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ABSTRACT

We study the invariance properties of various test criteria which have fmeposed for hypothesis
testing in the context of incompletely specified models, such as models whidbrarelated in
terms of estimating functions (Godambe, 198An. Math. Staj.or moment conditions and are es-
timated by generalized method of moments (GMM) procedures (Hansen,H@&2ometric and
models estimated by pseudo-likelihood (Géwoux, Monfort and Trognon, 198&conometrici
and M-estimation methods. The invariance properties considered include invatiarfpossibly
nonlinear) hypothesis reformulations and reparameterizations. Theatstics examined include
Wald-type, LR-type, LM-type, score-type, affa)—type criteria. Extending the approach used
in Dagenais and Dufour (199Econometricy we show first that all these test statistics except the
Wald-type ones are invariant to equivalent hypothesis reformulatiorde(wsual regularity con-
ditions), but all five of them araot generally invarianto model reparameterizations, including
measurement unit changes in nonlinear models. In other words, testingytwa@lent hypothe-
ses in the context of equivalent models may lead to completely differeneimfes. For example,
this may occur after an apparently innocuous rescaling of some modeblegriaThen, in view
of avoiding such undesirable properties, we study restrictions thateeangosed on the objective
functions used for pseudo-likelihood (or M-estimation) as well as thetstriof the test criteria
used with estimating functions and GMM procedures to obtain invariant testparticular, we
show that using linear exponential pseudo-likelihood functions allows$maktain invariant score-
type andC(a)—type test criteria, while in the context of estimating function (or GMM) proceslu
it is possible to modify a LR-type statistic proposed by Newey and West (1887FEcon. Rey.to
obtain a test statistic that is invariant to general reparameterizations. Er@ime associated with
linear exponential pseudo-likelihood functions is interpreted as a stngugnant for using such
pseudo-likelihood functions in empirical work.

Key words: Testing; Invariance; Hypothesis reformulation; Reparameterization;siiement
unit; Estimating function; Generalized method of moment (GMM); Pseudo-likedihavi-
estimator; Linear exponential model; Nonlinear Model; Wald test; Likelihotid tast; score test;
Lagrange multiplier tes€(a) test
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1. Introduction

Model and hypothesis formulation in econometrics and statistics typically imeofuember of ar-
bitrary choices, such as the labelling of i.i.d. observations or the selectioreafurement units.
Further, in hypothesis testing, these choices often have no incidence ionetpretation of the null
and the alternative hypotheses. When this is the case, it appears ldetbiedistatistical inference
remaininvariantto such choices; see Hotelling (1936), Pitman (1939), Lehmann (19&t&iB),
Lehmann (1986, Chapter 6) and Ferguson (1967). Among other thithgs, the way a null hypoth-
esis is written has no particular interest or when the parameterization of d imtatgely arbitrary,
it is natural to require that the results of test procedures do not depesulch choices. This holds,
for example, for standandandF tests in linear regressions undiexear hypothesis reformulations
and reparameterizations. monlinearmodels, however, the situation is more complex.

It is well known that Wald-type tests are not invariant to equivalent thygsis reformulations
and reparameterizations; see Cox and Hinkley (1974, p. 302), Biergballant and Souza (1982, p.
185), Gregory and Veall (1985), Vaeth (1985), Lafontaine and Wh&86), Breusch and Schmidt
(1988), Phillips and Park (1988), and Dagenais and Dufour (1994 general possibly nonlinear
likelihood models (which are treated as correctly specified), we showedwiops work [Dagenais
and Dufour (1991, 1992), Dufour and Dagenais (1992)] that fmmytest procedures are invariant
to general hypothesis reformulations and reparameterizations. Tha&mvarocedures essentially
reduce to likelihood ratio (LR) tests and certain variants of score [ordragr multiplier (LM)]
tests where the information matrix is estimated with either an exact formula forxpedted) in-
formation matrix or an outer product form evaluated at the restricted maximuiihiilod (ML)
estimator. In particular, score tests are not invariant to reparameteriatizen the information
matrix is estimated using the Hessian matrix of the log-likelihood function evaluattck ae-
stricted ML estimator. Furthe€(a) tests are not generally invariant to reparameterizations unless
special equivariance properties are imposed on the restricted estimsg¢arsouimplement them.
Among other things, this means that measurement unit changes with no ireiolenice null hy-
pothesis tested may induce dramatic changes in the conclusions obtaingldrmsts and suggests
that invariant test procedures should play a privileged role in statistifsakince.

In this paper, we study the invariance properties of various test critdriehvhave been pro-
posed for hypothesis testing in the context of incompletely specified modetsas models which
are formulated in terms of estimating functions [Godambe (1960)] — or momeuditmms — and
are estimated by generalized method of moments (GMM) procedures [Hdr@R:1)], and models
estimated by-estimation [Huber (1981)] or pseudo-likelihood methods [Genatiix, Monfort and
Trognon (1984, 1984), Gouréroux and Monfort (1993)]. For general discussions of infeednc
such models, the reader may consult White (1982), Newey (1985), G@l8i7), Newey and West
(1987), Gallant and White (1988), Goéroux and Monfort (1989, 1995), Godambe (1991), David-
son and MacKinnon (1993), Newey and McFadden (1994), Hall{199d Matyas (1999); for
studies of the performance of some test procedures based on GMM ess$ins&t® also Burnside
and Eichenbaum (1996) and Podivinsky (1999).

The invariance properties we consider include invariance to (possilmlimear) hypothesis
reformulations and reparameterizations. The test statistics examined inchldaye, LR-type,



LM-type, score-type, an@(a)-type criteria. Extending the approach used in Dagenais and Dufour
(1991) and Dufour and Dagenais (1992), we show first that all tessestatistics except the Wald-
type ones are invariant to equivalent hypothesis reformulations (wstdeit regularity conditions),
but all five of them ar@ot generally invarianto model reparameterizations, including measurement
unit changes in nonlinear models. In other words, testing two equivaygatiheses in the context
of equivalent models may lead to completely different inferences. Fongbea this may occur after
an apparently innocuous rescaling of some model variables.

In view of avoiding such undesirable properties, we study restrictionsdmebe imposed on the
objective functions used for pseudo-likelihood (or M-estimation) as vediha structure of the test
criteria used with estimating functions and GMM procedures to obtain invagats. In particular,
we show that using linear exponential pseudo-likelihood functions allowest@ obtain invariant
score-type an€(a)-type test criteria, while in the context of estimating function (or GMM) pro-
cedures it is possible to modify a LR-type statistic proposed by Newey aist (A@87) to obtain
a test statistic that is invariant to general reparameterizations. The irsa@asgociated with linear
exponential pseudo-likelihood functions can be viewed as a strongargdor using such pseudo-
likelihood functions in empirical work. Of course, the fact that Wald-tymtst@re not invariant to
both hypothesis reformulations and reparameterizations is by itself a sngumg@nt to avoid using
this type of procedure (when they are not equivalent to other proesgdand suggest as well that
Wald-type tests can be quite unreliable in finite samples; for further argurgeimtg in the same
direction, see Burnside and Eichenbaum (1996), Dufour (199d)Parfiour and Jasiak (2001).

In Section 2, we describe the general setup considered, while the testtcstastudied are de-
fined in Section 3. The invariance properties of the available test statistic$ualied in Section 4.
In Section 5, we make suggestions for obtaining tests that are invarianeoadbypothesis refor-
mulations and reparameterizations. Numerical illustrations of the invarianden@invariance)
properties discussed are provided in Section 6. We conclude in SectiBnodfs appear in ap-
pendix.

2. Framework

We consider an inference problem about a parameter of intg¢re®@ C RP. This parameter appears
in a model which is not fully specified. In order to identfly we assume there existsrax 1 vector
score-type functiol, (8; Z,) whereZ, = [z1,2, ...,z is an x k stochastic matrix such that-

Dn(8; Z,) nL D« (6; 60) . (2.1)
Do (-; 60) is a mapping from® ontoR™ such that:
D (6; 80) =0<= 0= 09, (2.2)

so the value 0B is uniquely determined b, (6; 6¢) . Furthermore, we assume that

V/ADn (B0; Zn) = N[0, (80)] (2.3)



and

J
570 (803 Zn) == 3 (60) (2.4)

wherel (8p) andJ (8p) aremx mandm x p full-column rank matrices.
Typically, such a model is estimated by minimizing with respe@ m expression of the form

Hn(60; Zn) =

Mn (8, Wh) = Dn (0; Zn)' WhDn (6; Zy) (2.5)

whereW, is a symmetric positive definite matrix. The method of estimating equations [Durbin
(1960), Godambe (1960, 1991), Basawa, Godambe and Taylor )|199& generalized method

of moments [Hansen (1982), Hall (2004)], maximum likelihood, pseudoimam likelihood, M-
estimation and instrumental variable methods may all be cast in this setup. magabregularity
conditions, the estimatdt, so obtained has a normal asymptotic distribution:

V(8= 80) = N[0, % (Vp)] (2.6)

where
5 (Vb) = (3Wodo) ™ JoVbloWodo (JpWbdo) ™, 2.7)
Jo=J(60), lo=1(0p), Wo= plimW,, det(W)#0; (2.8)

nN—oo

see Gougroux and Monfort (1995, Chapter 9).
If we assume that the number of equations is equal to the number of parsufmeterp), a
general method for estimatir@jalso consists in finding an estimatt which satisfies the equation

~

Dn(6n; Zn) =0. (2.9)

Typically, in such cased,(6; Zy) Es the derivative of an objective functid®(0; Z,), which is
maximized (or minimized) to obtaifl,, so that

0 0; Z, 0 0; Z,
Dn(8; Zn) = 812.6) ,H(6; Zn) = Saéael)

This sequence is asymptotically normal with zero mean and asymptotic variance

1

55 (80) = [J(60)'1 (80) 13 (B0)] ™+ = (3lg%%) . (2.10)

Obviously, condition (2.9) is entailed by the minimizationMf (6) whenm = p. It is also inter-
esting to note that problems with > p can be reduced to cases with= p through an appropriate
redefinition of the score-type functi@y, (6; Z,), so that the characterization (2.9) also covers most
classical asymptotic methods of estimation. A typical list of methods is the following.

a) Maximum likelihood. In this case, the model is fully specified with log-likelihood function
Ln (6; Zn) and score function

10
Dn(6; Zn) = H%Ln(e; Zn) . (2.11)



b) Generalized method of momeriGMM). 6 is identified through an x 1 vector of conditions
of the form:
Elh(6;z)]=0, t=1,...,n. (2.12)

Then one considers the sample analogue of the above mean,

_ 10

hn(60) = Ht;ht (6;z), (2.13)
and the quadratic form

Mn (6) :En(e)lwnﬁn(e) (2.14)

whereW, is a symmetric positive definite matrix. In this case, the score-type function is:

. oh (),
D (6; Zn) = 275 7 Wi (6) - (2.15)

C) M-estimator.8,, is defined through an objective functi@ of the form:

n

Qn(6;Zy) = % ZE(G; z). (2.16)
t=

The score function has the following form:

0Qn
Dn(0; Zn) = %(9; Zy) =

9

1
n.4& 00

§(6;z). (2.17)

M:

=

3. Test statistics

Consider now the problem of testing
Ho: @ (6)=0 (3.1)

wherey (0) is ap; x 1 continuously differentiable function &, 1 < p; < p and thep; x p matrix
oy
P(6) = 20 (3.2)

has full row rank (at least in an open neighborhoodg¥f. Let 6, be the unrestricted estimator

obtained by minimizingvi, (6), andé?, the corresponding constrained estimator uridier
At this stage, it is not necessary to specify closely the way the matrigs andJ(6o) are

estimated. We will denote Hy andJ, or by | andJ the corresponding estimated matrices depending

on whether they are obtained with or without the restrictjof®) = 0. In particular, if

n

D1 (6:20) = 5 (6:2) 33)
=



standard definitions df(6) andJ(6) would be :

'(6) = rl]iht(e; 2)h (6;2) (3.4)
Je) = (Zf;? (0) =Hn(6; Zn) , (3.5)

wheref can be replaced by an appropriate estimator.
For1(0), other estimators are also widely used. Here, we shall consider geséraators of
the form

n

©) = 3 S Wiee(1) i (6 20) (6 )’

—1t—

= h(6;Z,)W(nh(6; Zy)' (3.6)

whereW (n) = [wg(n)] is anx n matrix of weights (which depend of the sample sizand,
possibly, on the data) and

h(6;Zn) = [h1(6;21), h2(8;22),, ..., hn (6 zn) |- (3.7)
For example, a “mean corrected” versioni¢B) may be obtained on takingf (n) = I, — Hinth,
wherel,, is the identity matrix of orden andi,, = (1, 1, ..., 1)’, which yields
n
'(8)= 3 [ (8:2)~h(6)] [ (6:2) —(6)]’ (3.8)
t=

— n
whereh(8) = 1 5 h(6;z). Similarly, so-called “heteroskedasticity-autocorrelation consistent
t=1

(HAC)” covariance matrix estimators can usually be rewritten in the form (3l8)most cases,
such estimators are defined by a formula of the type:

n-1 _ R
(@)= S k(i/B)F(i.6) (3.9)

j=—n+1

whereE(-) is a kernel functionBy, is a bandwidth parameter (which depends on the sample size
and, possibly, on the data), and

n
Ty h(8z)hj(6;2)), ifj>0,
F.e)=q "8 (3.10)
P> hei(8zsh(6:2), if j<O.
t=—]+1
For further discussion of such estimators, the reader may consult Newley/est (1987), Andrews
(1991), Andrews and Monahan (1992), Hansen (1992), andi@ysihd McGarvey (1999).



In this context, analogues of the Wald, LM, score &) test statistics can be shown to
have asymptotic null distributions without nuisance parameters, naxi¢ly;) distributions. On
the assumption that the referenced inverse matrices do exist, these test catebe defined as
follows:

(a) Wald-type statistic,

1

W (@) = ng(8n) [P(FT-19) "] w(6n) (3.11)
whereP = P(8,,), [ = 1(8,) andJ = J(6,);
(b) score-type statistic,
S() = nDn(By; Zu) Ty 230 (3l L06) o LDn(Br: Zn) (3.12)
whereiy = [(8°) andJ, = J(B2);
(c) Lagrange-multiplier (LM) type statistic,
LM () = nA Bo(Fl 2o) BiAN (3.13)

whereP, = P(ég) andjn is the Lagrange multiplier in the corresponding constrained optimization
problem;
(d) C(o)-type statistic,

PC(81; W) = nDn(8r; Zo) \WbDn(8p; Zn) (3.14)
whereég is any rootn consistent estimator & that satisfie:w(ég) =0, and
Vb = T 1o (Joi 1) % [Bo (Jhy 200) 28]~ o (Joiy L) i
with By = P(82), To = 1(8°) andJo = J(8Y).
The above Wald-type and score-type statistics were discussed by lded&yest (1987) in the
context of GMM estimation, and for pseudo-maximum likelihood estimation byriong1984).
TheC (a)-type statistic is given by Davidson and MacKinnon (1993, p. 619). @fsm LR-type

statistics based on the difference of the maxima of the objective fun§tidh Z,) have also been
considered in such contexts :

LR(W) = S(Oni Zn) — (O Zn) - (3.15)

Itis well known that, in general, this difference is distributed as a mixturedd#pendent chi-square
with coefficients depending upon nuisance parameters [see, for exdmggdaon (1984) and Vuong
(1989)]. Nevertheless, there is one “LR-type” test statistic whose disiibb is asymptotically
pivotal with a chi-square distribution, namely tBestatistic suggested by Newey and West (1987):

Diw () = [Mn(8,T0) — Mn (81, T0)] (3.16)



where N N
Mn (6, 10) = Dn(8; Zn) ig'Dn (6; Zn) , (3.17)

io is a consistent estimator 6f6p), 8, minimizesM (6, i) without restriction ancﬁg minimizes
Mn(8, o) under the restrictio (6) = 0. Note, however, that this “LR-type” statistic is more accu-
rately viewed as a score-type statisticDif is the derivative of some other objective functiang,
a log-likelihood function), the latter is not used as the objective functionmdmi&ced by a quadratic
function of the “score’Dy,.

Using the constrained minimization condition,

Hi (Bp; Zn) 151D (61; Zn) = P(67) An, (3.18)

we see that
S(y)=LM(y) , (3.19)

i.e., the score and LM statistics are identical in the present circumstanaiiseri-it is interesting

to observe that the score, LM a@ a)-type statistics given above may all be viewed as special
cases of a more gener@l a)-type statistic obtained by considering the generalized “score-type”
function :

(B Wh) = vAG W] Dy (Br: Zo)

whered® is consistent restricted estimate@y such thaty(8°) = 0 and\/f(8° — Bo) is asymptot-
ically bounded in probability, ~ o

QWh] = Po(FoWndo) ~13oWh,
Py = P(ég) o= JA(ég), andW, is a symmetric positive definite (possibly random m matrix

such that
plimW, =W, det(Wp) # 0.

n—oo

Under standard regularity conditions [see Appendix A], we have:
(85 Zn) = N [0,Q(80)1 (80) Q(60) |
where

Q(80) = plim G[Wh] = P(8) [J(80)'Wed (60)] "3 (80)' Wo

n—oo
and ranKQ (6o)] = ps1. This suggests the following generalizéda) criterion :

PC(8Y%; W, Wh) = NnDn(8% Z,) G { QW] oG W'} G k] D (B Z1) (3.20)

whereip = f(ég) . Under general regularity conditions, the asymptotic distributid?(b(fég; ¢,U7Wn)
is x2 (p1) underHo. Indeed, in the following proposition, we provide the asymptotic distribution of



an even more general statistic of the form:
W:(ég; YWh) =n Dn(égi Zn)lé W)’ {Q[Wn] [0Q W)’ I QWi Dn(égi Z,) . (3.21)

where the matrice® W] andP(8) may not have full row rank and the derivative Bf(68; Z,)
need not be continuous.

Proposition 3.1 ASYMPTOTIC DISTRIBUTION OF GENERALIZED C(a) STATISTIC. Under the
assumptions\.1 to A.13 of Appendix A, leQ, = QW] = B, [IWhJy]~JWh, whered, = Hn(ég),
P = P(ég) and|-]~ refers to any generalized inverse. Then, undgr H

VAGuDn(Br; Zn) ~= N[0, Q(80)! (60)Q(Bo)'] (3.22)
where Q60) = P(60) [J(60)MbJ(80)] I(80) Wb, and
Pic(é% Y,Wh) = nDn(ég; Zn)/Q/n [Qnﬂ)néﬁ] - QnDn<é2; Zn) r:Lo; Xz(rl) (3.23)

where = rankKP(6y)]. Further, the matrix3;,[QnlonQ;]  Qn is invariant to the choice of the gen-
eralized inversgQnlonQ,] -

The proof of the latter proposition appears in Appendix A. Note that the ricatevalue of
the statistidTC(é?,; ¥, Ws) is invariant to the choice of the generalized inve(réle{wn] o) AR
It is clearﬁ(ég; Y, Ws) includes as special cases various oém )-type statistics proposed in

the statistical and econometric literatutesn the sequel, we shall concentrate our discussion on
nonsingular cases, where rdfk6p)| = p;.

On takingW, = rgl, as suggested by efficiency argumeﬁ’l@(ég; Y, Wy) reduces tcPC(ég; Y)
in (3.14). When the number of equations equals the number of paranieterp), we have
QW] = By T andPC(BY; ,Wy) does not depend on the choiceVif

~0 ~0
PC(6,; Y, Wh) = PC(6; ¥)
= Dn(B; Z0)' (3 1) B [Bo(Fpi 2o) RS Pody Dn(Br; Z0) - (3.24)
In particular, this will be the case By (8; Z,) is the derivative vector of a (pseudo) log-likelihood
function. Finally, form> p, Whenég is obtained by minimizing/ln (6) = D (8; Zy)' iy *Dn (6; Zn)
subject toy (6) =0, we can writeég = éﬂ andPC(ég; Lp,Wn) is identical to the score (or LM)-type

statistic suggested by Newey and West (1987). Since the staﬂ@(iég; L,U,Wn) is quite compre-
hensive, it will be convenient for establishing general invarianceltses

IFor further discussion @ (a) tests, the reader may consult Basawa (1985), Ronchetti (1987), Qr98#), Berger
and Wallenstein (1989), Dagenais and Dufour (1991), Davidson amcKMnon (1991, 1993) and Kocherlakota and
Kocherlakota (1991)



4. Invariance

Following Dagenais and Dufour (1991), we will consider two types of riavece properties: (1)
invariance with respect to the formulation of the null hypothesis, and (2yi@ce with respect to
reparameterizations.

4.1. Hypothesis reformulation

Let
G={0€0O|yY(6)=0} (4.1)
and¥ be the set of differentiable functions: © — R™ such that

(60| §H(6)=0}=0y. (4.2)

A test statistic is invariant with respect$#if it is the same for allpy € ¥. It is obvious the LR-type
statisticsLR(y) and Dnw(y) (when applicable) are invariant to such hypothesis reformulations
because the optimal values of the objective function (restricted or uctedirdo not depend on
the way the restrictions are written. Now, a reformulation does not afffdcly andJo. The same
holds foriy andJp provided the restricted estimatéﬁAused withC (a) tests does not depend on
which functiony € ¥ is used to obtain it. HoweveP, A, andw(én) changeFollowing Dagenais
and Dufour (1991), ity € W, we have:

oy =

P(0) = - =PL(B)G(6). (4.3)
PO) = Z;p,:Pl(e)G(e), (4.4)

whereP; andP; are two p1 x p1 invertible functions ands(0) is a p; x p full row-rank matrix.
SincePY A, = BY A, whereP? = P;(8%), P = Py(8) andA , is the Lagrange multiplier associated
with ¢, we deduce that all the statistics, except the Wald-type statistics, are invaiiamespect
to a reformulation. This leads to the following proposition.

Proposition 4.1 INVARIANCE TO HYPOTHESIS REFORMULATIONS Let & be a family of
p1 x 1 continuously differentiable functions 6f such that:;;’u, has full row rank wheny (6) =
0(1<p<p),and
YO)=0yY(0)=0vYyY, P e¥. (4.5)
Then,
T(W)=T(y) (4.6)

where T stands for any one of the test statisticg¢ 5 LM (¢), PC(ég; Y), LR(¢), Dnw () and
PC(8%; ¢, W) defined in(3.12) - (3.16) and (3.20).



Note that the invariance of th&(y), LM (¢), LR(¢) and Dyw (@) statistics to hypothesis
reformulations has been pointed out by Géwiix and Monfort (1989) for mixed-form hypotheses.

4.2. Reparameterization

Let g be a one-to-one differentiable transformation fren RPto©, CRP: 6, =g(6). grepre-
sents a reparameterization of the parameter véttora new onéd,. The latter is often determined
by a one-to-one transformation of the d@ta = g(Z,), as occurs for example when variables are
rescaled (measurement unit changes). But it may also represerdramagterization without any
variable transformation. Lé¢= g~* be the inverse function associated wgth ~

k(6,)=g *(8.)=6. (4.7)
Set e K
G(6) = a% andK (6.) = - 4.8)

Sincek[g(6)] = 6 andg[k(6.)] = 8., we have by the the chain rule of differentiation:

K[9(8)]G(8) =1pandG[k(8.)]K(8,)=1p,V0.€6,,¥0cO. (4.9)
Let

W (6.) =Yg t(6.)] . (4.10)
Clearly,

Y (6,) =0 w(B)=0, (4.11)

andH; : ¢* (6,) = 0 is an equivalent reformulation ¢fo : ¢ (8) = 0 in terms of6... We shall
call ¢*(6,) = 0 thecanonical reformulatiorof ¢ (8) = 0 in terms off,. Other (possibly more
“natural”) reformulations are of course possible, but the latter has theeogent property that
Y (6,) = Y(0). If a test statistic is invariant to reparameterizations when the null hypothesis is
reformulated ags* (6..) = 0, we will say it iscanonically invariant

By the invariance property of Propositighl, it will be sufficient for our purpose to study
invariance to reparameterizations for any given reformulation of the gpththesis in terms of..
From the above definition af* (6.,), it follows that

oy Y a6

P-(6.)= 3" = 99 30

— PIk(6.)]K (8.) = P(8)K [(6)] . (4.12)

We need to make an assumption on the way the score-type furiatight Z,) changes under
a given reparameterization We will consider two cases. The first ongiste in assuming that

Dn(6;Zy) = z h(6; z) /nasin (3.3) where the values of the scores are unaffected by themepara

eterization, but are simply reexpressed in term8,0ndz, (invariant scoreg
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whereZ,, = g(Z,) and6. = g(6). The second one is the one wh&g(6; Z,) can be interpreted
as the derivative of an objective function.
Under condition (4.13), we see easily that

. 0Dn. (6*; Zn*)

Hni (84; Zns) = 20 =Hn(0;Z,)K(6,) =Hn(6; Zn)K[g(0)] . (4.14)

Further the function§(8) andJ (8) in (3.4) - (3.5) are then transformed in the following way :

~ A~ A~

.(6.)=1(6), 3.(6.) = J(B)K[5(6)] .
If f(@) andf(e) are defined as (3.4) - (3.5),\f. =W, and if éﬂ is equivariant with respect i
li.e., éﬂ* = g(éﬁ,’)], it is easy to check that the generalize () statistic defined in (3.20) is invariant

to the reparameterizatiof. = g(6). This suggests the following general sufficient condition for
the invariance o€ (o) statistics.

Proposition 4.2 C(a) CANONICAL INVARIANCE TO REPARAMETERIZATIONS. INVARIANT
SCORE CASE Lety* (6,) = [g*(6.)], and suppose the following conditions hold :

(@) B, =a(Br),

(b)  Dne(Br.; Zn.) = Dn(Bi Zn).

(c) lo. =lpanddp, = JK,

(d)  Whe =W,

wherelo, Jo and W, are defined as iff3.20), andK = K(8°, ) is invertible. Then

PC*(ég*, w*,Wn*) = nf)’n*Q{-_)* (QE)* rO*éO*)71©O*5n* = PC(ég; L»Uan)

where Dn. = Dno(Br:Z0.), Qo = o (JWoudo.) " Wb, Bo = P.(B5,) and R(6.) =
oY+ /0.

It is clear that the estimato, and 8 satisfy the equivariance condition, i.y. = 9(6n)

and éﬂ* = (éﬂ). Consequently, the above invariance result also applies to score (osthltics.

It is also interesting to observe that (¢*) = W (). This holds, however, only for the special
reformulationy* (6..) = ¢ [g1(6.)] = 0, not for all equivalent reformulationg, (6.) = 0. On
applying Propositiod.1, this type of invariance holds for the other test statistics. These obs@&watio
are summarized in the following proposition.

Theorem 4.3 TEST INVARIANCE TO REPARAMETERIZATIONS AND GENERAL HYPOTHBIS RE
FORMULATIONS: INVARIANT SCORE CASE Lety, : ©, — O be any continuously differentiable
function off. € ©, such thaty, (g(0)) =0« ¢ (0) =0, let m= p and suppose

(@) Dn.(9(8);Zn.) =Dn(0;Zn) ,

(b) 1.[g(6)]=1(6)andJ.[g(6)] =J()K[g()]

11



where K(8,) = dg71(6.) /d0,. Then, provided the relevant matrices are invertible, we have

T(WY)=T.(y,) (4.15)

where T stands for any one of the test statisti¢¢ 5 LM (), LR(¢) and Dyw (¢). If éﬁ* =
g(8°), we also have

PC.(Bh.; .) = PC(Bh; u) (4.16)
If g, (6) = [g*(6)], the Wald statistic is invariant : Wy,) =W ().

Cases where (4.14) holds only have limited interest because they doveotproblems where
D, is the derivative of an objective function, as occurs for example vilhestimators or (pseudo)
maximum likelihood methods are used :

D (6; Zn) = ;‘73‘%2’1). (4.17)

In such cases, one would typically have :

wherek (Z,.) may be a function of the Jacobian of the transformalign= g(Z,). To deal with
such cases, we thus assume that p, and

Dr. (64; Zni) = K (6.)'Dn(6; Zn) = K[g(6)) Dn (6; Zn) - (4.18)

From (2.3) and (4.18), it then follows that

/N Dps (B04; Zn) ni N[O, 1, (60.)] (4.19)
wherefo, = g(6p) and
1. (6.) =K (6.)'1k(6.)]K (8.) = K[F(O)]'1 (B)K[F(6)] - (4.20)
Further, .
o (8.3 Z0) = K [G(6)] Hn(8: Z0KG(6)]+ 3 Dni(6: 2K (61O (421)

whereDy; (0; Z,),1 =1, ..., p, are the coordinates @, (6; Z,) and

2p. 2.
k(6 o5 (8 7k

i ( *):W( *):W(Q*)- (4.22)

By a set of arguments analogous to those used in Dagenais and D86 (it appears that all
the statistics [except the LR-type statistic] are based Whpand so they are sensitive to a repa-
rameterization, unless some specific estimatariefused. At this level of generality, the following
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results can be presented using the following notatiohs ;P are the estimated matrices for a pa-
rameterization ir andl,, J,,P. are the estimated matrices for a parameterizatiof,inThe first
proposition below provides an auxiliary result on the invariance of gdimedC(a) statistics for
the canonical reformulatiog* (6..) = 0, while the following one provides the invariance property
for all the statistics considered and general equivalent reparamétarizand hypothesis reformu-
lations.

Proposition 4.4 C(a) CANONICAL INVARIANCE TO REPARAMETERIZATIONS. Lety* (6,) =
W [g1(6.)] , and suppose the following conditions hold:

(@) B =a(B).

(b) Dne(Bn.:Zn) =K[Bp,] D(8; Z0) ,

(c) o, =K'ioK, Jo. = K'JK ,

(d) Wn* - R_]-Wn(}z_l)/,

wherely, Jo and W, are defined as if3.20), andK = K(8°,). Then, provided the relevant matrices

are invertible, -0 ~0
PC.(6n.; ¥\ Whs) = PC(Bp; 4, Wh) .

Theorem 4.5 TEST INVARIANCE TO REPARAMETERIZATIONS AND GENERAL EQUIVALENT HY-
POTHESIS REFORMULATIONS Lety, : ©, — © be any continuously differentiable function of
0. € O, such thaty, [g(8)] =0« ¢ (0) =0, let m= p and suppose :

(@) Dni(9(8); Zn.) =K[g(6)]'Dn(6; Zn) .

(b) 1.(G(8)] =K[g(6)'T(8)K[F(6)] ,

(©) J.1G(8)] =KI[g(8) J(6)K[F(6)] .

where K(6,) = dg~1(0) /d0... Then, provided the relevant matrices are invertible, we have

TY)=T.(y,) (4.23)

where T stands for any one of the test statisticg¢ 5 LM (), LR(¢) and Dyw (). If ég* =
g(8r), we also have

PC. (85 w.) = PC(Bn; ), (4.24)
and, in the case whemg, (6) = @ [g1(8)],
W, (g,) =W (y) .

It is of interest to note here that conditi¢a) and (b) of the latter theorem will be satisfied if
Dn(6; Zn) = £ 511 (6; z) and each individual “score” gets transformed after reparameterization
according to the equation

h..(9(60); z.) =K[g(0)'h(6;z),t=1,,....,n, (4.25)
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whereDn. (§(6);Zn.) = 2 51 1 . (G(8) ; z.) . Consequently, in such a case, any estimété) of
the general form (3.6) will satisfgh) provided the matri¥\j (n) remains invariant under reparame-
terizations. This will be the case, in particular, for most HAC estimators ofdira {3.9) as soon
as the bandwidth paramet®x only depends on the sample sizeHowever, this may not hold B,

is data-dependent [as considered in Andrews and Monahan (1992)]

5. Invariant test criteria

Despite the apparent “positive nature” of the invariance results piexs@mthe previous section,
the main conclusion is that none of the proposed test statistics is invariameoagjeeparameteri-
zations, especially when the score-type function considered is ddrim@dan objective function.
In particular, this problem occurs when the score-type function iselgfiom a (pseudo) likelihood
function or, more generally, from the objective function minimized by an khvesor.

In this section, we propose two ways of building invariant test statistics.fifdtene is based
on modifying the LR-type statistics proposed by Newey and West (198G KoM setups, while
the second one exploits special properties of the linear exponential familgendo-maximum
likelihood models

5.1. Modified Newey—West LR-type statistic
Consider the LR-type statistic

Drw(W) = n[Mn (81, To) — Mn (B, To)]

whereM,(8,1o) = Dn (8; Z,)' I, '1Dn (6; Z»), proposed by Newey and West (1987, hereafter NW).
In this statistic,ip is any consistent estimator of the covariance mait(i@o) which is typically
a function of a “prgliminary” estimato@,, of 6 : ip = f(Gn). The minimized value of the objec-
tive functionMn(8,1p) is not invariant to general reparameterizations unless special restsietien
imposed on the covariance matrix estimétor

However, there is a simple way of creating the appropriate invariancecssaothe func-
tion [ () is a reasonably smooth function 6f Instead of estimating by minimizing M, (6, i),
estimatef by minimizing Mn(e, F(G)). For example, such an estimation method was studied by
Hansen, Heaton and Yaron (1996). When the score v&s{@nd the parameter vectérhave the
same dimensiofm= p), the unrestricted objective function will typically be zqm(én; Zy) =0,

so the statistic reduces Bnw(y) = nMn(ég, io). Whenm > p, this will typically not be the case.

2The reader may note that further insight can be gained on the invapamperties of test statistics by using differen-
tial geometry arguments; for some applications to statistical problem&ates and Watts (1980), Amari (1990), Kass
and Voss (1997), and Marriott and Salmon (2000). Such argumeaysatftow one to propose reparameterizations and
“invariant Wald tests”; see, for example, Bates and Watts (1981), &nag(1982), Le Cam (1990), Critchley, Marriott
and Salmon (1996), and Larsen and Jupp (2003) in likelihood modslsf Aow, such procedures tend to be quite diffi-
cult to design and implement, and GMM setups have not been consid&red.though this is an interesting avenue for
future research, simplicity and generality considerations have led usus fm procedures which do not require adopting
a specific parameterization.
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Suppose now the following conditions hold :

D« (9_(9) ,Zn*) = K
) K

[(6)]'Dn(6; Z) , (5.1)
1.(9(6)) = Ko

[9(e))'T(6)K[g(e)] - (5.2)
Then, for8, =g(8),

Mn. (6.,1.(6.)) = Dn.(g(6),Zn.)T.(a(8)) " Dn(3(6),Zn:) (5.3)
Dn(6;Z,)1(6)Dn(6;Zy,) .
Consequently, the unrestricted minimal vaMg(8n; [(8)) and the restricted onln(8°; 1(8))
so obtained will remain unchanged under the new parameterization, ansrtesponding LR-type
statistic B 0 ~ <0 L
D(y) = n[Mn(Gn; |(9n)) - Mn(en; |(9n))] (5.4)

is invariant to reparameterizations of the type consjdered in (4.18) - (4 2er standard regu-
larity conditions on the convergenceDf (6; Z,) andl (8) asn — o (continuity, uniform conver-
gence), it is easy to see thHatandDyw are asymptotically equivalent (at least under the null hy-
pothesis) and so have the same asymptpfitp;) distribution. For completeness, we state this
result in the following proposition. The proof is provided in Appendix B.

Proposition 5.1 ASYMPTOTIC DISTRIBUTION OF MODIFIEDNEWEY-WEST STATISTIC Under
the assumption&.8, A.9 andB.1to B.7 [stated in Appendices A and Bith r; = rankP(68o)] = p1,

the statisticD () = n[Mn(8y; 1(81)) — Mn(B0; 1(81))] converges in distribution to g(p) when
Y (6g) =0.

5.2. Pseudo-maximum likelihood methods

5.2.1. PML methods

Consider the problem of making inference on the parameter which appeées mean of an en-
dogenouss x 1 random vectoy; conditional to an exogenous random vector

EM [x) =f(x;0)="1(6),V(y|x)=o(x) (5.5)

where f;(0) is a known function and is the parameter of interest. (5.5) provides a non-linear
generalized regression model with unspecified variance. Even if a likelifction with a finite
number of parameters is not available for such a semi-parametric nfockah, be estimated through

a pseudo-maximum likelihood technique (PML) which consists in maximizing aechideelihood

as it were the true undefined likelihood; see Geroux, Monfort and Trognon (198%° In partic-

3For further discussion of such methods, the reader may consult: &@h§amaniego (1981), Goaroux, Monfort
and Trognon (1984), Trognon (1984), Bourlange and Doz (1988), Trognon and {@oomx (1988), Gouéroux and
Monfort (1993), Cépon and Duguet (1997) and Jorgensen (1997).
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ular, it is shown in the latter reference that this pseudo-likelihood must petotine specific class
of linear exponential distributions adapted for the mean. These distributires the following
general form:

L(y; 1) = exp[A(u) + B(y) +C(1)Y] (5.6)
wherep € R® andC(p) is a row vector of sizé&. The vectoru is the mean of if
oA o
ou  du H=

Irrespective of the true data generating process, a consistentyangtasically normal estima-
tor of 8 can be obtained by maximizing

n

rleXp{A( ft(60)) +B(yt) +C[ft (6)]y: } (5.7)

t=
or equivalently through the following equivalent programme:

n _dA dC
mé';lxt;{A[ft(G)}+C[ft(6)]yt} with 2+ 5 H=0. (5.8)

The class of linear exponential distributions contains most of the classitistisal models, such
as the Gaussian model the Poisson model, the Binomial model, the Gamma modebéatiecne
Binomial model, etc. The constraint in the programme (5.8) ensures that pleetation of the
linear exponential pseudo-distributionjis The pseudo-likelihood equations have an orthogonal
condition form:
< dffoC
& 06 du
The PML estimator solution of these first order conditions is consistentsyrdotically normal
N[0, (J'1-13)~1], and we can write:

o - (25 (] (G5))

- {(E)[(Eue)a (o) )} oo

These matrices can be estimated by :
n/of A oc,, - af ~\'
<05(9)> [(ftw))] (aé(6)> : (5.12)

Zs(é)s(é)’, (5.13)

Dn(6) (ft(6))(yt — f(6)) =0. (5.9)
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where

$(6) - (55(0)) [ 5o (18] (- (@), (5.14)

Slnce (ft(e)) andy; — f,(8) are invariant to reparameterizatiorisand J are modified only

0f
throughde Further,

we)=1@OI=16). 53— (5a) (55) = (55 )K@EN  G19

and

. =K[g0)]'TK[a8)], I =KI[g8)]IK[gH). (5.16)
The Lagrange, score aritl(a)-type pseudo-asymptotic tests are then invariant to a reparameter-
ization, though of course Wald tests will not be generally invariant to hygsighreformulations.
Consequently, this provides a strong argument for using pseudo tnggidg in the linear exponen-
tial family (instead of other types of densities) as a basis for estimating paranoéteonditional
means when the error distribution has unknown type.

The estimation of thd matrix could be obtained through direct second derivative calculus of

the objective function. For example, wheris univariate(G = 1), we have:

12 0f 5 0C
n

-= T)(é)ﬁTﬂ(ﬂ(é)) (09(9)) (v — ft(6))

The first two terms of this estimator behave after reparameterizatidnbas the last term is based

on second derivatives of(6) and so leads to non-invariance problems [see (3.5) and (4.21)].
The two last terms of vanish asymptotically, they can be dropped as in the estimation method
proposed by Gougiroux et al. (1984). For the invariance purpose, to discard the last term is the

correct way to proceed.

5.2.2. QGPML methods

Gourieroux et al. (1984) pointed out that some lower efficiency bound can be achieved by a two-
step estimation procedure, when the functional form of the true condits@mtaind order moment
of y; givenx; is known:

V(%) = Qo(%) = h(x, @o) = ht(ao).

The method is based on various classical exponential families (negativerial, gamma, normal)
which depend on an additional parametelinked with the second order moment of the pseudo-
distribution. If y and X~ are the expectation and the variance-covariance matrix of this pseudo-
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distribution: n = ¥(u, 2), whereW defines for anyu, a one to one relationship betwegnand
2.

The class of linear exponential distributions depending upon the exteanpsern is of the
following form:

1*(y, ;) = exp{A(K,n) +B(n,y) +C(K,n)y} .

If we consider the negative binomial pseudo distributhdp, n) = —n In <1+ %) andC(u,

In(u/(n+ p)); if otherwise we use the Gamma pseudo distributiiiy, n) = —nIn(u)
C(u,n) = —. Inthe former casen = W(u,0%) = po?/(1-0%) andin the latten = ¥(u, 0
u2o?.

With preliminary consistent estimatofis 6 of a, 6 where® andd are equivariant with respect
to g, computed for example as in Trognon (1984), the QGPML estimatBi®bbtained by solving
a problem of the type

)
an
)

malel (ve, f:(6), W(F(8), (&)

The QGPML estimatoB of 6 is strongly consistent and asymptotically normafn(é —6o) 5

N[O, ZQ] with
o (9 ft/ -1 (9 ft -1
2Q= {Ex [degt(ao) 20 )

0= = x| 5 (60)a (a0) 555 (60|

lo andJp can be consistently estimated by:

"= 1S s0.a.6)s6.0.0).
t=
A Ol OR OO e
where 3t TaC
8(0.6.6) - 2t [Wat(é),wft(é»gt(a))) (%~ 1(8))

Slnce (ft(G) W(f(0),a(d))), andy; — f() are invariant to reparameterizationdiindd are
equwarlant we face the same favorable case as before:

. = K|
J. = K]

and the Wald, Lagrange, score pseudo-asymptotic tests are invariargiarameterization. These
guasi-generalized pseudo-asymptotic tests are locally more powerfuthbamrresponding pure
pseudo-asymptotic tests under local alternatives [see Trognon {1984)
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Furthermore the quasi-generalized LR statistic (QGLR) is invariant prdyitie first-step esti-
mators@ andé are equivariant under reparameterization. And shown in Trognd@#jie QGLR
statistic is asymptotically equivalent to the other pseudo-asymptotic statistic tinedeull and un-
der local alternatives.

6. Numerical results

In order to illustrate numerically the (non-)invariance problems discudsedeawe consider the
model derived from the following equations:

A
yi = y+ Bt + B8 +u, (6.1)
w N[0, 07, t=1,...,n, (6.2)

wherexi(t’\) =04 —1)/A,i=12 % >0 with xi(t“ =log(xt) for A = 0, and the explanatory
variablesx;; andxy are fixed. The null hypothesis to be tested is:

Ho : A=1. (63)

The log-likelihood associated with this model is:

n
I = tzll [yt’ Y, Bl>B27 Aa 02]7 (64)
Iyt; Vs Bys By A az]——}m(zn)—}ln(az)—i 2 t=1..,n (6.5)
Vi Y, 1P2, Ny - 2 2 Zo_zut, =4,...,N .

It is easy to see that changing the measurement unitg;@ndxy, leaves the form of model (6.1)
and the null hypothesis invariant. For example, if b&thand xx are multiplied by a positive
constank, i.e.

Xite = KXat,  Xotx = KX, (6.6)

(6.1) can be reexpressed in terms of the scaled varialeandxy, as
A A
Ve =V, + Bl*xg_t*) + BZ*X(Zt*) + U, (67)
where the power paramet&rremains the same and

2
y, = y— kMK Zlﬁi , B.=Bk"’ i=12 (6.8)
1=

On interpreting model (6.1) - (6.2) as a pseudo-model and (6.4) as d@tikelihood, we will
examine the effect of rescaling on GMM-based and pseudo-likelihodsl tédoment equations
can be derived from the above model by differentiating the log-likelihood veiipect to model
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parameters and equating the expectation to zero. This yields following five maoaditions:

n
E|Y w|=0, (6.9)
LZ ]
=)
E UrX
t; 1t
=)
E Ut X
2

(_iﬁix{} In Xt —xf{”)] =0, (6.12)
E A 2 2 =0. 6.13
[t;(Ut o )] (6.13)

=0, (6.10)

=0, (6.11)

> c

These equations provide an exactly identified system of equations. &osgstem with 6 moment
equations (hence overidentified), we add the equation:

n
Z\UtxltXZt
t=

To get data, we considered the sample size200 and generateg according to equation (6.1) -
(6.2) with the parameter valugs= 10, 8, = 1.0, B, = 1.0, A = —1.0, 02 = 0.85. The values of
the regressorsy; andxy were selected by transforming the values used in Dagenais and Dufour
(1991)4

Numerical values of the GMM-based test statistics for a number of ressadirgreported in
Table 1 for the 5 moment system (6.9) - (6.13) and in Table 2 for the 6 momstensy6.9) - (6.14).
Results for the pseudo-likelihood tests appear in Table 1. Graphs of thimveriant test statistics
are also presented in figures 1 - 3. In these calculations, the first-giemates of the two-step
GMM tests is obtained by minimizinigl, (6, W,) in (2.5) withW, = I, (equal weights), while the
second step uses the weight matrix defined in (3.4). No correction fiat serrelation is applied
(although this could also be studied).

These results confirm the theoretical expectations of the theory prdsarttes previous sec-
tions. Namely, the GMM-based test statistitx {/), Wald, scoreC(a)] are not invariant to mea-
surement unit changes and, indeed, can change substantially (ewth thb null and the alterna-
tive hypotheses remain the same under the rescaling considered heng)vayiance is especially
strong for the overidentified system (6 equations). In contrasD{lge and score tests based on the
continuously updated GMM criterion are invariant. The same holds for thanndRadjusted score
criteria based on linear exponential pseudo likelihoods.

E —0. (6.14)

4The numerical values ofy, X1 andy; used are available from the authors upon request. It is important to rte th
this isnot a simulation exercisaimed at studying the statistical properties of the tests, but only an illustrdtite o
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Table 1. Test statistics fddg : A = 1 for different measurement units
5 moment models

_ Two-step GMM B CUP-GMM Pseudo ML
k D Wald | Score | C(a) D Wald | Score| C(a) LR Mod. score
0.2 | 0.001 | 44.750| 84.810 | 33.972| 5.771| 44.750| 5.771| 5.066 | 66.408| 31.060
0.4 | 0.000 | 44.746| 47.692 | 16.726| 5.771| 44.746| 5.771| 0.922 | 66.408| 31.060
0.6 | 0.001 | 44.745| 42.983 | 14.106| 5.771| 44.745| 5.771| 4.482 | 66.408| 31.060
0.8 | 0.010 | 44.744| 39.161 | 12.369| 5.771| 44.744| 5.771| 5.282 | 66.408| 31.060
1.0 | 0.056 | 44.743| 35.676 | 10.593| 5.771| 44.743| 5.771 | 5.3838 | 66.408 | 31.060
3.0 | 34.629| 44.743| 118.876| 42.124| 5.771| 44.743| 5.771| 0.6720| 66.408| 31.060
50 | 1.641 | 44.743| 62.195 | 34.746| 5.771| 44.743| 5.771| 2.5545| 66.408| 31.060
7.0 | 0.282 | 44.742| 61.766 | 34.953| 5.771 | 44.742| 5.771 | 3.9336| 66.408| 31.060
10.0| 0.068 | 44.739| 61.147 | 34.465| 5.771| 44.739| 5.771 | 4.5010| 66.408 | 31.060
Table 2. Test statistics fdig : A = 1 for different measurement units
6 moment models
B Two-step GMM B CUP-GMM
k D Wald Score| C(a) D Wald | Score| C(a)
0.2 0.016 | 416.546| 106.734| 54.462| 19.480| 359.380| 11.107| 3.189
0.4 0.036 | 221.829| 108.142| 54.852| 19.480| 83.743| 16.296| 7.318
0.6 0.248 | 213.918| 107.764| 52.818| 19.480| 40.481| 18.637| 7.063
0.8 1.068 | 178.757| 106.053| 47.539| 19.480| 34.101| 17.678| 0.661
1.0 | 3.562| 139.364| 103.364| 37.915| 19.480| 35.580| 17.769| 5.215
3.0 | 47.490| 46.214| 110.751| 7.960| 19.480| 45.146| 15.250| 4.650
5.0 1.651| 129.698| 48.704| 6.518| 19.480| 59.667| 13.367| 4.611
7.0 1.511| 384.944| 49.719| 9.978| 19.480| 118.911| 13.937| 5.639
10.0| 2.031| 905.870| 50.264| 10.747| 19.480| 406.974| 14.162| 6.136
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7. Conclusion

In this paper, we have studied the invariance properties of hypothesismsicable in the context
of incompletely specified models, such as models formulated in terms of estimatictgpiis and
moment conditions, which are usually estimated by GMM procedures, or medgisated by
pseudo-likelihood antf-estimation methods. The test statistics examined include Wald-type, LR-
type, LM-type, score-type, and(a)-type criteria. We found that all these procedures awet
generally invarianto (possibly nonlinear) hypothesis reformulations and reparameterizatiocts
as those induced by measurement unit changes. This means that testinmivedest hypotheses
in the context of equivalent models may lead to completely different infeeriéor example, this
may occur after an apparently innocuous rescaling of some model variable

In view of avoiding such undesirable properties, we studied restrictiaatscdn be imposed
on the objective functions used for pseudo-likelihood (or M-estimatiomyedsas the structure of
the test criteria used with estimating functions and GMM procedures to obtairnany tests. In
particular, we showed that using linear exponential pseudo-likelihoactiitns allows one to ob-
tain invariant score-type ard(a)—type test criteria, while in the context of estimating function
(or GMM) procedures it is possible to modify a LR-type statistic proposetlé&wey and West
(1987) to obtain a test statistic that is invariant to general reparameterzafitye invariance as-
sociated with linear exponential pseudo-likelihood functions is interpret@dstrong argument for
using such pseudo-likelihood functions in empirical work. Furthermoeel Rrtype statistic is the
one associated with using continuously updated GMM estimators based mpagiely restricted
weight matrices. Of course, this provides an extra argument for sudi @stimators.

numerical propertie®f the test statistics considered.
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A. Appendix: Distribution of the generalized C(a) statistic

In this appendix we derive the asymptotic distribution of the generali{ed statistic defined in
(3.20) under the following set of assumptions. Npté refers to the Euclidean distance, applied to
either vectors or matrices.

Assumption A.1 EXISTENCE OF SCORETYPE FUNCTIONS
Dn(8, w) = (D1n(6, W), ..., Dmn(6, w))', we 2, n=1,2, ...

is a sequence of m1 random vectors, defined on a common probability sgae o7, P), which
are functions of a x 1 parameter vectof, where6 € © C RP and© is a non-empty open subset
of RP. All the random variables considered here as well in the following assungpéimfunctions
of w, so the symbotv may be dropped to simplify notatiofesg., Oy(8) = Dn(0, w)].

Assumption A.2 SCORE ASYMPTOTIC NORMALITY. There is a valuéy € © such that
v/NDn(B0) nL D« (680) where D,(080) ~ N[0, 1 (6o)] .
Assumption A.3 NON-SINGULARITY OF THE SCORE VARIANCE |(8p) is nonsingular.

Assumption A.4 SCORE DIFFERENTIABILITY. Dp(8,w) is almost surelya.s) differentiable
with respect tad, for all n, in a non-empty open neighborhood bf 8¢. The derivative matrix of
Dn(6, w) is denoted

0DR(0,w
Hn(G7 OO) == na(e, )

where the sequence of matriceg(H, w), n > 1, is well-defined forw € 24 and Zy is an event
with probability one(i.e.,, P[w € 2] =1).

Assumption A.5 SCORE DERIVATIVE CONVERGENCE There is an nx p (nonrandom matrix
function J6) and a non-empty open neighborhoogl 8, such that, for alle > 0andd > 0,

limsupP [{w: An(Bo, 8, w) > €}] <Un(J, €, Bo)

n—oo

where
An(B0, 8, w) = sup{||Hn(B, w) —JI(B0)|| : 6 € Npband0 < |6 — By|| < d},

Un(9, €, 680) > 0and I(% Un(9d, €, 00) =0.

Assumption A.6 SCORE EXPANSION For 6 in a non-empty open neighborhood of 6y, D(8)
admits an expansion of the form

Dn(6, @) = Dn(80, @) +J(80)(6 — Bo) + Ra(8, 8o, w)
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for w € 24, where the remainder R0, 6o, w) satisfies the following condition: for argy> 0 and
o > 0, we have
limsupP [{w: ra(3, Bo, ) > €}] <Up(J, €, Bo)

Nn—oo

where IRu(6. 6 N
w

rn(9, By, W) = su i, 7o, 2N

(2 B, @) p{ 16 — B0l

Up(9d, €, 6p) > 0and Ig[ra Up(9, €, Bg) =0.

:GeNgand0<|]9—90H§5},

Assumption A.7 SCORE DERIVATIVE NON-DEGENERACY. ranKJ(0)] = p, for all 6 in a non-
empty open neighborhood; bdf 6.

Assumption A.8 RESTRICTION DIFFERENTIABILITY. ((8) is a p x 1 differentiable vector
function of6.

Assumption A.9 RESTRICTION RANK. There is a non-empty open neighborhoagdlfy such

that (0) is continuously differentiable with derivative &) = Z;p, and such that

Y(6) =0andB € N5 = rank[P(0)] =r1 (A1)
where0 <rq < ps.
Assumption A.10 ESTIMATOR /N CONVERGENCE éﬂ = ég(w) is a consistent estimator 6k,

i.e., 3
plim (85— 60) =0,

n—oo

such thaty,/n( éﬂ — Bo) is asymptotically bounded in probabilitye.,
limsup P[{w: ﬁHég— 6ol >y} <U(y; 60) ,Vy >0,
Nn—oo

where Uy; Bp) is a function such tha},im U(y; 6g) =0.

Assumption A.11 RESTRICTED ESTIMATOR w(éﬂ) = (J(0p) = 0 with probability 1.

Assumption A.12 CONSISTENT ESTIMATOR OF SCORE COVARIANCE MATRIX lo, is @ weakly
consistent estimator of 8y), i.e., plimlg, = 1(6o).

n—oo

Assumption A.13 WEIGHT MATRIX CONSISTENCY. W, n> 1, is a sequence of mm matrices
such thaplimW, =W where W is nonsingular.

n—oo
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PROOF OFPROPOSITION3.1  To simplify notation, we shall assume throughout et 2, (an
event with probability 1) and drop the symlwolfrom the random variables considered. In order to
obtain the asymptotic null distribution of the generalif¥dr) statistic defined in (3.21), we first
need to show thaf?(ég) andHn(ég) converge td?(6p) andJ(6p) respectively. The consistency of
P(8), i.e.
plim [P(8,) — P(80)] =0, (A2)
N—oo

follows simply from the consistency cﬁg [AssumptionA.10] and the continuity ofP(6) at B¢
[AssumptionA.9]. Further, sincd>(0) is continuous in open neighborhood&f, we also have

rank|[P,] n_%o rank[P(8o)] =r1. (A.3)

Consider nOV\Hn(ég). By the assumptioné.4 - A.5 andA.10, for anye > 0 ande; > 0, we can
choosed; = d(¢&1, €) > 0 and a positive integem (g, d1) such that: (iU (1, €, Bp) < €1/2, and
(i) n>ny (g, 01) entails

P [An(B0, 8) > €] = P[{w: An(Bo, 8, w) > €}] <Up(d1, €, Bo) < €1/2.

Further, by the consistency cﬁ}g [AssumptionA.10], we can choosen (g, 61) such thatn >
na(g, 81) entaiIsP[Hég— Bol < 81) > 1— (€1/2). Then, forn > max{n (¢, d1), nx(g, 31)}, we
have, using the Boole-Bonferroni inequality,

P[IHn(8) —3(B0)| <] > P[[By— 60|l < &1 and||Hq(Bp) — I(80)]| < ]
> P[[|85 — 60|l < &1 andan (6o, 81) < €]
> 1—P[||Bn— 60| > 1] — P[4n (60, 31) > €]
> 1- (81/2) — (81/2) = 1—81 .
Thus, 3
IinmJQf P[HHn(eg) —J(Bo)|| < €] >1—¢1,foralle >0, &1 >0,
hence

lim P [||Ha(Br) — 3(60)|| < €] =1, for all £ > 0,

n—oo

or, equivalently,
plim [Ha(82) — J(60)] = 0. (A.4)

nN—oo

By AssumptionA.6, we can write [setting 0 =0] :

/1 [Dn(80) —Dn(B0)] —3(B0)v/(Bn—B0)ll = VAIIR(Bn, B0
|Ra(Br. 60)

I ~0
= B ZOT /)80 — 6o
180 — 60|
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where .
[Ro(8n, 60)]
83— ol
and limsugP [rn(d, B0) > €] < Up(9, €, Bp). Thus, for anye > 0 andd > 0, we have:

n—oo

< 1n(3, B) whend® € Ng and||8° — || < &

~0
P[Wgs] > P[ra(3, 80) < £,82 € Nz and|| 82— 8| < &]
n— YO0

> 1-P[ra(5, 60) > €] — P85 ¢ Ns or |85 — o]l > 9]

hence, using the consistencyéﬁ,

liminf P |[Ra(8r, 80) /183 — Boll <&| =1~ limsupP [ra(3, 8o) > €]

n—oo
—IimsupP[ég ¢ Nz or || By — 6 > J]
Nn—oo
Z 1_UD(67 g, 60) .
SincegingD(a’ £, Bp) = 0, it follows thatnlirpoP[lan(ég, 80)||/18n — 8ol| < €] = 1 for anye >0,
or equivalently,
~0 ~0
|Rn(Br. 80)11/118 — B0l - 0.

Sinceﬁ(ég — 0p) is asymptotically bounded in probability (by Assumpti&ri0), this entails:

N 8% o .
VARy(82, 80)) = 1REn 80l 0 gy 2 0
18— 6ol
and -0 -0
1v/A[Dn(By) — Dn(B0)] — I(B0)v/n(8 — Bo)|| - 0. (A5)

By Taylor's theorem and assumptioAs3 - A.9, we also have the expansion:
PY(8) = P(80) +P(60)(6 — 6o) +Rx(6, Bo) , (A.6)

for 6 € N5, where
Jim [IRe(6, 80) /116 — 8ol =0,

i.e, Rx(8, 80) =0(]|6 — B¢||), so that, using Assumptioh.11,

VIP(80) (85— 60) = VA[W(Br) — W(B0)] — VAR(BY, 80) = —VNRe(BY, B0) (A7)
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for 8° € Ns, and

"‘O
IViP(60) (82— 80)]| = 1Rl = 0l 0 gy 2. 0. (A8)

185~ 6ol
By (A.3) and (A.4) jointly with the assumptios.3, A.7, A.8, A.9, A.12 andA.13, we have:

rank|[P] nTpol ri, rank[J,] n%o: p, rank{lon] n%oi m, rank[W] n%o; m, (A.9)

so that the probability that the matnc.éﬁ IOn, andW, all have full column rank converges to one as
n — oo; this follows on observing thamJn, lon, andWj, each converge to matrices with determinants
strictly greater than zero and from the continuity of determinants with regpdue elements of the
corresponding matrices. Since plin= P(68) and plimJ, = J(8o), we can then write:

n—oo n—oo

plim [J\Vhdh]~ = [3(80)WbI(60)] ", plim Gn = Q(80),

nN—oo n—oo

plimQndn = plimQnd(60) = Q(80)J(60) = P(B0),

n—oo n—oo

whereQ, = QW] = Pa[JWhdn] - J:Wh. Then, using (A.8) and (A.5), it follows that:

plim  {/AGn Dn(8F) — i B0) Dn(60) |
= plim { y/AGuDn(87) — QA80) VD1 (Bo) } — plim { P(60) /(8 80) }

Nn—oo Nn—oo

= plim { Gy [ /A[Dn(87) — Dn(80)] — 3(80) v/A(B7 — 60)] |

n—oo

+plim { [Gn— Q(80)] VD (80) + [Gr3(B0) — P(80)] VA (B — 60) }
= plim { Gy [/A[D1(8}) — Da(60)] —I(80) v/ (87— 80)] | =0

n—oo

We conclude that the asymptotic distribution QFnQnDn(ég) is the same as the one of
Q(B0)y/NDn(B0), namely by Assumptior.2, aN [0,Vy(6o)] distribution where

has rank'; = rank[Q(68o)] = rank[P(68o)] in an open neighborhood éf. Consequently, the esti-
mator

Vip(8r) = Grlon, (A.10)
converges t&y(6o) in probability and, by (A.9),

rank[Vy, (85)] nio:rl andP[rank[Vw(ég)] = rl} — 1. (A.11)

nN—oo
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Further, when ranfg,] = rankWy] = m, rank[J,] = pand rankP,] = r1 (an event whose probability
converges to one as— o), the matrixG, Ny (89)]~Gn = G4[Gnlon@)~Gn is invariant to the choice

of the generalized invers@ﬁw(ég)]*; see Harville (1997, Section 9.4, p. 119). Thus the test criterion
PC(Bh; Y. Wa) = nDn(B7; Zn) QWh)' { Q] ionQWh]' }~ QW] Dn (B Zn)

is_(with_probability converging to one) also invariant to the choice of the igdized inverse
{QMWh]1onQWh]'} . Finally, by Theorems 1 and 2 of Andrews (1987), it follows that the asytigpto

distribution ofPC(8%; t, W) is x2(r1). O

It is of interest to note here that the assumptiérs andA.6 do not require that the derivative
matrix of Dp(0) [i.e., Hn(6, w)] be continuous with respect #, even in an open neighborhood of
6o. More usual assumptions would consist in assuming th&8, w) has probability limitJ(6),
and bothH,(8, w) andJ(0) are continuous at least at every point in a neighborhooélpofWe
will now show that the assumptions made for establishing Proposgibinclude the standard
assumptions as special cases. The latter may be stated in the following form.

Assumption A.14 SCORE DERIVATIVE UNIFORM CONVERGENCE There is an nx p
(nonrandom matrix function J6) and a non-empty open neighborhoogldi 6, such that:

(a) Hn(8, w) is continuous with respect & for all 8 € Ny, w € 24 and n> 1;

(b) sup|[Hn(6, w)—J3(8)] - 0.
9€N2

n—oo

Proposition A.15 SUFFICIENCY OF SCOREJACOBIAN CONTINUITY AND UNIFORM CONVER-
GENCE Suppose the assumptiofidl to A.4 hold. Then Assumptiof.14 entails that:

(a) J(0) is continuous aB = By;

(b) both the assumptions.5 andA.6 also hold.

PrROOF. Consider the (nonempty) open neighborhdd@d= N; NN, of 8¢. For any8 € Ny and
w e Z, we can write

19(8) =3(Bo)[| < [[Hn(6, @) —I(8)][+ [|Hn(Bo, @) — I(6o)
+ [[Hn(6, @) — Hn(60, w)||
< 2 eselﬁpHHn(ey @) = J(0)[| +[[Hn(6, @) — Hn(6o, w)|

By AssumptionA.14(b), we have

pnm( sup||Hn(6, w)—J(G)H) < plim( sup||Hn(8, w)—J(G)H) —0

n—oo * BeNy n—oo \GeN,
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and we can find a subsequence bif, (0, w) :t =1,2,...} of {Hn(8,w) : n=1,2,...} such that

t—oo

sup{||Hn (6, w) - J(O)[I} 20 as
6Ny

Let
CS={we 2 Jim ( sup|[Hq (6, @)~ 3()] ) =0}
t—oo 6eNp

ande > 0. By definition,P [w € CS = 1. For w € CS we can choosi(&, w) such that

t>to(,00) = 2 sup{[[Hn (6, ) — J(0) |} < £/2.

€Np

Further, sincéH, (6, w) is continuous abp, we can findd(w) > 0 such that
18 — 60| < &(n,w) = ||Hn(O, w) —Hn(Bp, w)|| < €/2.

Thus, takingn = ny,, we find that||6 — 6| < d(n,, ) implies

£

13(6) = 3(B0)]| < 5 +5 =+

In other words, for ang > 0, we can choosé = d(n,, €) > 0 such that
16 — 6ol < &= 13(8) - I(Bo)|| <&,

and the functiord(6) must be continuous #y. Part (a) of the Proposition is established.
SetAn (N2, w) = sup{||Hn(6, w) —J(0)| : 6 € No}. To getA.5, we note that

An(Bo, 0, W) sup{||Hn(6, w) —J(Bo)|| : 6 € Npand 0< |8 — B¢|| < &}

S AH(N27 (‘))
foranyd > 0, hence, by AssumptioA.14(b),
limsupP[{w:An(Bo, 0, w) > €}] < limsupP [{w:An(Np, ) > €} ]

nN—oo N—oo

Un (57 g, 90)

A

for any functionUy (9, €, 8o) that satisfies the conditions of Assumptiérb. The latter thus holds.

To obtainA.6, we note thatA.14 entailsD, (6, w) is continuously differentiable in an open
neighborhood 0B, for all w € 2y, so that we can apply Taylor's formula for a function of several
variables [see Edwards (1973, Section 11.7)] to each compondd (@, w) : for all 6 in an open
neighborhood) of 8y (we can takéJ C Np), we can write

/
i-

Din(8, @) = Dm(eo,w)+Hn(é‘n(w),w) (8- 6o)

—  Din(60, @) +3(60),.(8 — B0) + R (Bp(w), B, @), i=1,..., m
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whereHn (6, w);. andJ(0);. are the-th rows ofHy(6, w) andJ(0) respectively,
R (B1(@), B0, @) = [Ha (B4 (@), @)i. —I(80)1]'(8 - 80)
and@,z(w) belongs to the line joining and 6. Further, for € U,

[ Ha(8n(), w)i.— 3(80)| 16— 60l
|Hn(Bn(@), @) —3(60)|| 116 — 6ol
16 — 8o sup{||Hn(8, w) —J(8)]|: 0 €N} ,i=1,...,m,

IRn (85(w), B0, )|

IN A IA

hence, on definindl3 = U,

/

R(68, 80, @) = [Rin(Bn (@), 80, @), ... , Ren(Bp (@), B0, )],

we see that
< A
IRa(6, B0, w)|| - < Z}Rm(en(w), 6o, w)|
1=
< m{8— 6ol sup{[|Hn(6, w)—-J(6)]}
QGNZ
and
(o, B, w) = sup{W ;60 cNgand 0< [|6 — Bg| < 6}
—bo

< msup{||Hn(8, w) —J(0)| : 8 € N2}

Thusry (3, 8o, w) —— 0 and

n—oo

limsupP [{w: (3, Bo, w) > €}] <Up(J, &, Bo) (A.12)
n—oo
must hold for any function that satisfies the conditions of Assumpfigh This completes the
proof. O

B. Appendix: Distribution of the modified NW LR-type statistics

The consistency and asymptotic normality of estimators based on the optimizatiamizaimn
tion in our case) of a random criteril],(0) say, rests upon various types of assumptions. Pakes
and Pollard (1989) gave conditions for criteria of the following typEs:(6; Z,)' Dn(8; Z,) or
Dn(6; Zn)’ln(e)’1 Dn(8; Z,). Gourieroux and Monfort (1995) gave general conditions @Qr:
argminMu(0) to be consistent and asymptotically normal, where typicsliy6) = Mn(8; w) =
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Mn(6; Zn(w)) for w € 2 and Z is the relevant sample space. These conditions are listed here.
Assumption B.1 COMPACT PARAMETER SPACE 6 € O, where@ is a compact set dkP.

Assumption B.2 OBJECTIVE FUNCTION CONTINUITY. M(8) = My(8; w) is a real function on
O x 2, such that M(0; w) is a continuous function @ for all w € Z.

Assumption B.3 OBJECTIVE FUNCTION UNIFORM CONVERGENCE There is a fixednon-
random) functionM(60) such that

P({w: max| Mn(6; w) - M(6) |— 0}) = 1.

n—oo

Assumption B.4 ASYMPTOTIC IDENTIFICATION. M(8) has a unique minimum & = 6y in the
interior of ©.

Assumption B.5 UNIFORM CONVERGENCE OF SECOND DERIVATIVES My(0; w) is a twice
continuously differentiable function # and there is a fixed (non-random) functiori5 such that

P[{w: sng;;(';/len,(B; w)—G(0)

— 0} =1,

n—oo

Assumption B.6 OBJECTIVE FUNCTION ASYMPTOTIC REGULARITY Forall 6 € ©,G(0) is a
nonsingular matrix.

Assumption B.7 OBJECTIVE FUNCTION ASYMPTOTIC NORMALITY.

dM”(eo; w) —= N[0, H(60)].

\/ﬁ 06 n—oo

Proposition B.8 CONVERGENCE AND ASYMPTOTIC NORMALITY OF CONTINUOQUSLY UPDAED
GMM ESTIMATOR.

(a) Under the assumptionB.1 to B.5, there is a sequencé, = argminM,(6) that converges
almost surely tdg.

(b) Under assumptionB.1to B.7,

V1 (80— 80) — N[0, G(80) "H(80)G(60) ] . (B.1)

If we consider the specific casé(8) = Dn(8)'In(8) 1Dn(6) assumptiorB.2 is fulfilled when
Dn(8) andl,(6) are continuous vectors and matrices. AssumpBddwill be verified if Dn(6)
andl,(0) are strongly consistent for &l. Since plinD,(6g) = 0, the minimum oM(0) is 0 and

N—oo

since plimDy(0) # 0 when8 # 8, M(8) > 0 when8 # 8y, if 1,(8) is bounded for alh and

n—oo
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6. AssumptionB.5 requiresD,(8) andl,(8)~! are twice continuously differentiable. And in the
present contex{/NDy(8)) ni> N[0, 1(80)] andln(8o) ni> I (8o) ensures assumptidh 7.

The unconstrained estimatéﬁ satisfies the first order conditions

M 5
5p (6n) =0

while, on using the Lagrangial¥’ = M,(8) — A'g(0), the constrained estimatcérg solves the
system:

oM, oy  -o. =~
(8% - 2L @94, = o,
00

wherey (8) = 0 is the null hypothesis tested.

If we add the assumption&.8 andA.9 of Appendix A toB.1 - B.7, 8, and " are strongly
consistent and asymptotically normal vectors. We can now prove Propdsitio
PROOF OFPROPOSITION5S.1  The consistency and normal limits 8f, and éﬁ,’ yield the classical
developments :

oM~ Mn 9°Mh -

0 = g (6n)="5 (90)+06(96’(90) (6n—60) +enn, (B.2)
OMn d 0°Mn oY .o, =~

0 - w(éﬂ):weo) ;"e”,wo) (62— 60) + e (8.4

whereey, i = 1,2,3, areop (1/4/n) . Taking into account the assumptions of sections 2 and 3 jointly
with the convergence df, (o) to | (6p) = lp, we see that:

oM L 9°M
Vg (80) = N(0,Uo) , -7 (80) > Vo,

where
Uo = 43ly 1Jo = V0.

The latter identity can be shown as follows. We have:

oM, oD,

g (80) =221 (60)n (80) " +/NDy (B0) + /N, (Bo)

vn (717
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wherel, (0o) is a p—dimensional vector with elements

oIt

aei (GO)DH(60>DH(60)/ ,i=l,2,...,p.

tr

%‘ (80) converges in probability tdy,

Since/nDy (8p) converges in distribution til (0, 1o)
vn{,(6o) is0p(1). Consequently,

oM,
Vi 20

Using similar arguments, we see that:

(80) — N (0,Up) with Ug = 4Joly Lo .

(32|\/|n oD;, 10Dn

whereZ, is ap x p matrix with elements :

(60) + Zn

92D}, (o) 1 oDy, dlt

W'n(%) Dn (o) + 54" (60) 29, (60) D (60)
a1yt dDp, aD,,

+ ael (90) [061 (90) (60>+Dn(90) dej (60)]
o1t 9Dy, dD,

155 (60) [ 76, (09)Dn(60) +Dn(80) 35 (90)]

2|71 ,
+ traeigej (90) Dn(eo) Dn(eo)

SinceDy, (6g) isop (1), 2, is alsoop (1) and

9°My,
0006’

Under the null hypothesig (8o) = 0, equations (B.2), (B.3) and (B.4) can be rewritten:

Uo
(60) - Vo = 2Jplg. 130_?

Xa+Vo(Bn—680) +€, = O, (B.5)
Xo+Vo(Bn— 60) —PoAn+€5, = O, (B.6)
Po(Bn—60) +€5 = O, (B.7)

whereX, = %ﬂ (80), v/NXy ni> N(0,Uop), €&}, i = 1,2,3 areop(1/4/n). We can then write, after
some algebra :

A

Oh—60 = —Voilxn‘f‘gln; (B.8)
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Oh—60 = —AXi+ém, (B.9)
An = —CXi+&an, (B.10)

whereeiy, i = 1,2,3 areop(1/+/n) and

_ _ _ -1 _ _ -1 _
A=Vy =V IR (RVG IR "Ryt C=— (P, 'R)) PV, *

Consider now the modified Newey-West stati®iay) = n&,,, where
Ao A~
En — Mn(en) - Mn(en) .
Developingé , up to order 2, we see that

oM, oM,

$n = 59/( )( 0) 90 (6o) (9 90)
S (GEFA TS
—(6n—6 )/;egﬂg,(eo)(e 90)}+en (B.11)

wheree, is op (1) . Using (B.8) and (B.9), (B.11) becomes :

1\ — 1 1 *
&n=%(Vo L At SA%A— 2V )X+ 6 (B.12)

with €, = 0p (2) . SinceAbA = A, we have
1 / -1 *

l _ / _ — — *
= DXV R (P TRY) T RVg Xt

hence
1
D(y) =n&, — qul/Z 5 R (P tR)) RV MU Pu,  whereu~ N (O,1p)
UsingUg = 2V, we see that
Q — 7u§/2v0 1R} (Vg 2P5) RV TUE 2 = vy 2R (R IRY) TR, 2
Q@ = Q,0Q00=0Q,
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soQ is an orthogonal projector with ran = dim(¢). Thus, under the hypothesjs(6) = 0,

D(y) — X2(p) -

n—oo
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