since MX = 0 ,

hence

V (ε̃ − ε) = V [Aε − ε]

10



= V [(B+M)ε − ε] = V [(B+M− I)ε]

= E
[

(B+M− I)εε ′
(

B′ +M− I
)]

= σ2[B−X
(

X′X
)−1

X′
][

B′−X
(

X′X
)−1

X′
]

= σ2[BB′ +X
(

X′X
)−1

X′
]

,

and

V (ε̂ − ε) = E
[

(M− I)εε ′ (M− I)
]

= σ2(I −M) = σ2X
(

X′X
)−1

X′ ,

so that
V (ε̃ − ε) = σ2BB′ +V (ε̂ − ε) .

Thus
V (ε̃ − ε)−V (ε̂ − ε) = σ2BB′

a p.s.d. matrix.

3.17 C
(

β̂ , ε̂
)

= C
(

β̂ , y−Xβ̂
)

= 0.

PROOF

C
(

β̂ , ε̂
)

= E
[(

β̂ −β
)

ε̂ ′
]

= E[
(

X′X
)−1

X′εε ′M]

= σ2(

X′X
)−1

X′M = 0 .

3.18 C(ŷ, ε̂) = 0.

PROOF

C(ŷ, ε̂) = E
[(

Xβ̂ −Xβ
)

ε̂ ′
]

= XE
[(

β̂ −β
)

ε̂ ′
]

= XC
(

β̂ , ε̂
)

= 0 .

3.19 Estimation ofσ2. Sinceσ2 = E
(

ε2
t

)

, t = 1, . . . , T, it is natural to consider the residuals of
the regression which can be viewed as estimations of the error termsε t :

ε̂ = y−Xβ̂ = My = M (Xβ + ε) = Mε ,
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T

∑
t=1

ε̂2
t = ε̂ ′ε̂ = ε ′M′Mε = ε ′Mε ,

hence

E
[

ε̂ ′ε̂
]

= E
[

ε ′Mε
]

= E
[

tr
(

ε ′Mε
)]

= E
[

tr
(

Mεε ′
)]

= tr
[

ME
(

εε ′
)]

= σ2trM ,

where

trM = tr
[

IT −X
(

X′X
)−1

X′
]

= tr IT − tr
[

X
(

X′X
)−1

X′
]

= tr IT − tr
[

X′X
(

X′X
)−1]

= tr IT − tr Ik
= T −k .

Thus,

E
(

ε̂ ′ε̂
)

= σ2(T −k)

E

[

ε̂ ′ε̂
T −k

]

= σ2 .

3.20 The statistic
s2 = ε̂ ′ε̂/(T −k) = y′My/(T −k)

is an unbiased estimator ofσ2, ands2(X′X)−1 is an unbiased estimator ofV

(

β̂
)

= σ2(X′X)−1:

E
(

s2) = σ2 ,

E

[

s2(

X′X
)−1

]

= σ2(

X′X
)−1

.

4. Prediction

In the previous section, we studied how one can estimateβ in the linear regression model. Suppose
now we know the matrixX0 of explanatory variables formadditional periods (or observations). We
wish to predict the corresponding values ofy:

y0 = X0β + ε0

where
E(ε0) = 0 ,V (ε0) = σ2Im ,E

(

εε ′
0

)

= 0 .

The natural “predictor” in this case is:

ŷ0 = X0β̂ = X0
(

X′X
)−1

X′y . (4.1)

12



We can then show the following properties.

4.1 ŷ0 is an unbiased estimator ofX0β :

E(ŷ0) = X0β = E(y0) , E(ŷ0−y0) = 0.

4.2 V (ŷ0) = V

(

X0β̂
)

= X0V

(

β̂
)

X′
0 = σ2X0(X′X)−1X′

0.

4.3 C(y0, ŷ0) = 0.

PROOF

C(y0, ŷ0) = E

[

(y0−X0β )
(

X0β̂ −X0β
)′

]

= E

[

ε0

(

β̂ −β
)′

X′
0

]

= E

[

ε0ε ′X
(

X′X
)−1

X′
0

]

= 0 .

4.4 ŷ0 is best linear unbiased estimator ofX0β , in the sense thatV (ỹ0)−V (ŷ0) is a p.s.d. matrix
for any linear unbiased estimator ˜y0 of X0β . In particular, if ỹ0 = Cy andD = C−X0(X′X)−1X′,
then

V (ỹ0) = V (ŷ0)+σ2DD′ .

PROOF This follows directly from the generalized Gauss-Markov theorem.

The “prediction errors” are given by:

ê0 = y0− ŷ0 = y0−X0β̂

= X0β + ε0−X0β̂ = ε0 +X0

(

β − β̂
)

.

4.5 ŷ0 is a linear unbiased predictor (LUP) ofy0:

E [ê0] = 0 .

PROOF ŷ0 = X0β̂ and
E [ê0] = E [y0− ŷ0] = X0β −X0β = 0 .
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4.6 V (ê0) = σ2
[

Im+X0(X′X)−1X′
0

]

.

PROOF

V (y0− ŷ0) = V (y0)+V (ŷ0)−C(y0, ŷ0)−C(ŷ0,y0)

= σ2Im+σ2X0
(

X′X
)−1

X′
0

= σ2
[

Im+X0
(

X′X
)−1

X′
0

]

.

4.7 Theorem ŷ0 is the best linear unbiased predictor (BLUP) ofy0, in the sense thatV (y0− ỹ0)−
V (y0− ŷ0) is a p.s.d. matrix for any LUP̃y0 of y0. In particular, if ỹ0 = Cy and D = C−
X0(X′X)−1X′, then

V (y0− ỹ0) = V (y0− ŷ0)+σ2DD′ .

PROOF

V (y0− ỹ0) = V (y0)+V (ỹ0)−C(y0, ỹ0)−C(ỹ0,y0)

where
C(y0, ỹ0) = E

[

ε0ε ′C′
]

= 0

for, by the generalized Gauss-Markov theorem,

E [ỹ0] = X0β ⇒CX = X0 ⇒ ỹ0 = C(Xβ + ε) = X0β +Cε .

Further,V (ỹ0) = V (ŷ0)+σ2DD′ andV (y0) = σ2Im. Consequently,

V (y0− ỹ0) = σ2Im+V (ŷ0)+σ2DD′

=
[

σ2Im+σ2X0
(

X′X
)−1

X′
0

]

+σ2DD′

= V (y0− ŷ0)+σ2DD′ .

5. Estimation with Gaussian errors

If we wish to build confidence intervals and perform hypothesis tests, we need a more complete
specification of the error distribution. The standard hypothesis for this is toassume that the errors
follow a Gaussian distribution.
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5.1 Assumption ε ∼ NT
[

0,σ2IT
]

.

This means that the errorsε t are i.i.d.N
[

0,σ2
]

. We can now completely establish the distribu-
tion of the least squares estimator.

5.2 y∼ N
[

Xβ ,σ2IT
]

, sincey = Xβ + ε.

5.3 β̂ ∼ N
[

β ,σ2(X′X)−1
]

, sinceβ̂ = (X′X)−1X′y.

The probability density function ofy is given by:

L
(

y; Xβ , σ2IT
)

=
1

(2πσ2)T/2
exp

{

−
1
2

(y−Xβ )′ (y−Xβ )

σ2

}

.

5.4 β̂ = (X′X)−1X′y andσ̂2 = ε̂ ′ε̂/T are the maximum likelihood estimators ofβ andσ2 respec-
tively.

PROOF To maximizeL is equivalent to maximizing ln(L). Since

ln(L) = −
T
2

ln(2π)−
T
2

ln(σ2)−
1

2σ2 (y−Xβ )′ (y−Xβ )

= −
T
2

ln(2π)−
T
2

ln(σ2)−
1

2σ2

[

y′y−2y′Xβ +β ′X′Xβ
]

,

the first-order conditions (which are necessary) for a maximum is:

∂ (ln(L))

∂β
= −

1
2σ2

[

−2X′y+2
(

X′X
)

β
]

= 0 ,

∂ (ln(L))

∂σ2 = −
T
2

1
σ2 +

1
2σ4 (y−Xβ )′ (y−Xβ ) = 0 ,

hence

(

X′X
)

β̂ = X′y , β̂ =
(

X′X
)−1

X′y ,

σ̂2 =
(

y−Xβ̂
)′(

y−Xβ̂
)

/T .

Further the second-order derivative of ln(L) is:

∂ (ln(L))

∂β
′
∂β

= −
1

σ2

(

X′X
)

(5.1)

which is negative semidefinite as required for a maximum.

5.5 ŷ = Xβ̂ ∼ NT
[

Xβ ,σ2P
]

.
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5.6 ε̂ = Mε ∼ NT
[

0,σ2M
]

.

5.7 ε̂ andβ̂ are independent, becauseε̂ et β̂ are multinormal andC(β̂ , ε̂) = 0 .

5.8 ε̂ andŷ are independent, becauseε̂ andŷ are multinormal andC(ŷ, ε̂) = 0 .

5.9 Lemma DISTRIBUTION OF AN IDEMPOTENT QUADRATIC FORM IN I.I .D. GAUSSIAN VARI-
ABLES. Let Q be aT ×T symmetric idempotent matrix of rankq ≤ T. If ε ∼ NT

[

0,σ2IT
]

,
then

ε ′Qε/σ2 ∼ χ2(q) .

PROOF SinceQ is a symmetric idempotent matrix, there is aT × T orthogonal matrixC, i.e.
CC′ = C′C = IT , such that

CQC′ =

(

Iq 0
0 0

)

,

hence
ε ′Qε = ε ′C′CQC′Cε = (Cε)′

(

CQC′
)

(Cε) .

Further,

ε ∼ N
[

0,σ2IT
]

⇒Cε ∼ N
[

0,σ2CITC′
]

⇒ Cε ∼ N
[

0,σ2IT
]

.

Let v = Cε = (v1,v2, . . . , vT)′ . Then

v1,v2, . . . , vT are i.i.d.N
[

0,σ2]

and

ε ′Qε = v′
(

CQC′
)

v

= (v1,v2, . . . , vT)

(

Iq 0
0 0

)











v1

v2
...

vT











= v2
1 +v2

2 + · · ·+v2
q +0 .v2

q+1 · · ·+0 .v2
T

=
q

∑
t=1

v2
t .

This entails

ε ′Qε
σ2 =

q

∑
t=1

(vt

σ

)2
,
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where
vt

σ
ind
∼ N [0,1] , t = 1, . . . , T ,

and
ε ′Qε/σ2 ∼ χ2(q) .

5.10
S
(

β̂
)

σ2 =
ε̂ ′ε̂
σ2 ∼ χ2(T −k) .

PROOF This follows directly on applying Lemma 5.9 withQ = M and the fact that tr(M) = T −
k.

5.11 Let R be aq×k fixed matrix. Then,

Rβ̂ ∼ Nq

[

Rβ ,σ2R
(

X′X
)−1

R′
]

. (5.2)

FurtherRβ̂ ands2 are independent.

PROOF β̂ ∼N
[

β , σ2(X′X)−1
]

entailsRβ̂ ∼N
[

Rβ , σ2R(X′X)−1R′
]

. Sinceβ̂ andε̂ are indepen-

dent,Rβ̂ andε̂ ′ε̂ are also independent, so thatRβ̂ ands2 = ε̂ ′ε̂/(T −k) are independent.

5.12 Let R be aq×k fixed matrix of rankq, r = Rβ and

S(R, β̂ ) = [Rβ̂ − r]′
[

R
(

X′X
)−1

R′
]−1

[Rβ̂ − r] .

Then
S(R, β̂ )/σ2 ∼ χ2(q) . (5.3)

Further,S(R, β̂ ) ands2 are independent.

PROOF

Rβ̂ − r = R
(

β̂ −β
)

and
R

(

β̂ −β
)

∼ Nq

[

0,σ2R
(

X′X
)−1

R′
]

.
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Thus,

S(R, β̂ )/σ2 =
[

R
(

β̂ −β
)]′ [

σ2R
(

X′X
)−1

R′
]−1[

R
(

β̂ −β
)]

∼ χ2(q) .

6. Confidence and prediction intervals

6.1. Confidence interval for the error variance

In the normal classical linear model, we have:

ε̂ ′ε̂/σ2 = (T −k)s2/σ2 ∼ χ2(T −k) .

Thus, we can finda andb such that

P
[

χ2(T −k) > b
]

=
α
2

,

P
[

χ2(T −k) < a
]

=
α
2

,

P
[

a≤ χ2(T −k) ≤ b
]

= 1−
(α

2
+

α
2

)

= 1−α ,

which entails that

P

[

a≤
(T −k)s2

σ2 ≤ b

]

= 1−α

P

[

1
b
≤

σ2

(T −k)s2 ≤
1
a

]

= 1−α

P

[

(T −k)s2

b
≤ σ2 ≤

(T −k)s2

a

]

= 1−α .

It is important to note this is not the smallest confidence interval forσ2.

6.2. Confidence interval for a linear combination of regression coefficients

Consider now the linear combinationw′β . Then

w′β̂ −w′β ∼ N
[

0,σ2w′
(

X′X
)−1

w
]

,
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hence
w′β̂ −w′β

σ∆
∼ N [0,1]

where∆ =

√

w′ (X′X)−1w. Sinceσ is unknown, consider:

t =
w′β̂ −w′β

s∆

=
w′β̂ −w′β

∆σ
√

s2

σ2

=
w′β̂ −w′β

σ∆
/

√

(T −k)s2

σ2(T −k)

= Y/

√

X
T −k

whereX andY are independent,Y ∼ N [0,1] andX ∼ χ2(T −k) . Thus,t follows a Studentt distri-
bution withT −k degrees of freedom:

t ∼ t (T −k)

hence
P

[

−tα/2 ≤ t (T −k) ≤ tα/2
]

= 1−α

whereP
[

t (T −k) > tα/2
]

= α/2 and

P

[

w′β̂ − tα/2s∆ ≤ w′β ≤ w′β̂ + tα/2s∆
]

= 1−α .

6.3. Confidence region for a regression coefficient vector

We now wish to build a confidence region for a vectorRβ of linear combinations of the elements of
β , whereR : q×k and has rankq. Then

S(R, β̂ )/σ2 = (Rβ̂ −Rβ )′
(

R
(

X′X
)−1

R′
]−1

(Rβ̂ −Rβ )/σ2 ∼ χ2(q) .

Sinceσ is unknown, let us consider:

F = S(R, β̂ )/qs2 =
S(R, β̂ )/qσ2

(T −k)s2/σ2(T −k)
=

X1/q
X2/(T −k)

whereX1 andX2 are independent,

X1 = S(R, β̂ )/σ2 ∼ χ2(q) ,

X2 = (T −k)s2/σ2 ∼ χ2(T −k) .

ThusF follows a Fisher distribution with(q, T −k) degrees of freedom:

F ∼ F (q,T −k) .
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If we defineFα by
P [F (q,T −k) > Fα ] = α ,

the set of all vectorsRβ such thatF ≤ Fα :

(Rβ̂ −Rβ )′
[

R
(

X′X
)−1

R′
]−1

(Rβ̂ −Rβ )/qs2 ≤ Fα .

is a confidence region with level 1−α for Rβ . This set is a an ellipsoid (confidence ellipsoid).

6.4. Prediction intervals

y0 = x′0β + ε0

where
(

ε
ε0

)

∼ N
[

0,σ2IT+1
]

.

Further

ŷ0 = x′0β̂ , β̂ =
(

X′X
)−1

X′y,

ŷ0−y0 = x′0(β̂ −β )− ε0 ∼ N{0,σ2[1+x′0
(

X′X
)−1

x0]} .

hence
ŷ0−y0

σ∆1
∼ N [0,1] ,

where∆1 =
[

1+x′0(X′X)−1x0

]1/2
, and

ŷ0−y0

s∆1
∼ t (T −k)

wheretα/2 satisfies
P

[

ŷ0− tα/2s∆1 ≤ y0 ≤ ŷ0 + tα/2s∆1
]

= 1−α .

6.5. Confidence regions for several predictions

We now consider the problem of predicting a vector of observationsy0 generated according to the
same model independently ofy :

y0 = X0β + ε0 ,
(

ε
ε0

)

∼ N
[

0,σ2IT+m
]

,
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whereX0 is known buty0 is not observed. For predictingy0, let us define:

ŷ0 = X0β̂ ,

ê0 = y0− ŷ0 = ε0−X0(β̂ −β ) ,

where

E(ê0) = 0,

V (ê0) = σ2
[

Im+X0
(

X′X
)−1

X′
0

]

= σ2D0 ,

ê0 ∼ N
[

0, σ2[Im+X0
(

X′X
)−1

X′
0]

]

.

Consequently,

ê′0V (ê0)
−1 ê0 ∼ χ2(m) ,

ê′0D−1
0 ê0/σ2 ∼ χ2(m) .

Sinceσ2 is unknown, we replace it bys2:

(T −k)s2/σ2 ∼ χ2(T −k) .

Further, sinces2 is independent ofy0 andŷ0 = Xβ̂ , s2 is independent of ˆe0,

F =
ê′0D−1

0 ê0

ms2
=

ê′0D−1
0 ê0/σ2m

(T −k)s2/σ2(T −k)
∼ F (m, T −k) ,

F = (y0− ŷ0)
′
[

Im+X0
(

X′X
)−1

X′
0

]−1
(y0− ŷ0)/ms2 ∼ F (m, T −k) .

Then the set of vectorsy0 such that

F ≤ Fα (m, T −k)

is a confidence region fory0 with level 1−α.

7. Hypothesis tests

7.0.1 Let us now consider the problem of testing an hypothesis of the form

H0 : w′β = w0 (7.1)

wherew be ak×1 vector of constants.To testH0, it is natural to consider the difference:

w′β̂ −w0 = w′
(

β̂ −β
)

∼ N
[

0,σ2w′
(

X′X
)−1

w
]

.
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Under the assumptions of the Gaussian classical linear model, we then have:

w′β̂ −w0

σ∆
∼ N [0,1] ,∆ =

[

w′
(

X′X
)−1

w
]1/2

,

t =
w′β̂ −w0

s∆
∼ t (T −k) .

This suggests the following tests ofH0 :

rejectH0 at levelα againstw′β −w0 6= 0 when|t| ≥ tα/2 (two-sided test) (7.2)

rejectH0 at levelα againstw′β −w0 > 0 whent ≥ tα (one-sided test) (7.3)

rejectH0 at levelα againstw′β −w0 < 0 whent ≤−tα (one-sided test). (7.4)

An important special case of the above problem consists in testing the value of any given component
of β :

H0(β io) : β i = β io

whereβ i is an element ofβ .

Let us now consider the more general hypothesis which consists in testing the value of a general
vector linear transformation ofβ :

H0 : Rβ = r =











w′
1

w′
2
...

w′
q











β =











w′
1β

w′
2β
...

w′
qβ











(7.5)

whereR is aq×k fixed matrix with full row rank[rank(R) = q].

7.0.2 Wald-type test. A natural approach then consists in estimatingRβ by Rβ̂ ,and then to ex-
amine the differenceRβ̂ − r. UnderH0,

Rβ̂ ∼ N [r,ΣR] , where ΣR = σ2R
(

X′X
)−1

R′ .

We need a concept of distance betweenRβ̂ andr. By (5.3),

W = (Rβ̂ − r)′Σ−1
R (Rβ̂ − r) ∼ χ2(q) underH0 .

We tend to rejectH0 whenW is too large(W ≥ c. However,σ2 andΣR are unknown. It is then
natural tom replaceσ2 by the estimates2, andΣR by

Σ̂R = s2R
(

X′X
)−1

R′ .
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This yields a Wald-type criterion:

Ŵ = (Rβ̂ − r)′Σ̂−1
R (Rβ̂ − r)

= (Rβ̂ − r)′
[

s2R
(

X′X
)−1

R′
]−1

(Rβ̂ − r)

= (Rβ̂ − r)′
[

R
(

X′X
)−1

R′
]−1

(Rβ̂ − r)/s2

= S(R, β̂ )/s2 .

Since
F = Ŵ/q = S(R, β̂ )/qs2 ∼ F (q,T −k) ,

we rejectH0 at levelα when
F > Fα (q,T −k) . (7.6)

7.0.3 Likelihood ratio test. Another approach to testingH0 consists in looking for a likelihood
ratio test. This test is based on focusing on the likelihood function:

L
(

y;Xβ ,σ2IT
)

=
1

(2πσ2)T/2
exp

{

−
1
2

(y−Xβ )′ (y−Xβ )

σ2

}

. (7.7)

Let
L(Ω̂) = max

β , σ2
L = max

(β ,σ2)∈Ω
L (7.8)

i.e. we find values ofβ andσ2 which maximize “the probability of the observed sample”, and

L(ω̂) = max
β ,σ2

Rβ=r

L = max
(β ,σ2)∈ω

L (7.9)

i.e. we find values ofβ andσ2 which maximize “the probability of the observed sample” and satisfy
H0, where

Ω =
{(

β ,σ2) : −∞ < β i < +∞, i = 1, . . . , k, 0 < σ2 < +∞
}

,

ω =
{(

β ,σ2) ∈ Ω : Rβ = r
}

.

We see easily that
0≤ L(ω̂) ≤ L(Ω̂) ,

hence

0≤
L(ω̂)

L(Ω̂)
≤ 1,

L(Ω̂)

L(ω̂)
≥ 1 .
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We rejectH0 when

LR(y) ≡
L(Ω̂)

L(ω̂)
≥ λ α ,

whereλ α depends on the level of the test:

P [LR(y) ≥ λ α ] = α .

7.0.4 L(Ω̂) is achieved whenβ = β̂ andσ2 = σ̂2 :

L(Ω̂) =
1

(

2πσ̂2
)T/2

exp











−
1
2

(

y−Xβ̂
)′(

y−Xβ̂
)

σ̂2











=
1

(

2πσ̂2
)T/2

exp

{

−
T
2

}

=
e−T/2

[

2πσ̂2
]T/2

=
TT/2e−T/2

(2π)T/2
[

(

y−Xβ̂
)′(

y−Xβ̂
)

]T/2

=
TT/2e−T/2

(2π)T/2ST/2
Ω

,

whereSΩ =
(

y−Xβ̂
)′(

y−Xβ̂
)

.

7.0.5 To findL(ω̂), it is equivalent to maximize

ln(L) = −
T
2

ln(2π)−
T
2

ln
(

σ2)−
1

2σ2 (y−Xβ )′ (y−Xβ )

under the constraintRβ = r.Considerσ2 as given. It is then sufficient to solve the problem:

Min
β

(y−Xβ )′ (y−Xβ )

with restrictionr −Rβ = 0. Ton do this, we consider the Lagrangian function:

L = (y−Xβ )′ (y−Xβ )−λ ′ [r −Rβ ] .

The optimumβ = β̃ must satisfy the first-order conditions:

∂L

∂β
= −2X′y+2

(

X′X
)

β̃ +R′λ = 0 (7.10)

∂L

∂λ
= r −Rβ̃ = 0. (7.11)
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On multiplying by (7.10) byR(X′X)−1, we get:

−2R
(

X′X
)−1

X′y+2Rβ̃ +R
(

X′X
)−1

R′λ = 0

R
(

X′X
)−1

R′λ = 2R
(

X′X
)−1

X′y−2r = 2
[

Rβ̂ − r
]

λ = 2
[

R
(

X′X
)−1

R′
]−1[

Rβ̂ − r
]

.

By (7.10),

2
(

X′X
)

β̃ = 2X′y−R′λ (7.12)

= 2X′y−2R′
[

R
(

X′X
)−1

R′
]−1[

Rβ̂ − r
]

(7.13)

hence

β̃ =
(

X′X
)−1

X′y−
(

X′X
)−1

R′
[

R
(

X′X
)−1

R′
]−1[

Rβ̂ − r
]

= β̂ +
(

X′X
)−1

R′
[

R
(

X′X
)−1

R′
]−1[

r −Rβ̂
]

.

We see that̃β does not depend onσ2. Substitutingβ̃ in ln(L), we see that

ln(L) = −
T
2

ln(2π)−
T
2

lnσ2−
1

2σ2Sω

whereSω =
(

y−Xβ̃
)′(

y−Xβ̃
)

, from which we get

∂ ln(L)

∂σ2 = −
T

2σ2 +
Sω

2σ4 = 0

at the optimum, hence

σ̃2 = Sω/T =
(

y−Xβ̃
)′(

y−Xβ̃
)

/T ,

L(ω̂) =
TT/2e−T/2

(2π)T/2ST/2
ω

,

The likelihood ratio test is given by the critical region:

L(Ω̂)

L(ω̂)
=

(

Sω

SΩ

)T/2

≥ λ α

or, equivalently,
Sω

SΩ
≥ λ 2/T

α . (7.14)
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Since

Sω = (y−Xβ̃ )′(y−Xβ̃ )

= (y−Xβ̂ )′(y−Xβ̂ )+(β̂ − β̃ )′
(

X′X
)

(β̂ − β̃ )

= SΩ +(β̂ − β̃ )′
(

X′X
)

(β̂ − β̃ ) ,

we also see that

Sω −SΩ =
(

r −Rβ̂
)′ [

R
(

X′X
)−1

R′
]−1

R
(

X′X
)−1(

X′X
)(

X′X
)−1

R′
[

R
(

X′X
)−1

R′
]−1[

r −Rβ̂
]

=
(

r −Rβ̂
)′ [

R
(

X′X
)−1

R′
]−1[

r −Rβ̂
]

= (Rβ̂ − r)′
[

R
(

X′X
)−1

R′
]−1

(Rβ̂ − r) = S(R, β̂ )

=
(

qs2)F ,

hence

F =
Sω −SΩ

qs2 =
(Sω −SΩ )/q
SΩ/(T −k)

and

Sω

SΩ
=

SΩ +
(

qs2
)

F

SΩ
= 1+

(

qs2
)

F

(T −k)s2 = 1+
q

T −k
F ≥ λ 2/T

α

⇐⇒ F ≥
T −k

q

(

λ 2/T
α −1

)

= Fα .

The likelihood ratio test ofH0 : Rβ = r has the critical region

F ≡
(Sω −SΩ )/q
SΩ/(T −k)

≥ Fα (q,T −k)

where
F ∼ F (q,T −k) .

This is an easy method for testingH0 : Rβ = r. Note also that:

LR =

(

Sω

SΩ

)T/2

=

(

1+
q

T −k
F

)T/2

,

F =
T −k

q

(

LR2/T −1
)

.
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8. Estimator optimal properties with Gaussian errors

When errors are Gaussian, the OLS estimatorŝβ i , i = 1, . . . , k and s2 =
(

y−Xβ̂
)′(

y−Xβ̂
)

/(T −k) have minimum variance in the class of all unbiased estimators

of β i , i = 1, . . . , k, andσ2 respectively [see Rao (1973, section 5a)].
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