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Christian Gouríeroux, St́ephane Gŕegoir, Herv́e Mignon, Denis Pelletier, Mohamed Taamouti and Pascale Valéry for
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ABSTRACT

We study the invariance properties of various test criteria which have been proposed for hypothesis
testing in the context of incompletely specified models, such as models which areformulated in
terms of estimating functions (Godambe, 1960,Ann. Math. Stat.) or moment conditions and are es-
timated by generalized method of moments (GMM) procedures (Hansen, 1982, Econometrica), and
models estimated by pseudo-likelihood (Gouriéroux, Monfort and Trognon, 1984,Econometrica)
andM-estimation methods. The invariance properties considered include invariance to (possibly
nonlinear) hypothesis reformulations and reparameterizations. The test statistics examined include
Wald-type, LR-type, LM-type, score-type, andC(α)−type criteria. Extending the approach used
in Dagenais and Dufour (1991,Econometrica), we show first that all these test statistics except the
Wald-type ones are invariant to equivalent hypothesis reformulations (under usual regularity con-
ditions), but all five of them arenot generally invariantto model reparameterizations, including
measurement unit changes in nonlinear models. In other words, testing two equivalent hypothe-
ses in the context of equivalent models may lead to completely different inferences. For example,
this may occur after an apparently innocuous rescaling of some model variables. Then, in view
of avoiding such undesirable properties, we study restrictions that can be imposed on the objective
functions used for pseudo-likelihood (or M-estimation) as well as the structure of the test criteria
used with estimating functions and GMM procedures to obtain invariant tests. In particular, we
show that using linear exponential pseudo-likelihood functions allows oneto obtain invariant score-
type andC(α)−type test criteria, while in the context of estimating function (or GMM) procedures
it is possible to modify a LR-type statistic proposed by Newey and West (1987, Int. Econ. Rev.) to
obtain a test statistic that is invariant to general reparameterizations. The invariance associated with
linear exponential pseudo-likelihood functions is interpreted as a strong argument for using such
pseudo-likelihood functions in empirical work.

Key words: Testing; Invariance; Hypothesis reformulation; Reparameterization; Measurement
unit; Estimating function; Generalized method of moment (GMM); Pseudo-likelihood; M-
estimator; Linear exponential model; Nonlinear Model; Wald test; Likelihood ratio test; score test;
Lagrange multiplier test;C(α) test
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1. Introduction

Model and hypothesis formulation in econometrics and statistics typically involvea number of ar-
bitrary choices, such as the labelling of i.i.d. observations or the selection ofmeasurement units.
Further, in hypothesis testing, these choices often have no incidence on the interpretation of the null
and the alternative hypotheses. When this is the case, it appears desirable that statistical inference
remaininvariant to such choices; see Hotelling (1936), Pitman (1939), Lehmann (1983, Chapter 3),
Lehmann (1986, Chapter 6) and Ferguson (1967). Among other things,when the way a null hypoth-
esis is written has no particular interest or when the parameterization of a model is largely arbitrary,
it is natural to require that the results of test procedures do not dependon such choices. This holds,
for example, for standardt andF tests in linear regressions underlinear hypothesis reformulations
and reparameterizations. Innonlinearmodels, however, the situation is more complex.

It is well known that Wald-type tests are not invariant to equivalent hypothesis reformulations
and reparameterizations; see Cox and Hinkley (1974, p. 302), Burguete, Gallant and Souza (1982, p.
185), Gregory and Veall (1985), Vaeth (1985), Lafontaine and White(1986), Breusch and Schmidt
(1988), Phillips and Park (1988), and Dagenais and Dufour (1991).For general possibly nonlinear
likelihood models (which are treated as correctly specified), we showed in previous work [Dagenais
and Dufour (1991, 1992), Dufour and Dagenais (1992)] that veryfew test procedures are invariant
to general hypothesis reformulations and reparameterizations. The invariant procedures essentially
reduce to likelihood ratio (LR) tests and certain variants of score [or Lagrange multiplier (LM)]
tests where the information matrix is estimated with either an exact formula for the (expected) in-
formation matrix or an outer product form evaluated at the restricted maximum likelihood (ML)
estimator. In particular, score tests are not invariant to reparameterizations when the information
matrix is estimated using the Hessian matrix of the log-likelihood function evaluated at the re-
stricted ML estimator. Further,C(α) tests are not generally invariant to reparameterizations unless
special equivariance properties are imposed on the restricted estimators used to implement them.
Among other things, this means that measurement unit changes with no incidence on the null hy-
pothesis tested may induce dramatic changes in the conclusions obtained fromthe tests and suggests
that invariant test procedures should play a privileged role in statistical inference.

In this paper, we study the invariance properties of various test criteria which have been pro-
posed for hypothesis testing in the context of incompletely specified models, such as models which
are formulated in terms of estimating functions [Godambe (1960)] – or moment conditions – and
are estimated by generalized method of moments (GMM) procedures [Hansen(1982)], and models
estimated byM-estimation [Huber (1981)] or pseudo-likelihood methods [Gouriéroux, Monfort and
Trognon (1984c, 1984b), Gouríeroux and Monfort (1993)]. For general discussions of inference in
such models, the reader may consult White (1982), Newey (1985), Gallant (1987), Newey and West
(1987), Gallant and White (1988), Gouriéroux and Monfort (1989, 1995), Godambe (1991), David-
son and MacKinnon (1993), Newey and McFadden (1994), Hall (1999) and Ḿatyás (1999); for
studies of the performance of some test procedures based on GMM estimators, see also Burnside
and Eichenbaum (1996) and Podivinsky (1999).

The invariance properties we consider include invariance to (possibly nonlinear) hypothesis
reformulations and reparameterizations. The test statistics examined include Wald-type, LR-type,
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LM-type, score-type, andC(α)-type criteria. Extending the approach used in Dagenais and Dufour
(1991) and Dufour and Dagenais (1992), we show first that all thesetest statistics except the Wald-
type ones are invariant to equivalent hypothesis reformulations (underusual regularity conditions),
but all five of them arenot generally invariantto model reparameterizations, including measurement
unit changes in nonlinear models. In other words, testing two equivalent hypotheses in the context
of equivalent models may lead to completely different inferences. For example, this may occur after
an apparently innocuous rescaling of some model variables.

In view of avoiding such undesirable properties, we study restrictions that can be imposed on the
objective functions used for pseudo-likelihood (or M-estimation) as well as the structure of the test
criteria used with estimating functions and GMM procedures to obtain invarianttests. In particular,
we show that using linear exponential pseudo-likelihood functions allows one to obtain invariant
score-type andC(α)-type test criteria, while in the context of estimating function (or GMM) pro-
cedures it is possible to modify a LR-type statistic proposed by Newey and West (1987) to obtain
a test statistic that is invariant to general reparameterizations. The invariance associated with linear
exponential pseudo-likelihood functions can be viewed as a strong argument for using such pseudo-
likelihood functions in empirical work. Of course, the fact that Wald-type tests are not invariant to
both hypothesis reformulations and reparameterizations is by itself a strong argument to avoid using
this type of procedure (when they are not equivalent to other procedures) and suggest as well that
Wald-type tests can be quite unreliable in finite samples; for further argumentsgoing in the same
direction, see Burnside and Eichenbaum (1996), Dufour (1997), and Dufour and Jasiak (2001).

In Section 2, we describe the general setup considered, while the test statistics studied are de-
fined in Section 3. The invariance properties of the available test statistics are studied in Section 4.
In Section 5, we make suggestions for obtaining tests that are invariant to general hypothesis refor-
mulations and reparameterizations. Numerical illustrations of the invariance (and noninvariance)
properties discussed are provided in Section 6. We conclude in Section 7.Proofs appear in ap-
pendix.

2. Framework

We consider an inference problem about a parameter of interestθ ∈Θ ⊆R
p. This parameter appears

in a model which is not fully specified. In order to identifyθ , we assume there exists am×1 vector
score-type functionDn(θ ; Zn) whereZn = [z1,z2, . . . ,zn]

′ is an×k stochastic matrix such that-

Dn(θ ; Zn)
p−→

n→∞
D∞ (θ ; θ 0) . (2.1)

D∞ (· ; θ 0) is a mapping fromΘ ontoR
m such that:

D∞ (θ ; θ 0) = 0⇐⇒ θ = θ 0 , (2.2)

so the value ofθ is uniquely determined byD∞ (θ ; θ 0) . Furthermore, we assume that

√
nDn(θ 0; Zn)

L−→
n→∞

N [0, I (θ 0)] (2.3)
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and

Hn(θ 0; Zn) =
∂

∂θ ′Dn(θ 0; Zn)
p−→

n→∞
J(θ 0) (2.4)

whereI (θ 0) andJ(θ 0) arem×mandm× p full-column rank matrices.
Typically, such a model is estimated by minimizing with respect toθ an expression of the form

Mn(θ , Wn) = Dn(θ ; Zn)
′WnDn(θ ; Zn) (2.5)

whereWn is a symmetric positive definite matrix. The method of estimating equations [Durbin
(1960), Godambe (1960, 1991), Basawa, Godambe and Taylor (1997)], the generalized method
of moments [Hansen (1982), Hall (2004)], maximum likelihood, pseudo-maximum likelihood,M-
estimation and instrumental variable methods may all be cast in this setup. Under general regularity
conditions, the estimator̂θ n so obtained has a normal asymptotic distribution:

√
n(θ̂ n−θ 0)

L−→
n→∞

N [0,Σ (W0)] (2.6)

where
Σ (W0) =

(
J′0W0J0

)−1
J′0W0I0W0J0

(
J′0W0J0

)−1
, (2.7)

J0 = J(θ 0) , I0 = I (θ 0) , W0 = plim
n→∞

Wn , det(W0) 6= 0 ; (2.8)

see Gouríeroux and Monfort (1995, Chapter 9).
If we assume that the number of equations is equal to the number of parameters (m= p) , a

general method for estimatingθ also consists in finding an estimatorθ̂ n which satisfies the equation

Dn(θ̂ n; Zn) = 0 . (2.9)

Typically, in such cases,Dn(θ ; Zn) is the derivative of an objective functionSn(θ ; Zn), which is
maximized (or minimized) to obtain̂θ n, so that

Dn(θ ; Zn) =
∂Sn(θ ; Zn)

∂θ
, Hn(θ ; Zn) =

∂Sn(θ ; Zn)

∂θ∂θ ′ .

This sequence is asymptotically normal with zero mean and asymptotic variance

ΣD (θ 0) =
[
J(θ 0)

′ I (θ 0)
−1J(θ 0)

]−1
=
(
J′0I−1

0 J0
)−1

. (2.10)

Obviously, condition (2.9) is entailed by the minimization ofMn(θ) whenm= p. It is also inter-
esting to note that problems withm> p can be reduced to cases withm= p through an appropriate
redefinition of the score-type functionDn(θ ; Zn) , so that the characterization (2.9) also covers most
classical asymptotic methods of estimation. A typical list of methods is the following.
a) Maximum likelihood. In this case, the model is fully specified with log-likelihood function
Ln(θ ; Zn) and score function

Dn(θ ; Zn) =
1
n

∂
∂θ

Ln(θ ; Zn) . (2.11)
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b) Generalized method of moments(GMM). θ is identified through am×1 vector of conditions
of the form:

E [ht (θ ; zt)] = 0 , t = 1, . . . ,n . (2.12)

Then one considers the sample analogue of the above mean,

hn(θ) =
1
n

n

∑
t=1

ht (θ ; zt) , (2.13)

and the quadratic form
Mn(θ) = hn(θ)′Wnhn(θ) (2.14)

whereWn is a symmetric positive definite matrix. In this case, the score-type function is:

Dn(θ ; Zn) = 2
∂hn(θ)′

∂θ
Wnhn(θ) . (2.15)

c) M-estimator.θ̂ n is defined through an objective functionQn of the form:

Qn(θ ; Zn) =
1
n

n

∑
t=1

ξ (θ ; zt) . (2.16)

The score function has the following form:

Dn(θ ; Zn) =
∂Qn

∂θ
(θ ; Zn) =

1
n

n

∑
t=1

∂
∂θ

ξ (θ ; zt) . (2.17)

3. Test statistics

Consider now the problem of testing
H0 : ψ (θ) = 0 (3.1)

whereψ (θ) is a p1×1 continuously differentiable function ofθ , 1≤ p1 ≤ p and thep1× p matrix

P(θ) =
∂ψ
∂θ ′ (3.2)

has full row rank (at least in an open neighborhood ofθ 0). Let θ̂ n be the unrestricted estimator

obtained by minimizingMn(θ), andθ̂ 0
n the corresponding constrained estimator underH0.

At this stage, it is not necessary to specify closely the way the matricesI (θ 0) andJ(θ 0) are
estimated. We will denote bŷI0 andĴ0 or by Î andĴ the corresponding estimated matrices depending
on whether they are obtained with or without the restrictionψ (θ) = 0. In particular, if

Dn(θ ; Zn) =
1
n

n

∑
t=1

ht (θ ; zt) , (3.3)
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standard definitions of̂I (θ) andĴ(θ) would be :

Î (θ) =
1
n

n

∑
t=1

ht (θ ; zt)ht (θ ; zt)
′ , (3.4)

Ĵ(θ) =
∂Dn

∂θ ′ (θ) = Hn(θ ; Zn) , (3.5)

whereθ can be replaced by an appropriate estimator.
For Î (θ), other estimators are also widely used. Here, we shall consider generalestimators of

the form

Î (θ) =
n

∑
s=1

n

∑
t=1

wst(n)hs(θ ; zs)ht (θ ; zt)
′

= h(θ ; Zn)WI (n)h(θ ; Zn)
′ (3.6)

whereWI (n) =
[
wst(n)

]
is a n× n matrix of weights (which depend of the sample sizen and,

possibly, on the data) and

h(θ ; Zn) =
[
h1(θ ; z1) , h2(θ ; z2) , , . . . , hn(θ ; zn)

]
. (3.7)

For example, a “mean corrected” version ofÎ (θ) may be obtained on takingWI (n) = In− 1
nιnι ′n,

whereIn is the identity matrix of ordern andιn = (1, 1, . . . , 1)′, which yields

Î (θ) =
n

∑
t=1

[
ht (θ ; zt)−h(θ)

][
ht (θ ; zt)−h(θ)

]′
(3.8)

where h(θ) = 1
n

n
∑

t=1
ht (θ ; zt) . Similarly, so-called “heteroskedasticity-autocorrelation consistent

(HAC)” covariance matrix estimators can usually be rewritten in the form (3.6). In most cases,
such estimators are defined by a formula of the type:

Î (θ) =
n−1

∑
j=−n+1

k̄( j/Bn) Γ̂ ( j, θ) (3.9)

wherek̄(·) is a kernel function,Bn is a bandwidth parameter (which depends on the sample size
and, possibly, on the data), and

Γ̂ ( j, θ) =





1
n

n
∑

t= j+1
ht (θ ; zt)ht− j (θ ; zt− j)

′ , if j ≥ 0,

1
n

n
∑

t=− j+1
ht+ j (θ ; zt+ j)ht (θ ; zt)

′ , if j < 0 .
(3.10)

For further discussion of such estimators, the reader may consult Neweyand West (1987), Andrews
(1991), Andrews and Monahan (1992), Hansen (1992), and Cushing and McGarvey (1999).
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In this context, analogues of the Wald, LM, score andC(α) test statistics can be shown to
have asymptotic null distributions without nuisance parameters, namelyχ2(p1) distributions. On
the assumption that the referenced inverse matrices do exist, these test criteria can be defined as
follows:
(a) Wald-type statistic,

W (ψ) = nψ(θ̂ n)
′[P̂
(
Ĵ′ Î−1Ĵ

)−1
P̂′ ]−1ψ(θ̂ n) (3.11)

whereP̂ = P(θ̂ n), Î = Î(θ̂ n) andĴ = Ĵ(θ̂ n);
(b) score-type statistic,

S(ψ) = nDn(θ̂
0
n; Zn)

′ Î−1
0 Ĵ0

(
Ĵ′0Î−1

0 Ĵ0
)−1

Ĵ′0Î−1
0 Dn(θ̂

0
n; Zn) (3.12)

whereÎ0 = Î(θ̂ 0
n) andĴ0 = Ĵ(θ̂ 0

n);
(c) Lagrange-multiplier (LM) type statistic,

LM (ψ) = nλ̂
′
nP̂0
(
Ĵ′0Î−1

0 Ĵ0
)−1

P̂′
0λ̂ n (3.13)

whereP̂0 = P(θ̂ 0
n) andλ̂ n is the Lagrange multiplier in the corresponding constrained optimization

problem;
(d) C(α)-type statistic,

PC(θ̃ 0
n; ψ) = nDn

(
θ̃ 0

n; Zn
)′

W̃0Dn
(
θ̃ 0

n; Zn
)

(3.14)

whereθ̃ 0
n is any root-n consistent estimator ofθ that satisfiesψ(θ̃ 0

n) = 0, and

W̃0 ≡ Ĩ−1
0 J̃0

(
J̃′0Ĩ−1

0 J̃0
)−1

P̃′
0

[
P̃0
(
J̃′0Ĩ−1

0 J̃0
)−1

P̃′
0

]−1
P̃0
(
J̃′0Ĩ−1

0 J̃0
)−1

J̃′0Ĩ−1
0

with P̃0 = P(θ̃ 0
n), Ĩ0 = Î(θ̃ 0

n) andJ̃0 = Ĵ(θ̃ 0
n).

The above Wald-type and score-type statistics were discussed by Neweyand West (1987) in the
context of GMM estimation, and for pseudo-maximum likelihood estimation by Trognon (1984).
TheC(α)-type statistic is given by Davidson and MacKinnon (1993, p. 619). Of course, LR-type
statistics based on the difference of the maxima of the objective functionSn(θ ; Zn) have also been
considered in such contexts :

LR(ψ) = Sn
(
θ̂ n; Zn

)
−Sn

(
θ̂ 0

n; Zn
)
. (3.15)

It is well known that, in general, this difference is distributed as a mixture of independent chi-square
with coefficients depending upon nuisance parameters [see, for example, Trognon (1984) and Vuong
(1989)]. Nevertheless, there is one “LR-type” test statistic whose distribution is asymptotically
pivotal with a chi-square distribution, namely theD statistic suggested by Newey and West (1987):

DNW(ψ) = n
[
Mn
(
θ̂ 0

n, Ĩ0
)
−Mn

(
θ̂ n, Ĩ0

)]
(3.16)
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where
Mn
(
θ , Ĩ0

)
= Dn(θ ; Zn)

′ Ĩ−1
0 Dn(θ ; Zn) , (3.17)

Ĩ0 is a consistent estimator ofI (θ 0), θ̂ n minimizesMn(θ , Ĩ0) without restriction and̂θ 0
n minimizes

Mn(θ , Ĩ0) under the restrictionψ (θ) = 0. Note, however, that this “LR-type” statistic is more accu-
rately viewed as a score-type statistic: ifDn is the derivative of some other objective function (e.g.,
a log-likelihood function), the latter is not used as the objective function butreplaced by a quadratic
function of the “score”Dn.

Using the constrained minimization condition,

Hn
(
θ̂ 0

n; Zn
)′

Ĩ−1
0 Dn

(
θ̂ 0

n; Zn
)

= P
(
θ̂ 0

n

)′λ̂ n , (3.18)

we see that
S(ψ) = LM (ψ) , (3.19)

i.e., the score and LM statistics are identical in the present circumstances. Further, it is interesting
to observe that the score, LM andC(α)-type statistics given above may all be viewed as special
cases of a more generalC(α)-type statistic obtained by considering the generalized “score-type”
function :

s
(
θ̃ 0

n,Wn
)

=
√

nQ̃[Wn]Dn
(
θ̃ 0

n; Zn
)

whereθ̃ 0
n is consistent restricted estimate ofθ 0 such thatψ(θ̃ 0

n) = 0 and
√

n(θ̃ 0
n−θ 0) is asymptot-

ically bounded in probability,
Q̃[Wn] ≡ P̃0(J̃

′
0WnJ̃0)

−1J̃′0Wn ,

P̃0 = P
(
θ̃ 0

n

)
, J̃0 = Ĵ

(
θ̃ 0

n

)
, andWn is a symmetric positive definite (possibly random)m×m matrix

such that
plim
n→∞

Wn = W0 , det(W0) 6= 0.

Under standard regularity conditions [see Appendix A], we have:

s
(
θ̃ 0

n; Zn
) L−→

n→∞
N
[
0,Q(θ 0) I (θ 0)Q(θ 0)

′]

where
Q(θ 0) = plim

n→∞
Q̃[Wn] = P(θ 0)

[
J(θ 0)

′W0J(θ 0)
]−1

J(θ 0)
′W0

and rank[Q(θ 0)] = p1. This suggests the following generalizedC(α) criterion :

PC
(
θ̃ 0

n; ψ,Wn
)

= nDn
(
θ̃ 0

n; Zn
)′

Q̃[Wn]
′{Q̃[Wn] Ĩ0Q̃[Wn]

′}−1
Q̃[Wn]Dn

(
θ̃ 0

n; Zn
)

(3.20)

whereĨ0 = Î(θ̃ 0
n) . Under general regularity conditions, the asymptotic distribution ofPC

(
θ̃ 0

n; ψ,Wn
)

is χ2(p1) underH0. Indeed, in the following proposition, we provide the asymptotic distribution of
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an even more general statistic of the form:

PC(θ̃ 0
n; ψ,Wn) = nDn

(
θ̃ 0

n; Zn
)′

Q̃[Wn]
′{Q̃[Wn] Ĩ0Q̃[Wn]

′}− Q̃[Wn]Dn
(
θ̃ 0

n; Zn
)

. (3.21)

where the matrices̃Q[Wn] andP(θ 0) may not have full row rank and the derivative ofDn(θ ; Zn)
need not be continuous.

Proposition 3.1 ASYMPTOTIC DISTRIBUTION OF GENERALIZED C(α) STATISTIC. Under the

assumptionsA.1 to A.13 of Appendix A, letQ̃n ≡ Q̃[Wn] = P̃n[J̃′nWnJ̃n]
−J̃′nWn whereJ̃n = Hn(θ̃

0
n),

P̃n = P(θ̃ 0
n) and[ · ]− refers to any generalized inverse. Then, under H0,

√
nQ̃nDn(θ̃

0
n; Zn)

L−→
n→∞

N
[
0, Q(θ 0)I(θ 0)Q(θ 0)

′] (3.22)

where Q(θ 0) = P(θ 0)
[
J(θ 0)

′W0J(θ 0)
]−1

J(θ 0)
′W0 , and

PC(θ̃ 0
n; ψ,Wn) = nDn

(
θ̃ 0

n; Zn
)′

Q̃′
n

[
Q̃nĨ0nQ̃′

n

]−
Q̃nDn

(
θ̃ 0

n; Zn
) L−→

n→∞
χ2(r1) (3.23)

where r1 = rank[P(θ0)]. Further, the matrixQ̃′
n

[
Q̃nĨ0nQ̃′

n

]−
Q̃n is invariant to the choice of the gen-

eralized inverse
[
Q̃nĨ0nQ̃′

n

]−
.

The proof of the latter proposition appears in Appendix A. Note that the numerical value of
the statisticPC(θ̃ 0

n; ψ,Wn) is invariant to the choice of the generalized inverse
(
Q̃[Wn] Ĩ0Q̃[Wn]

′ )−.

It is clearPC(θ̃ 0
n; ψ ,Wn) includes as special cases various otherC(α)-type statistics proposed in

the statistical and econometric literatures.1 In the sequel, we shall concentrate our discussion on
nonsingular cases, where rank[P(θ 0)] = p1.

On takingWn = Ĩ−1
0 , as suggested by efficiency arguments,PC(θ̃ 0

n; ψ,Wn) reduces toPC(θ̃ 0
n; ψ)

in (3.14). When the number of equations equals the number of parameters(m= p) , we have

Q̃[Wn] = P̃0J̃−1
0 andPC(θ̃ 0

n; ψ,Wn) does not depend on the choice ofWn :

PC(θ̃ 0
n; ψ,Wn) = PC

(
θ̃ 0

n; ψ
)

= Dn
(
θ̃ 0

n; Zn
)′

(J̃−1
0 )′P̃′

0

[
P̃0
(
J̃′0Ĩ−1

0 J̃0
)−1

P̃′
0

]−1
P̃0J̃−1

0 Dn
(
θ̃ 0

n; Zn
)
. (3.24)

In particular, this will be the case ifDn(θ ; Zn) is the derivative vector of a (pseudo) log-likelihood

function. Finally, form≥ p, whenθ̃ 0
n is obtained by minimizingMn(θ) = Dn(θ ; Zn)

′ Ĩ−1
0 Dn(θ ; Zn)

subject toψ (θ) = 0, we can writeθ̃ 0
n ≡ θ̂ 0

n andPC
(
θ̃ 0

n; ψ,Wn
)

is identical to the score (or LM)-type

statistic suggested by Newey and West (1987). Since the statisticPC
(
θ̃ 0

n; ψ,Wn
)

is quite compre-
hensive, it will be convenient for establishing general invariance results.

1For further discussion ofC(α) tests, the reader may consult Basawa (1985), Ronchetti (1987), Smith(1987), Berger
and Wallenstein (1989), Dagenais and Dufour (1991), Davidson and MacKinnon (1991, 1993) and Kocherlakota and
Kocherlakota (1991)
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4. Invariance

Following Dagenais and Dufour (1991), we will consider two types of invariance properties: (1)
invariance with respect to the formulation of the null hypothesis, and (2) invariance with respect to
reparameterizations.

4.1. Hypothesis reformulation

Let
Θ0 = {θ ∈Θ | ψ (θ) = 0} (4.1)

andΨ be the set of differentiable functions̄ψ : Θ → R
m such that

{θ ∈Θ | ψ̄ (θ) = 0} = Θ0 . (4.2)

A test statistic is invariant with respect toΨ if it is the same for allψ ∈Ψ . It is obvious the LR-type
statisticsLR(ψ) andDNW(ψ) (when applicable) are invariant to such hypothesis reformulations
because the optimal values of the objective function (restricted or unrestricted) do not depend on
the way the restrictions are written. Now, a reformulation does not affectÎ , Ĵ, Î0 andĴ0. The same
holds for Ĩ0 and J̃0 provided the restricted estimatorθ̃ 0

n used withC(α) tests does not depend on
which functionψ ∈Ψ is used to obtain it. However,̂P, λ̂ n andψ

(
θ̂ n
)

change. Following Dagenais
and Dufour (1991), ifψ̄ ∈Ψ , we have:

P̄(θ) =
∂ψ̄
∂θ ′ = P̄1(θ)G(θ) , (4.3)

P(θ) =
∂ψ
∂θ ′ = P1(θ)G(θ) , (4.4)

whereP̄1 andP1 are twop1× p1 invertible functions andG(θ) is a p1× p full row-rank matrix.

SinceP̄0′
1 λ̄ n = P̂0′

1 λ̂ n whereP̄0
1 = P̄1(θ̂

0
n), P̂

0
1 = P1(θ̂

0
n) andλ̄ n is the Lagrange multiplier associated

with ψ̄, we deduce that all the statistics, except the Wald-type statistics, are invariant with respect
to a reformulation. This leads to the following proposition.

Proposition 4.1 INVARIANCE TO HYPOTHESIS REFORMULATIONS. Let Ψ be a family of

p1 × 1 continuously differentiable functions ofθ such that
∂ψ
∂θ ′ has full row rank whenψ (θ) =

0 (1≤ p1 ≤ p) , and
ψ (θ) = 0⇐⇒ ψ̄ (θ) = 0,∀ψ , ψ̄ ∈Ψ . (4.5)

Then,
T (ψ) = T (ψ̄) (4.6)

where T stands for any one of the test statistics S(ψ) , LM (ψ) , PC(θ̃ 0
n; ψ), LR(ψ) , DNW (ψ) and

PC(θ̃ 0
n; ψ ,Wn) defined in(3.12) - (3.16) and(3.20).
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Note that the invariance of theS(ψ) , LM (ψ) , LR(ψ) and DNW (ψ) statistics to hypothesis
reformulations has been pointed out by Gouriéroux and Monfort (1989) for mixed-form hypotheses.

4.2. Reparameterization

Let ḡ be a one-to-one differentiable transformation fromΘ ⊆R
p toΘ∗ ⊆R

p : θ ∗ = ḡ(θ) . ḡ repre-
sents a reparameterization of the parameter vectorθ to a new oneθ ∗. The latter is often determined
by a one-to-one transformation of the dataZn∗ = g(Zn) , as occurs for example when variables are
rescaled (measurement unit changes). But it may also represent a reparameterization without any
variable transformation. Letk = ḡ−1 be the inverse function associated with ¯g :

k(θ ∗) = ḡ−1(θ ∗) = θ . (4.7)

Set

G(θ) =
∂ ḡ′

∂θ
andK (θ ∗) =

∂k
∂θ ′

∗
. (4.8)

Sincek[ḡ(θ)] = θ andḡ[k(θ ∗)] = θ ∗, we have by the the chain rule of differentiation:

K [ḡ(θ)]G(θ) = Ip andG[k(θ ∗)]K (θ ∗) = Ip , ∀θ ∗ ∈Θ∗ , ∀θ ∈Θ . (4.9)

Let
ψ∗ (θ ∗) = ψ

[
ḡ−1(θ ∗)

]
. (4.10)

Clearly,
ψ∗ (θ ∗) = 0⇔ ψ (θ) = 0 , (4.11)

andH∗
0 : ψ∗ (θ ∗) = 0 is an equivalent reformulation ofH0 : ψ (θ) = 0 in terms ofθ ∗. We shall

call ψ∗ (θ ∗) = 0 thecanonical reformulationof ψ (θ) = 0 in terms ofθ ∗. Other (possibly more
“natural”) reformulations are of course possible, but the latter has the convenient property that
ψ∗ (θ ∗) = ψ (θ) . If a test statistic is invariant to reparameterizations when the null hypothesis is
reformulated asψ∗ (θ ∗) = 0, we will say it iscanonically invariant.

By the invariance property of Proposition4.1, it will be sufficient for our purpose to study
invariance to reparameterizations for any given reformulation of the null hypothesis in terms ofθ ∗.
From the above definition ofψ∗ (θ ∗) , it follows that

P∗ (θ ∗) ≡
∂ψ∗

∂θ ′
∗

=
∂ψ
∂θ ′

∂θ
∂θ ′

∗
= P[k(θ ∗)]K (θ ∗) = P(θ)K [ḡ(θ)] . (4.12)

We need to make an assumption on the way the score-type functionDn(θ ; Zn) changes under
a given reparameterization. We will consider two cases. The first one consists in assuming that

Dn(θ ; Zn) =
n
∑

t=1
h(θ ; zt)/n as in (3.3) where the values of the scores are unaffected by the reparam-

eterization, but are simply reexpressed in terms ofθ ∗ andzt∗ (invariant scores):

ht (θ ∗; zt∗) = ht (θ ; zt) , t = 1, . . . ,n , (4.13)
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whereZn∗ = g(Zn) andθ ∗ = ḡ(θ) . The second one is the one whereDn(θ ; Zn) can be interpreted
as the derivative of an objective function.

Under condition (4.13), we see easily that

Hn∗ (θ ∗; Zn∗) =
∂Dn∗ (θ ∗; Zn∗)

∂θ ′
∗

= Hn(θ ; Zn)K (θ ∗) = Hn(θ ; Zn)K [ḡ(θ)] . (4.14)

Further the functionŝI (θ) andĴ(θ) in (3.4) - (3.5) are then transformed in the following way :

Î∗ (θ ∗) = Î (θ) , Ĵ∗ (θ ∗) = Ĵ(θ)K [ḡ(θ)] .

If Î (θ) andĴ(θ) are defined as (3.4) - (3.5), ifWn∗ = Wn and if θ̃ 0
n is equivariant with respect to ¯g

[i.e., θ̃ 0
n∗ = ḡ

(
θ̃ 0

n

)
], it is easy to check that the generalizedC(α) statistic defined in (3.20) is invariant

to the reparameterizationθ ∗ = ḡ(θ) . This suggests the following general sufficient condition for
the invariance ofC(α) statistics.

Proposition 4.2 C(α) CANONICAL INVARIANCE TO REPARAMETERIZATIONS: INVARIANT

SCORE CASE. Letψ∗ (θ ∗) = ψ
[
ḡ−1(θ ∗)

]
, and suppose the following conditions hold :

(a) θ̃ 0
n∗ = ḡ(θ̃ 0

n),

(b) Dn∗(θ̃
0
n∗; Zn∗) = Dn(θ̃

0
n; Zn) ,

(c) Ĩ0∗ = Ĩ0 andJ̃0∗ = J̃0K̃,

(d) Wn∗ = Wn,

whereĨ0, J̃0 and Wn are defined as in(3.20), andK̃ = K(θ̃ 0
n∗) is invertible. Then

PC∗(θ̃
0
n∗; ψ∗,Wn∗) ≡ nD̃′

n∗Q̃
′
0∗
(
Q̃′

0∗ Ĩ0∗Q̃0∗
)−1

Q̃0∗D̃n∗ = PC(θ̃ 0
n; ψ,Wn)

where D̃n∗ = Dn∗(θ̃
0
n∗; Zn∗), Q̃0∗ = P̃0∗

(
J̃′0∗Wn∗J̃0∗

)−1
J̃′0∗Wn∗, P̃0∗ = P∗(θ̃

0
n∗) and P∗ (θ ∗) =

∂ψ∗/∂θ ′
∗ .

It is clear that the estimatorŝθ n and θ̂ 0
n satisfy the equivariance condition, i.e.,θ̂ n∗ = ḡ

(
θ̂ n
)

andθ̂ 0
n∗ = ḡ

(
θ̂ 0

n

)
. Consequently, the above invariance result also applies to score (or LM)statistics.

It is also interesting to observe thatW∗ (ψ∗) = W (ψ) . This holds, however, only for the special
reformulationψ∗ (θ ∗) = ψ

[
ḡ−1(θ ∗)

]
= 0, not for all equivalent reformulationsψ∗ (θ ∗) = 0. On

applying Proposition4.1, this type of invariance holds for the other test statistics. These observations
are summarized in the following proposition.

Theorem 4.3 TEST INVARIANCE TO REPARAMETERIZATIONS AND GENERAL HYPOTHESIS RE-
FORMULATIONS: INVARIANT SCORE CASE. Letψ∗ : Θ∗ →Θ be any continuously differentiable
function ofθ ∗ ∈Θ∗ such thatψ∗ (ḡ(θ)) = 0⇔ ψ (θ) = 0, let m= p and suppose

(a) Dn∗ (ḡ(θ) ; Zn∗) = Dn(θ ; Zn) ,

(b) Î∗ [ḡ(θ)] = Î (θ) andĴ∗ [ḡ(θ)] = Ĵ(θ)K [ḡ(θ)] ,
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where K(θ ∗) = ∂ ḡ−1(θ ∗)/∂θ ′
∗ . Then, provided the relevant matrices are invertible, we have

T (ψ) = T∗ (ψ∗) (4.15)

where T stands for any one of the test statistics S(ψ) , LM (ψ) , LR(ψ) and DNW (ψ) . If θ̂ 0
n∗ =

ḡ(θ̂ 0
n) , we also have

PC∗(θ̃
0
n∗; ψ∗) = PC(θ̃ 0

n; ψ) . (4.16)

If ψ∗ (θ) = ψ
[
ḡ−1(θ)

]
, the Wald statistic is invariant : W∗ (ψ∗) = W (ψ) .

Cases where (4.14) holds only have limited interest because they do not cover problems where
Dn is the derivative of an objective function, as occurs for example whenM-estimators or (pseudo)
maximum likelihood methods are used :

Dn(θ ; Zn) =
1
n

∂Sn(θ ; Zn)

∂θ
. (4.17)

In such cases, one would typically have :

Sn∗ (θ ∗; Zn∗) = Sn(θ ; Zn)+κ (Zn∗)

whereκ (Zn∗) may be a function of the Jacobian of the transformationZn∗ = g(Zn) . To deal with
such cases, we thus assume thatm= p, and

Dn∗ (θ ∗; Zn∗) = K (θ ∗)
′Dn(θ ; Zn) = K [ḡ(θ)]′Dn(θ ; Zn) . (4.18)

From (2.3) and (4.18), it then follows that

√
nDn∗ (θ 0∗; Zn∗)

L−→
n→∞

N [0, I∗ (θ 0∗)] (4.19)

whereθ 0∗ = ḡ(θ 0) and

I∗ (θ ∗) = K (θ ∗)
′ I [k(θ ∗)]K (θ ∗) = K [ḡ(θ)]′ I (θ)K [ḡ(θ)] . (4.20)

Further,

Hn∗ (θ ∗; Zn) = K [ḡ(θ)]′Hn(θ ; Zn)K [ḡ(θ)]+
p

∑
i=1

Dni (θ ; Zn)K(1)
i· [ḡ(θ)] (4.21)

whereDni (θ ; Zn) , i = 1, ... , p, are the coordinates ofDn(θ ; Zn) and

K(1)
i· (θ ∗) =

∂ 2θ i

∂θ ∗∂θ ′
∗
(θ ∗) =

∂ 2ki

∂θ ∗∂θ ′
∗
(θ ∗) . (4.22)

By a set of arguments analogous to those used in Dagenais and Dufour (1991), it appears that all
the statistics [except the LR-type statistic] are based uponHn and so they are sensitive to a repa-
rameterization, unless some specific estimator ofJ is used. At this level of generality, the following
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results can be presented using the following notations :Î , Ĵ, P̂ are the estimated matrices for a pa-
rameterization inθ and Î∗, Ĵ∗, P̂∗ are the estimated matrices for a parameterization inθ ∗. The first
proposition below provides an auxiliary result on the invariance of generalizedC(α) statistics for
the canonical reformulationψ∗ (θ ∗) = 0, while the following one provides the invariance property
for all the statistics considered and general equivalent reparameterizations and hypothesis reformu-
lations.

Proposition 4.4 C(α) CANONICAL INVARIANCE TO REPARAMETERIZATIONS. Let ψ∗ (θ ∗) =
ψ
[
ḡ−1(θ ∗)

]
, and suppose the following conditions hold:

(a) θ̃ 0
n∗ = ḡ(θ̃ 0

n) ,

(b) Dn∗(θ̃
0
n∗; Zn∗) = K

[
θ̃ 0

n∗
]′

D(θ̃ 0
n; Zn) ,

(c) Ĩ0∗ = K̃′ Ĩ0K̃, J̃0∗ = K̃′J̃0K̃ ,

(d) Wn∗ = K̃−1Wn
(
K̃−1

)′
,

whereĨ0, J̃0 and Wn are defined as in(3.20), andK̃ = K(θ̃ 0
n∗). Then, provided the relevant matrices

are invertible,
PC∗(θ̃

0
n∗; ψ∗,Wn∗) = PC(θ̃ 0

n; ψ,Wn) .

Theorem 4.5 TEST INVARIANCE TO REPARAMETERIZATIONS AND GENERAL EQUIVALENT HY-
POTHESIS REFORMULATIONS. Let ψ∗ : Θ∗ → Θ be any continuously differentiable function of
θ ∗ ∈Θ∗ such thatψ∗ [ḡ(θ)] = 0⇔ ψ (θ) = 0, let m= p and suppose :

(a) Dn∗ (ḡ(θ) ; Zn∗) = K [ḡ(θ)]′Dn(θ ; Zn) ,

(b) Î∗ [ḡ(θ)] = K [ḡ(θ)]′ Î (θ)K [ḡ(θ)] ,

(c) Ĵ∗ [ḡ(θ)] = K [ḡ(θ)]′ Ĵ(θ)K [ḡ(θ)] ,

where K(θ ∗) = ∂ ḡ−1(θ)/∂θ ′
∗ . Then, provided the relevant matrices are invertible, we have

T (ψ) = T∗ (ψ∗) (4.23)

where T stands for any one of the test statistics S(ψ) , LM (ψ) , LR(ψ) and DNW (ψ) . If θ̃ 0
n∗ =

ḡ
(
θ̃ 0

n

)
, we also have

PC∗
(
θ̃ 0

n∗; ψ∗
)

= PC
(
θ̃ 0

n; ψ
)
, (4.24)

and, in the case whereψ∗ (θ) = ψ
[
ḡ−1(θ)

]
,

W∗ (ψ∗) = W (ψ) .

It is of interest to note here that condition(a) and(b) of the latter theorem will be satisfied if
Dn(θ ; Zn) = 1

n ∑n
t=1ht (θ ; zt) and each individual “score” gets transformed after reparameterization

according to the equation

ht∗
(
ḡ(θ) ; zt∗

)
= K [ḡ(θ)]′ht (θ ; zt) , t = 1, , . . . , n, (4.25)
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whereDn∗
(
ḡ(θ) ; Zn∗

)
= 1

n ∑n
t=1ht∗

(
ḡ(θ) ; zt∗

)
. Consequently, in such a case, any estimatorÎ (θ) of

the general form (3.6) will satisfy(b) provided the matrixWI (n) remains invariant under reparame-
terizations. This will be the case, in particular, for most HAC estimators of the form (3.9) as soon
as the bandwidth parameterBn only depends on the sample sizen. However, this may not hold ifBn

is data-dependent [as considered in Andrews and Monahan (1992)].

5. Invariant test criteria

Despite the apparent “positive nature” of the invariance results presented in the previous section,
the main conclusion is that none of the proposed test statistics is invariant to general reparameteri-
zations, especially when the score-type function considered is derivedfrom an objective function.
In particular, this problem occurs when the score-type function is derived from a (pseudo) likelihood
function or, more generally, from the objective function minimized by an M-estimator.

In this section, we propose two ways of building invariant test statistics. Thefirst one is based
on modifying the LR-type statistics proposed by Newey and West (1987) for GMM setups, while
the second one exploits special properties of the linear exponential family inpseudo-maximum
likelihood models.2

5.1. Modified Newey–West LR-type statistic

Consider the LR-type statistic

DNW(ψ) = n
[
Mn
(
θ̂ 0

n, Ĩ0
)
−Mn

(
θ̂ n, Ĩ0

)]

whereMn(θ , Ĩ0) = Dn(θ ; Zn)
′ Ĩ−1

0 Dn(θ ; Zn) , proposed by Newey and West (1987, hereafter NW).
In this statistic,Ĩ0 is any consistent estimator of the covariance matrixI (θ 0) which is typically
a function of a “preliminary” estimator̄θ n of θ : Ĩ0 = Î

(
θ̄ n
)
. The minimized value of the objec-

tive functionMn(θ , Ĩ0) is not invariant to general reparameterizations unless special restrictions are
imposed on the covariance matrix estimatorĨ0.

However, there is a simple way of creating the appropriate invariance as soon as the func-
tion Î (θ) is a reasonably smooth function ofθ . Instead of estimatingθ by minimizingMn(θ , Ĩ0),
estimateθ by minimizing Mn

(
θ , Î (θ)

)
. For example, such an estimation method was studied by

Hansen, Heaton and Yaron (1996). When the score vectorDn and the parameter vectorθ have the
same dimension(m= p), the unrestricted objective function will typically be zero[Dn(θ̂ n; Zn) = 0],

so the statistic reduces toDNW(ψ) = nMn(θ̂
0
n, Ĩ0). Whenm> p, this will typically not be the case.

2The reader may note that further insight can be gained on the invarianceproperties of test statistics by using differen-
tial geometry arguments; for some applications to statistical problems, seeBates and Watts (1980), Amari (1990), Kass
and Voss (1997), and Marriott and Salmon (2000). Such arguments may allow one to propose reparameterizations and
“invariant Wald tests”; see, for example, Bates and Watts (1981), Hougaard (1982), Le Cam (1990), Critchley, Marriott
and Salmon (1996), and Larsen and Jupp (2003) in likelihood models. As of now, such procedures tend to be quite diffi-
cult to design and implement, and GMM setups have not been considered.Even though this is an interesting avenue for
future research, simplicity and generality considerations have led us to focus on procedures which do not require adopting
a specific parameterization.
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Suppose now the following conditions hold :

Dn∗ (ḡ(θ) ,Zn∗) = K [ḡ(θ)]′Dn(θ ; Zn) , (5.1)

Î∗ (ḡ(θ)) = K [ḡ(θ)]′ Î (θ)K [ḡ(θ)] . (5.2)

Then, forθ ∗ = ḡ(θ) ,

Mn∗
(
θ ∗, Î∗ (θ ∗)

)
≡ Dn∗

(
ḡ(θ) ,Zn∗

)′
Î∗ (ḡ(θ))−1Dn∗

(
ḡ(θ) ,Zn∗

)
(5.3)

= Dn(θ ; Zn)
′ Î (θ)Dn(θ ; Zn) .

Consequently, the unrestricted minimal valueMn(θ̂ n; Î(θ̂ n)) and the restricted oneMn(θ̂
0
n; I(θ̂ 0

n))
so obtained will remain unchanged under the new parameterization, and the corresponding LR-type
statistic

D̄(ψ) = n
[
Mn
(
θ̂ 0

n; Î(θ̂ 0
n)
)
−Mn

(
θ̂ n; Î(θ̂ n)

)]
(5.4)

is invariant to reparameterizations of the type considered in (4.18) - (4.20). Under standard regu-
larity conditions on the convergence ofDn(θ ; Zn) and Î (θ) asn→ ∞ (continuity, uniform conver-
gence), it is easy to see that̄D andDNW are asymptotically equivalent (at least under the null hy-
pothesis) and so have the same asymptoticχ2(p1) distribution. For completeness, we state this
result in the following proposition. The proof is provided in Appendix B.

Proposition 5.1 ASYMPTOTIC DISTRIBUTION OF MODIFIEDNEWEY-WEST STATISTIC. Under
the assumptionsA.8, A.9 andB.1 to B.7 [stated in Appendices A and B] with r1 = rank[P(θ 0)] = p1,

the statisticD̄(ψ) = n
[
Mn
(
θ̂ 0

n; Î(θ̂ 0
n)
)
−Mn

(
θ̂ n; Î(θ̂ n)

)]
converges in distribution to aχ2(p1) when

ψ (θ 0) = 0.

5.2. Pseudo-maximum likelihood methods

5.2.1. PML methods

Consider the problem of making inference on the parameter which appearsin the mean of an en-
dogenousG×1 random vectoryt conditional to an exogenous random vectorxt :

E(yt | xt) = f (xt ; θ) ≡ ft (θ) , V (yt | xt) = Ω0(xt) (5.5)

where ft(θ) is a known function andθ is the parameter of interest. (5.5) provides a non-linear
generalized regression model with unspecified variance. Even if a likelihood function with a finite
number of parameters is not available for such a semi-parametric model,θ can be estimated through
a pseudo-maximum likelihood technique (PML) which consists in maximizing a chosen likelihood
as it were the true undefined likelihood; see Gouriéroux, Monfort and Trognon (1984c).3 In partic-

3For further discussion of such methods, the reader may consult: Gongand Samaniego (1981), Gouriéroux, Monfort
and Trognon (1984a), Trognon (1984), Bourlange and Doz (1988), Trognon and Gouriéroux (1988), Gouriéroux and
Monfort (1993), Cŕepon and Duguet (1997) and Jorgensen (1997).

.
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ular, it is shown in the latter reference that this pseudo-likelihood must belong to the specific class
of linear exponential distributions adapted for the mean. These distributionshave the following
general form:

l(y; µ) = exp[A(µ)+B(y)+C(µ)y] (5.6)

whereµ ∈ R
G andC(µ) is a row vector of sizeG. The vectorµ is the mean ofy if

∂A
∂ µ

+
∂C
∂ µ

µ = 0.

Irrespective of the true data generating process, a consistent and asymptotically normal estima-
tor of θ can be obtained by maximizing

n

∏
t=1

exp{A( ft(θ))+B(yt)+C[ ft (θ)]yt} (5.7)

or equivalently through the following equivalent programme:

max
θ

n

∑
t=1

{A[ ft (θ)]+C[ ft (θ)]yt} with
∂A
∂ µ

+
∂C
∂ µ

µ = 0 . (5.8)

The class of linear exponential distributions contains most of the classical statistical models, such
as the Gaussian model the Poisson model, the Binomial model, the Gamma model, the negative
Binomial model, etc. The constraint in the programme (5.8) ensures that the expectation of the
linear exponential pseudo-distribution isµ. The pseudo-likelihood equations have an orthogonal
condition form:

Dn(θ) =
n

∑
t=1

∂ f ′t
∂θ

∂C
∂ µ

( ft(θ))(yt − ft(θ)) = 0 . (5.9)

The PML estimator solution of these first order conditions is consistent and asymptotically normal
N
[
0, (J′I−1J)−1

]
, and we can write:

J(θ) = Ex

{(
∂ f ′t
∂θ

)[
∂C
∂ µ
(

ft (θ)
)](∂ f ′t

∂θ

)′}
, (5.10)

I (θ) = Ex

{(
∂ f ′t
∂θ

)[(
∂C
∂ µ
(

ft (θ)
))

Ω0

(
∂C
∂ µ
(

ft (θ)
))](∂ f ′t

∂θ

)′}
. (5.11)

These matrices can be estimated by :

Ĵ =
1
n

n

∑
t=1

(
∂ f ′t
∂θ
(
θ̂
))[∂C

∂ µ
(

ft(θ̂)
)](∂ f ′t

∂θ
(
θ̂
))′

, (5.12)

Î =
1
n

n

∑
t=1

St
(
θ̂
)
St
(
θ̂
)′

, (5.13)
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where

St
(
θ̂
)

=

(
∂ f ′t
∂θ
(
θ̂
))[∂C

∂ µ
(

ft(θ̂)
)](

y− ft(θ̂)
)
. (5.14)

Since ∂C
∂ µ
(

ft(θ̂)
)

and yt − ft(θ̂) are invariant to reparameterizations,Î and Ĵ are modified only

through
∂ f ′t
∂θ

. Further,

f ∗t (θ ∗) = f ∗t [ḡ(θ)] = ft (θ) ,
∂ f ∗t
∂θ ′

∗
=

(
∂ f ∗t
∂θ ′

)(
∂θ
∂θ ′

∗

)
=

(
∂ ft
∂θ ′

)
K [ḡ(θ)] (5.15)

and
Î∗ = K

[
ḡ(θ̂)

]′
ÎK
[
ḡ(θ̂)

]
, Ĵ∗ = K

[
ḡ(θ̂)

]′
ĴK
[
ḡ(θ̂)

]
. (5.16)

The Lagrange, score andC(α)-type pseudo-asymptotic tests are then invariant to a reparameter-
ization, though of course Wald tests will not be generally invariant to hypothesis reformulations.
Consequently, this provides a strong argument for using pseudo true densities in the linear exponen-
tial family (instead of other types of densities) as a basis for estimating parameters of conditional
means when the error distribution has unknown type.

The estimation of theJ matrix could be obtained through direct second derivative calculus of
the objective function. For example, whenyt is univariate(G = 1), we have:

J̃ =
1
n

n

∑
t=1

∂ ft
∂θ

(θ̂)
∂C
∂ µ

( ft(θ̂))

(
∂ ft
∂θ

(θ̂)

)′

− 1
n

n

∑
t=1

∂ ft
∂θ

(θ̂)
∂ 2C
∂ µ2( ft(θ̂))

(
∂ ft
∂θ

(θ̂)

)′

(yt − ft(θ))

−1
n

n

∑
t=1

∂ 2 ft
∂θ∂θ ′ (θ̂)

∂C
∂ µ

( ft(θ̂))(yt − ft(θ̂))

The first two terms of this estimator behave after reparameterization asĴ, but the last term is based
on second derivatives offt(θ) and so leads to non-invariance problems [see (3.5) and (4.21)].
The two last terms ofJ̃ vanish asymptotically, they can be dropped as in the estimation method
proposed by Gouriéroux et al. (1984c). For the invariance purpose, to discard the last term is the
correct way to proceed.

5.2.2. QGPML methods

Gouríeroux et al. (1984c) pointed out that some lower efficiency bound can be achieved by a two-
step estimation procedure, when the functional form of the true conditionalsecond order moment
of yt givenxt is known:

V(yt |xt) = Ω0(xt) = h(xt ,α0) = ht(α0) .

The method is based on various classical exponential families (negative-binomial, gamma, normal)
which depend on an additional parameterη linked with the second order moment of the pseudo-
distribution. If µ and Σ are the expectation and the variance-covariance matrix of this pseudo-
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distribution: η = Ψ(µ, Σ), whereΨ defines for anyµ, a one to one relationship betweenη and
Σ .

The class of linear exponential distributions depending upon the extra parameterη is of the
following form:

l∗(y,µ,η) = exp{A(µ,η)+B(η,y)+C(µ,η)y} .

If we consider the negative binomial pseudo distributionA(µ,η) = −η ln
(

1+ µ
η

)
andC(µ,η) =

ln
(
µ/(η + µ)

)
; if otherwise we use the Gamma pseudo distribution:A(µ,η) = −η ln(µ) and

C(µ,η) =−η
µ . In the former case:η =Ψ(µ,σ2) = µσ2/(1−σ2) and in the latterη =Ψ(µ,σ2) =

µ2σ2.
With preliminary consistent estimatorsα̃ , θ̃ of α, θ whereθ̃ andα̃ are equivariant with respect

to ḡ, computed for example as in Trognon (1984), the QGPML estimator ofθ is obtained by solving
a problem of the type

max
θ

n

∑
t=1

l∗(yt , ft(θ),Ψ( ft(θ̃), gt(α̃))) .

The QGPML estimator̂θ of θ is strongly consistent and asymptotically normal:
√

n(θ̂ − θ 0)
L→

N
[
0, ΣQ

]
with

ΣQ =

{
Ex

[
∂ f ′t
∂θ

gt(α0)
−1 ∂ ft

∂θ ′

]}−1

,

I0 = J0 = Ex

[
∂ f ′t
∂θ

(θ 0)gt(α0)
−1 ∂ ft

∂θ ′ (θ 0)

]
.

I0 andJ0 can be consistently estimated by:

Î =
1
n

n

∑
t=1

St(θ̂ , α̃, θ̃)St(θ̂ , α̃, θ̃)′,

Ĵ =
1
n

n

∑
t=1

∂ f ′t
∂θ

(θ̂)

[
∂C
∂ µ

( ft(θ̂),Ψ( ft(θ̃),gt(α̃)))

]
∂ ft
∂θ ′ (θ̂)

where

St(θ̂ , α̃, θ̃) =
∂ f ′t
∂θ

[
∂C
∂ µ

( ft(θ̂),Ψ( ft(θ̃),gt(α̃)))

]
(yt − ft(θ̂)).

Since∂C
∂ µ ( ft(θ̂),Ψ( ft(θ̃),gt(α̃))), andyt − ft(θ̂) are invariant to reparameterizations ifθ̃ andα̃ are

equivariant, we face the same favorable case as before:

Î∗ = K[ḡ(θ̂)]′ ÎK [ḡ(θ̂)] ,

Ĵ∗ = K[ḡ(θ̂)]′ ĴK[ḡ(θ̂)] ,

and the Wald, Lagrange, score pseudo-asymptotic tests are invariant to areparameterization. These
quasi-generalized pseudo-asymptotic tests are locally more powerful thanthe corresponding pure
pseudo-asymptotic tests under local alternatives [see Trognon (1984)].
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Furthermore the quasi-generalized LR statistic (QGLR) is invariant provided, the first-step esti-
matorsθ̃ andα̃ are equivariant under reparameterization. And shown in Trognon (1984) the QGLR
statistic is asymptotically equivalent to the other pseudo-asymptotic statistic underthe null and un-
der local alternatives.

6. Numerical results

In order to illustrate numerically the (non-)invariance problems discussed above, we consider the
model derived from the following equations:

yt = γ +β 1x(λ )
1t +β 2x(λ )

2t +ut , (6.1)

ut
i.i.d.∼ N[0, σ2] , t = 1, . . . , n, (6.2)

wherex(λ )
it = (xλ

it − 1)/λ , i = 1, 2, xit > 0 with x(λ )
it = log(xit ) for λ = 0, and the explanatory

variablesx1t andx2t are fixed. The null hypothesis to be tested is:

H0 : λ = 1. (6.3)

The log-likelihood associated with this model is:

l =
n
∑

t=1
l [yt ; γ, β 1,β 2, λ , σ2] , (6.4)

l [yt ; γ, β 1,β 2, λ , σ2] = −1
2

ln(2π)− 1
2

ln(σ2)− 1
2σ2u2

t , t = 1, . . . , n. (6.5)

It is easy to see that changing the measurement units onx1t andx2t leaves the form of model (6.1)
and the null hypothesis invariant. For example, if bothx1t and x2t are multiplied by a positive
constantk, i.e.

x1t∗ = kx1t , x2t∗ = kx2t , (6.6)

(6.1) can be reexpressed in terms of the scaled variablesx1t∗ andx2t∗ as

yt = γ∗ +β 1∗x
(λ )
1t∗ +β 2∗x

(λ )
2t∗ +ut , (6.7)

where the power parameterλ remains the same and

γ∗ = γ −k(λ )k−λ
2

∑
i=1

β i , β i∗ = β ik
−λ , i = 1, 2. (6.8)

On interpreting model (6.1) - (6.2) as a pseudo-model and (6.4) as a pseudo-likelihood, we will
examine the effect of rescaling on GMM-based and pseudo-likelihood tests. Moment equations
can be derived from the above model by differentiating the log-likelihood withrespect to model
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parameters and equating the expectation to zero. This yields following five moment conditions:

E

[
n

∑
t=1

ut

]
= 0, (6.9)

E

[
n

∑
t=1

utx
(λ )
1t

]
= 0, (6.10)

E

[
n

∑
t=1

utx
(λ )
2t

]
= 0, (6.11)

E

[
n

∑
t=1

ut

λ

(
2

∑
i=1

β ix
λ
it lnxit −x(λ )

it

)]
= 0, (6.12)

E

[
n

∑
t=1

(
u2

t −σ2)
]

= 0. (6.13)

These equations provide an exactly identified system of equations. To geta system with 6 moment
equations (hence overidentified), we add the equation:

E

[
n

∑
t=1

utx1tx2t

]
= 0. (6.14)

To get data, we considered the sample sizen = 200 and generatedyt according to equation (6.1) -
(6.2) with the parameter valuesγ = 10, β 1 = 1.0, β 2 = 1.0, λ = −1.0, σ2 = 0.85. The values of
the regressorsx1t andx2t were selected by transforming the values used in Dagenais and Dufour
(1991).4

Numerical values of the GMM-based test statistics for a number of rescalings are reported in
Table 1 for the 5 moment system (6.9) - (6.13) and in Table 2 for the 6 moment system (6.9) - (6.14).
Results for the pseudo-likelihood tests appear in Table 1. Graphs of the non-invariant test statistics
are also presented in figures 1 - 3. In these calculations, the first-step estimator of the two-step
GMM tests is obtained by minimizingMn(θ , Wn) in (2.5) withWn = Im (equal weights), while the
second step uses the weight matrix defined in (3.4). No correction for serial correlation is applied
(although this could also be studied).

These results confirm the theoretical expectations of the theory presented in the previous sec-
tions. Namely, the GMM-based test statistics [D̄(ψ), Wald, score,C(α)] are not invariant to mea-
surement unit changes and, indeed, can change substantially (even if both the null and the alterna-
tive hypotheses remain the same under the rescaling considered here). Noninvariance is especially
strong for the overidentified system (6 equations). In contrast, theD̄(ψ) and score tests based on the
continuously updated GMM criterion are invariant. The same holds for the LRand adjusted score
criteria based on linear exponential pseudo likelihoods.

4The numerical values ofx1t , x1t andyt used are available from the authors upon request. It is important to note that
this is not a simulation exerciseaimed at studying the statistical properties of the tests, but only an illustration of the
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Table 1. Test statistics forH0 : λ = 1 for different measurement units
5 moment models

Two-step GMM CUP-GMM Pseudo ML
k D̄ Wald Score C(α) D̄ Wald Score C(α) LR Mod. score
0.2 0.001 44.750 84.810 33.972 5.771 44.750 5.771 5.066 66.408 31.060
0.4 0.000 44.746 47.692 16.726 5.771 44.746 5.771 0.922 66.408 31.060
0.6 0.001 44.745 42.983 14.106 5.771 44.745 5.771 4.482 66.408 31.060
0.8 0.010 44.744 39.161 12.369 5.771 44.744 5.771 5.282 66.408 31.060
1.0 0.056 44.743 35.676 10.593 5.771 44.743 5.771 5.3838 66.408 31.060
3.0 34.629 44.743 118.876 42.124 5.771 44.743 5.771 0.6720 66.408 31.060
5.0 1.641 44.743 62.195 34.746 5.771 44.743 5.771 2.5545 66.408 31.060
7.0 0.282 44.742 61.766 34.953 5.771 44.742 5.771 3.9336 66.408 31.060
10.0 0.068 44.739 61.147 34.465 5.771 44.739 5.771 4.5010 66.408 31.060

Table 2. Test statistics forH0 : λ = 1 for different measurement units
6 moment models

Two-step GMM CUP-GMM
k D̄ Wald Score C(α) D̄ Wald Score C(α)

0.2 0.016 416.546 106.734 54.462 19.480 359.380 11.107 3.189
0.4 0.036 221.829 108.142 54.852 19.480 83.743 16.296 7.318
0.6 0.248 213.918 107.764 52.818 19.480 40.481 18.637 7.063
0.8 1.068 178.757 106.053 47.539 19.480 34.101 17.678 0.661
1.0 3.562 139.364 103.364 37.915 19.480 35.580 17.769 5.215
3.0 47.490 46.214 110.751 7.960 19.480 45.146 15.250 4.650
5.0 1.651 129.698 48.704 6.518 19.480 59.667 13.367 4.611
7.0 1.511 384.944 49.719 9.978 19.480 118.911 13.937 5.639
10.0 2.031 905.870 50.264 10.747 19.480 406.974 14.162 6.136
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Figure 1. Two-step GMM tests based on 5 moment conditions
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Figure 2. Two-step GMM tests based on 6 moment conditions
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Figure 3. CUP GMM tests based on 6 moment conditions
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7. Conclusion

In this paper, we have studied the invariance properties of hypothesis tests applicable in the context
of incompletely specified models, such as models formulated in terms of estimating functions and
moment conditions, which are usually estimated by GMM procedures, or modelsestimated by
pseudo-likelihood andM-estimation methods. The test statistics examined include Wald-type, LR-
type, LM-type, score-type, andC(α)-type criteria. We found that all these procedures arenot
generally invariantto (possibly nonlinear) hypothesis reformulations and reparameterizations, such
as those induced by measurement unit changes. This means that testing two equivalent hypotheses
in the context of equivalent models may lead to completely different inferences. For example, this
may occur after an apparently innocuous rescaling of some model variables.

In view of avoiding such undesirable properties, we studied restrictions that can be imposed
on the objective functions used for pseudo-likelihood (or M-estimation) aswell as the structure of
the test criteria used with estimating functions and GMM procedures to obtain invariant tests. In
particular, we showed that using linear exponential pseudo-likelihood functions allows one to ob-
tain invariant score-type andC(α)−type test criteria, while in the context of estimating function
(or GMM) procedures it is possible to modify a LR-type statistic proposed byNewey and West
(1987) to obtain a test statistic that is invariant to general reparameterizations. The invariance as-
sociated with linear exponential pseudo-likelihood functions is interpreted as a strong argument for
using such pseudo-likelihood functions in empirical work. Furthermore, the LR-type statistic is the
one associated with using continuously updated GMM estimators based on appropriately restricted
weight matrices. Of course, this provides an extra argument for such GMM estimators.

numerical propertiesof the test statistics considered.
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A. Appendix: Distribution of the generalized C(α) statistic

In this appendix we derive the asymptotic distribution of the generalizedC(α) statistic defined in
(3.20) under the following set of assumptions. Note‖·‖ refers to the Euclidean distance, applied to
either vectors or matrices.

Assumption A.1 EXISTENCE OF SCORE-TYPE FUNCTIONS.

Dn(θ , ω) =
(
D1n(θ , ω), . . . , Dmn(θ , ω)

)′
, ω ∈ Z , n = 1, 2, . . .

is a sequence of m×1 random vectors, defined on a common probability space(Z , AZ , P), which
are functions of a p×1 parameter vectorθ , whereθ ∈Θ ⊆ R

p andΘ is a non-empty open subset
of R

p. All the random variables considered here as well in the following assumptions are functions
of ω, so the symbolω may be dropped to simplify notations[e.g., Dn(θ) ≡ Dn(θ ,ω)].

Assumption A.2 SCORE ASYMPTOTIC NORMALITY. There is a valueθ 0 ∈Θ such that

√
nDn(θ 0)

p−→
n→∞

D∞(θ 0) where D∞(θ 0) ∼ N [0, I(θ 0)] .

Assumption A.3 NON-SINGULARITY OF THE SCORE VARIANCE. I(θ 0) is nonsingular.

Assumption A.4 SCORE DIFFERENTIABILITY. Dn(θ ,ω) is almost surely(a.s.) differentiable
with respect toθ , for all n, in a non-empty open neighborhood N1 of θ 0. The derivative matrix of
Dn(θ ,ω) is denoted

Hn(θ , ω) =
∂Dn(θ ,ω)

∂θ ′

where the sequence of matrices Hn(θ , ω), n ≥ 1, is well-defined forω ∈ DH andDH is an event
with probability one(i.e., P[ω ∈ DH ] = 1).

Assumption A.5 SCORE DERIVATIVE CONVERGENCE. There is an m× p (nonrandom) matrix
function J(θ) and a non-empty open neighborhood N2 of θ 0 such that, for allε > 0 andδ > 0,

limsup
n→∞

P
[
{ω : ∆n(θ 0, δ , ω) > ε}

]
≤UH(δ , ε, θ 0)

where
∆n(θ 0, δ , ω) ≡ sup{‖Hn(θ , ω)−J(θ 0)‖ : θ ∈ N2 and0≤ ‖θ − θ 0‖ ≤ δ} ,

UH(δ , ε, θ 0) ≥ 0 and lim
δ↓0

UH(δ , ε, θ 0) = 0.

Assumption A.6 SCORE EXPANSION. For θ in a non-empty open neighborhood N3 of θ 0, Dn(θ)
admits an expansion of the form

Dn(θ , ω) = Dn(θ 0, ω)+J(θ 0)(θ −θ 0)+Rn(θ , θ 0, ω)
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for ω ∈ DH , where the remainder Rn(θ , θ 0, ω) satisfies the following condition: for anyε > 0 and
δ > 0, we have

limsup
n→∞

P
[
{ω : rn(δ , θ 0, ω) > ε}

]
≤UD(δ , ε, θ 0)

where

rn(δ , θ 0, ω) = sup

{‖Rn(θ , θ 0, ω)‖
‖θ − θ 0‖

: θ ∈ N3 and0 < ‖θ − θ 0‖ ≤ δ
}

,

UD(δ , ε, θ 0) ≥ 0 and lim
δ↓0

UD(δ , ε, θ 0) = 0.

Assumption A.7 SCORE DERIVATIVE NON-DEGENERACY. rank[J(θ)] = p, for all θ in a non-
empty open neighborhood N4of θ 0.

Assumption A.8 RESTRICTION DIFFERENTIABILITY. ψ(θ) is a p1 × 1 differentiable vector
function ofθ .

Assumption A.9 RESTRICTION RANK. There is a non-empty open neighborhood N5 of θ 0 such

that ψ(θ) is continuously differentiable with derivative P(θ) ≡ ∂ψ
∂θ ′ and such that

ψ(θ) = 0 andθ ∈ N5 ⇒ rank[P(θ)] = r1 (A.1)

where0≤ r1 ≤ p1.

Assumption A.10 ESTIMATOR
√

n CONVERGENCE. θ̃ 0
n ≡ θ̃ 0

n(ω) is a consistent estimator ofθ 0,
i.e.,

plim
n→∞

(
θ̃ 0

n−θ 0
)

= 0,

such that
√

n
(

θ̃ 0
n−θ 0

)
is asymptotically bounded in probability,i.e.,

limsup
n→∞

P
[
{ω :

√
n
∥∥θ̃ 0

n−θ 0
∥∥≥ y}

]
≤U(y; θ 0) ,∀y > 0,

where U(y; θ 0) is a function such thatlim
y→∞

U(y; θ 0) = 0.

Assumption A.11 RESTRICTED ESTIMATOR. ψ(θ̃ 0
n) = ψ(θ 0) = 0 with probability1.

Assumption A.12 CONSISTENT ESTIMATOR OF SCORE COVARIANCE MATRIX. Ĩ0n is a weakly
consistent estimator of I(θ 0), i.e., plim

n→∞
Ĩ0n = I(θ 0) .

Assumption A.13 WEIGHT MATRIX CONSISTENCY. Wn, n≥ 1, is a sequence of m×m matrices
such thatplim

n→∞
Wn = W0 where W0 is nonsingular.
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PROOF OFPROPOSITION3.1 To simplify notation, we shall assume throughout thatω ∈ DH (an
event with probability 1) and drop the symbolω from the random variables considered. In order to
obtain the asymptotic null distribution of the generalizedC(α) statistic defined in (3.21), we first

need to show thatP(θ̃ 0
n) andHn(θ̃

0
n) converge toP(θ 0) andJ(θ 0) respectively. The consistency of

P(θ̃ 0
n), i.e.

plim
n→∞

[P(θ̃0
n)−P(θ 0)] = 0, (A.2)

follows simply from the consistency of̃θ 0
n [AssumptionA.10] and the continuity ofP(θ) at θ 0

[AssumptionA.9]. Further, sinceP(θ) is continuous in open neighborhood ofθ 0, we also have

rank[P̃n]
p−→

n→∞
rank[P(θ 0)] = r1 . (A.3)

Consider nowHn(θ̃
0
n). By the assumptionsA.4 - A.5 andA.10, for anyε > 0 andε1 > 0, we can

chooseδ 1 ≡ δ (ε1, ε) > 0 and a positive integern1(ε, δ 1) such that: (i)UH(δ 1, ε, θ 0) ≤ ε1/2, and
(ii) n > n1(ε, δ 1) entails

P [∆n(θ 0, δ ) > ε] ≡ P
[
{ω : ∆n(θ 0, δ , ω) > ε}

]
≤UH(δ 1, ε, θ 0) ≤ ε1/2 .

Further, by the consistency of̃θ 0
n [AssumptionA.10], we can choosen2(ε, δ 1) such thatn >

n2(ε, δ 1) entailsP
[
‖θ̃ 0

n− θ 0‖ ≤ δ 1
]
≥ 1− (ε1/2). Then, forn > max{n1(ε, δ 1), n2(ε, δ 1)}, we

have, using the Boole-Bonferroni inequality,

P
[
‖Hn(θ̃

0
n)−J(θ 0)‖ ≤ ε

]
≥ P

[
‖θ̃ 0

n−θ 0‖ ≤ δ 1 and‖Hn(θ̃
0
n)−J(θ 0)‖ ≤ ε

]

≥ P
[
‖θ̃ 0

n−θ 0‖ ≤ δ 1 and∆n(θ 0, δ 1) ≤ ε
]

≥ 1−P
[
‖θ̃ 0

n−θ 0‖ > δ 1
]
−P
[
∆n(θ 0, δ 1) > ε

]

≥ 1− (ε1/2)− (ε1/2) = 1− ε1 .

Thus,
liminf

n→∞
P
[
‖Hn(θ̃

0
n)−J(θ 0)‖ ≤ ε

]
≥ 1− ε1 , for all ε > 0, ε1 > 0,

hence
lim
n→∞

P
[
‖Hn(θ̃

0
n)−J(θ 0)‖ ≤ ε

]
= 1, for all ε > 0,

or, equivalently,
plim
n→∞

[
Hn(θ̃

0
n)−J(θ 0)

]
= 0. (A.4)

By AssumptionA.6, we can write [setting 0/0 = 0] :

‖
√

n
[
Dn(θ̃

0
n)−Dn(θ 0)

]
−J(θ 0)

√
n(θ̃ 0

n−θ 0)‖ =
√

n‖Rn(θ̃
0
n, θ 0)‖

=
‖Rn(θ̃

0
n, θ 0)‖

‖θ̃ 0
n−θ 0‖

√
n‖θ̃ 0

n−θ 0‖
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where
‖Rn(θ̃

0
n, θ 0)‖

‖θ̃ 0
n−θ 0‖

≤ rn(δ , θ 0) whenθ̃ 0
n ∈ N3 and‖θ̃ 0

n−θ 0‖ ≤ δ

and limsup
n→∞

P [rn(δ , θ 0) > ε] < UD(δ , ε, θ 0). Thus, for anyε > 0 andδ > 0, we have:

P

[
‖Rn(θ̃

0
n, θ 0)‖

‖θ̃ 0
n−θ 0‖

≤ ε

]
≥ P

[
rn(δ , θ 0) ≤ ε , θ̃ 0

n ∈ N3 and‖θ̃ 0
n−θ 0‖ ≤ δ

]

≥ 1−P
[
rn(δ , θ 0) > ε

]
−P
[

θ̃ 0
n /∈ N3 or ‖θ̃ 0

n−θ 0‖ > δ
]

hence, using the consistency ofθ̃ 0
n,

liminf
n→∞

P

[
‖Rn(θ̃

0
n, θ 0)‖/‖θ̃ 0

n−θ 0‖ ≤ ε
]

≥ 1− limsup
n→∞

P [rn(δ , θ 0) > ε ]

− limsup
n→∞

P
[

θ̃ 0
n /∈ N3 or ‖θ̃ 0

n−θ 0‖ > δ
]

≥ 1−UD(δ , ε, θ 0) .

Since lim
δ↓0

UD(δ , ε, θ 0) = 0, it follows that lim
n→∞

P
[
‖Rn(θ̃

0
n, θ 0)‖/‖θ̃ 0

n−θ 0‖ ≤ ε
]
= 1 for anyε > 0,

or equivalently,
‖Rn(θ̃

0
n, θ 0)‖/‖θ̃ 0

n−θ 0‖
p−→

n→∞
0.

Since
√

n(θ̃ 0
n−θ 0) is asymptotically bounded in probability (by AssumptionA.10), this entails:

√
n‖Rn(θ̃

0
n, θ 0)‖ =

‖Rn(θ̃
0
n, θ 0)‖

‖θ̃ 0
n−θ 0‖

√
n‖θ̃ 0

n−θ 0‖
p−→

n→∞
0

and
‖
√

n[Dn(θ̃
0
n)−Dn(θ 0)]−J(θ0)

√
n(θ̃ 0

n−θ 0)‖
p−→

n→∞
0. (A.5)

By Taylor’s theorem and assumptionsA.8 - A.9, we also have the expansion:

ψ(θ) = ψ(θ 0)+P(θ0)(θ −θ 0)+R2(θ , θ 0) , (A.6)

for θ ∈ N5, where
lim

θ→θ 0

‖R2(θ , θ 0)‖/‖θ − θ 0‖ = 0 ,

i.e., R2(θ , θ 0) = o(‖θ − θ 0‖), so that, using AssumptionA.11,

√
nP(θ 0)(θ̃

0
n−θ 0) =

√
n[ψ(θ̃ 0

n)−ψ(θ 0)]−
√

nR2(θ̃
0
n, θ 0) = −

√
nR2(θ̃

0
n, θ 0) (A.7)
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for θ̃ 0
n ∈ N5, and

‖
√

nP(θ 0)(θ̃
0
n−θ 0)‖ =

‖R2(θ̃
0
n−θ 0)‖

‖θ̃ 0
n−θ 0‖

√
n‖θ̃ 0

n−θ 0‖
p−→

n→∞
0 . (A.8)

By (A.3) and (A.4) jointly with the assumptionsA.3, A.7, A.8, A.9, A.12 andA.13, we have:

rank[P̃n]
p−→

n→∞
r1 , rank[J̃n]

p−→
n→∞

p , rank[Ĩ0n]
p−→

n→∞
m, rank[Wn]

p−→
n→∞

m , (A.9)

so that the probability that the matricesJ̃n, Ĩ0n, andWn all have full column rank converges to one as
n→ ∞; this follows on observing that̃J′nJ̃n, Ĩ0n, andWn each converge to matrices with determinants
strictly greater than zero and from the continuity of determinants with respectto the elements of the
corresponding matrices. Since plim

n→∞
P̃n = P(θ 0) and plim

n→∞
J̃n = J(θ 0), we can then write:

plim
n→∞

[
J̃′nWnJ̃n

]−
=

[
J(θ 0)

′W0J(θ 0)
]−1

, plim
n→∞

Q̃n = Q(θ 0) ,

plim
n→∞

Q̃nJ̃n = plim
n→∞

Q̃nJ(θ 0) = Q(θ 0)J(θ 0) = P(θ 0) ,

whereQ̃n ≡ Q̃[Wn] = P̃n[J̃′nWnJ̃n]
−J̃′nWn. Then, using (A.8) and (A.5), it follows that:

plim
n→∞

{√
nQ̃nDn(θ̃

0
n)−

√
nQ(θ 0)Dn(θ 0)

}

= plim
n→∞

{√
nQ̃nDn(θ̃

0
n)−Q(θ 0)

√
nDn(θ 0)

}
− plim

n→∞

{
P(θ 0)

√
n(θ̃ 0

n−θ 0)
}

= plim
n→∞

{
Q̃n
[√

n[Dn(θ̃
0
n)−Dn(θ 0)]−J(θ0)

√
n(θ̃ 0

n−θ 0)
]}

+ plim
n→∞

{[
Q̃n−Q(θ 0)

]√
nDn(θ 0)+

[
Q̃nJ(θ 0)−P(θ0)

]√
n(θ̃ 0

n−θ 0)
}

= plim
n→∞

{
Q̃n
[√

n[Dn(θ̃
0
n)−Dn(θ 0)]−J(θ0)

√
n(θ̃ 0

n−θ 0)
]}

= 0.

We conclude that the asymptotic distribution of
√

nQ̃nDn(θ̃
0
n) is the same as the one of

Q(θ 0)
√

nDn(θ 0), namely by AssumptionA.2, aN
[
0,Vψ(θ 0)

]
distribution where

Vψ(θ) = Q(θ)I(θ)Q(θ)′

has rankr1 = rank[Q(θ 0)] = rank[P(θ 0)] in an open neighborhood ofθ 0. Consequently, the esti-
mator

Ṽψ(θ̃ 0
n) = Q̃nĨ0nQ̃′

n (A.10)

converges toVψ(θ 0) in probability and, by (A.9),

rank
[
Ṽψ(θ̃ 0

n)
] p−→

n→∞
r1 andP

[
rank

[
Ṽψ(θ̃ 0

n)
]
= r1

]
−→
n→∞

1 . (A.11)
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Further, when rank[Ĩ0n] = rank[Wn] = m, rank[J̃n] = pand rank[P̃n] = r1 (an event whose probability

converges to one asn→∞), the matrixQ̃′
n[Ṽψ(θ̃ 0

n)]
−Q̃n = Q̃′

n[Q̃nĨ0nQ̃′
n]
−Q̃n is invariant to the choice

of the generalized inverse[Ṽψ(θ̃ 0
n)]

−; see Harville (1997, Section 9.4, p. 119). Thus the test criterion

PC(θ̃ 0
n; ψ,Wn) = nDn(θ̃

0
n; Zn)

′Q̃[Wn]
′{Q̃[Wn] Ĩ0nQ̃[Wn]

′}−Q̃[Wn]Dn(θ̃
0
n; Zn)

is (with probability converging to one) also invariant to the choice of the generalized inverse
{Q̃[Wn] Ĩ0nQ̃[Wn]

′}−. Finally, by Theorems 1 and 2 of Andrews (1987), it follows that the asymptotic

distribution ofPC(θ̃ 0
n; ψ,Wn) is χ2(r1).

It is of interest to note here that the assumptionsA.5 andA.6 do not require that the derivative
matrix of Dn(θ) [i.e., Hn(θ , ω)] be continuous with respect toθ , even in an open neighborhood of
θ 0. More usual assumptions would consist in assuming thatHn(θ , ω) has probability limitJ(θ),
and bothHn(θ , ω) andJ(θ) are continuous at least at every point in a neighborhood ofθ 0. We
will now show that the assumptions made for establishing Proposition3.1 include the standard
assumptions as special cases. The latter may be stated in the following form.

Assumption A.14 SCORE DERIVATIVE UNIFORM CONVERGENCE. There is an m× p
(nonrandom) matrix function J(θ) and a non-empty open neighborhood N2 of θ 0 such that:

(a) Hn(θ , ω) is continuous with respect toθ for all θ ∈ N2, ω ∈ DH and n≥ 1;

(b) sup
θ∈N2

‖Hn(θ , ω)−J(θ)‖ p−→
n→∞

0.

Proposition A.15 SUFFICIENCY OF SCOREJACOBIAN CONTINUITY AND UNIFORM CONVER-
GENCE. Suppose the assumptionsA.1 to A.4 hold. Then AssumptionA.14 entails that:

(a) J(θ) is continuous atθ = θ 0;

(b) both the assumptionsA.5 andA.6 also hold.

PROOF. Consider the (nonempty) open neighborhoodN0 = N1 ∩N2 of θ 0. For anyθ ∈ N0 and
ω ∈ Z , we can write

‖J(θ)−J(θ 0)‖ ≤ ‖Hn(θ , ω)−J(θ)‖+‖Hn(θ 0, ω)−J(θ 0)‖
+ ‖Hn(θ , ω)−Hn(θ 0, ω)‖

≤ 2 sup
θ∈N0

‖Hn(θ , ω)−J(θ)‖+‖Hn(θ , ω)−Hn(θ 0, ω)‖

By AssumptionA.14(b), we have

plim
n→∞

(
sup
θ∈N0

‖Hn(θ , ω)−J(θ)‖
)
≤ plim

n→∞

(
sup
θ∈N2

‖Hn(θ , ω)−J(θ)‖
)

= 0
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and we can find a subsequence of{Hnt (θ ,ω) : t = 1,2, . . .} of {Hn(θ ,ω) : n = 1,2, . . .} such that

sup
θ∈N0

{‖Hnt (θ , ω)−J(θ)‖} −→
t→∞

0 a.s.

Let
CS=

{
ω ∈ Z : lim

t→∞

(
sup
θ∈N0

‖Hnt (θ , ω)−J(θ)‖
)

= 0
}

andε > 0. By definition,P [ω ∈CS] = 1. For ω ∈CS, we can chooset0(ε, ω) such that

t ≥ t0(ε,ω) ⇒ 2 sup
θ∈N0

{‖Hnt (θ , ω)−J(θ)‖} < ε/2 .

Further, sinceHn(θ , ω) is continuous atθ 0, we can findδ (ω) > 0 such that

‖θ −θ 0‖ < δ (n,ω) ⇒‖Hn(θ , ω)−Hn(θ 0, ω)‖ < ε/2 .

Thus, takingn = nt0, we find that‖θ −θ 0‖ < δ (nt0,ω) implies

‖J(θ)−J(θ 0)‖ <
ε
2

+
ε
2

= ε .

In other words, for anyε > 0, we can chooseδ = δ (nt0,ε) > 0 such that

‖θ −θ 0‖ < δ ⇒‖J(θ)−J(θ 0)‖ < ε ,

and the functionJ(θ) must be continuous atθ 0. Part (a) of the Proposition is established.
Set∆ n(N2, ω) ≡ sup{‖Hn(θ , ω)−J(θ)‖ : θ ∈ N2} . To getA.5, we note that

∆n(θ 0, δ , ω) ≡ sup{‖Hn(θ , ω)−J(θ 0)‖ : θ ∈ N2 and 0≤ ‖θ − θ 0‖ ≤ δ}
≤ ∆ n(N2, ω)

for anyδ > 0, hence, by AssumptionA.14(b),

limsup
n→∞

P
[
{ω : ∆n(θ 0, δ , ω) > ε}

]
≤ limsup

n→∞
P
[{

ω : ∆ n(N2, ω) > ε
}]

≤ UH(δ , ε, θ 0)

for any functionUH(δ , ε, θ 0) that satisfies the conditions of AssumptionA.5. The latter thus holds.
To obtainA.6, we note thatA.14 entailsDn(θ , ω) is continuously differentiable in an open

neighborhood ofθ 0 for all ω ∈ DH , so that we can apply Taylor’s formula for a function of several
variables [see Edwards (1973, Section II.7)] to each component ofDn(θ , ω) : for all θ in an open
neighborhoodU of θ 0 (we can takeU ⊆ N0), we can write

Din(θ , ω) = Din(θ 0, ω)+Hn

(
θ i

n(ω), ω
)′

i·
(θ − θ 0)

= Din(θ 0, ω)+J(θ 0)
′
i·(θ − θ 0)+Rin

(
θ i

n(ω), θ 0, ω
)
, i = 1, . . . , m,
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whereHn(θ , ω)′i· andJ(θ)′i· are thei-th rows ofHn(θ , ω) andJ(θ) respectively,

Rin
(
θ i

n(ω), θ 0, ω
)

=
[
Hn(θ

i
n(ω), ω)i·−J(θ 0)i·

]′
(θ − θ 0)

andθ i
n(ω) belongs to the line joiningθ andθ 0. Further, forθ ∈U,

∣∣Rin
(
θ i

n(ω), θ 0, ω
)∣∣ ≤

∥∥Hn(θ
i
n(ω), ω)i·−J(θ 0)i·

∥∥ ‖θ − θ 0‖
≤

∥∥Hn(θ
i
n(ω), ω)−J(θ 0)

∥∥ ‖θ − θ 0‖
≤ ‖θ − θ 0‖ sup{‖Hn(θ , ω)−J(θ)‖ : θ ∈ N2} , i = 1, . . . , m,

hence, on definingN3 = U ,

Rn(θ , θ 0, ω) =
[
R1n
(
θ 1

n(ω), θ 0, ω
)
, . . . , Rmn

(
θ m

n (ω), θ 0, ω
)]′

,

we see that

‖Rn(θ , θ 0, ω)‖ ≤
m

∑
1=1

∣∣Rin
(
θ i

n(ω), θ 0, ω
)∣∣

≤ m‖θ − θ 0‖ sup
θ∈N2

{‖Hn(θ , ω)−J(θ)‖}

and

rn(δ , θ 0, ω) ≡ sup

{‖Rn(θ , θ 0, ω)‖
‖θ − θ 0‖

: θ ∈ N3 and 0< ‖θ − θ 0‖ ≤ δ
}

≤ msup{‖Hn(θ , ω)−J(θ)‖ : θ ∈ N2}

Thusrn(δ , θ 0, ω)
p−→

n→∞
0 and

limsup
n→∞

P
[
{ω : rn(δ , θ 0, ω) > ε}

]
≤UD(δ , ε, θ 0) (A.12)

must hold for any function that satisfies the conditions of AssumptionA.6. This completes the
proof.

B. Appendix: Distribution of the modified NW LR-type statistics

The consistency and asymptotic normality of estimators based on the optimization (minimiza-
tion in our case) of a random criteria,Mn(θ) say, rests upon various types of assumptions. Pakes
and Pollard (1989) gave conditions for criteria of the following types:Dn(θ ; Zn)

′Dn(θ ; Zn) or
Dn(θ ; Zn)

′ In(θ)−1Dn(θ ; Zn). Gouríeroux and Monfort (1995) gave general conditions forθ̂ n =
argminMn(θ) to be consistent and asymptotically normal, where typicallyMn(θ) = Mn(θ ; ω) =
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Mn(θ ; Zn(ω)) for ω ∈ Z andZ is the relevant sample space. These conditions are listed here.

Assumption B.1 COMPACT PARAMETER SPACE. θ ∈Θ , whereΘ is a compact set ofRp.

Assumption B.2 OBJECTIVE FUNCTION CONTINUITY. Mn(θ) = Mn(θ ; ω) is a real function on
Θ ×Z , such that Mn(θ ; ω) is a continuous function ofθ for all ω ∈ Z .

Assumption B.3 OBJECTIVE FUNCTION UNIFORM CONVERGENCE. There is a fixed(non-
random) functionM(θ) such that

P({ω : max
θ

| Mn(θ ; ω)−M(θ) |−→
n→∞

0}) = 1.

Assumption B.4 ASYMPTOTIC IDENTIFICATION. M(θ) has a unique minimum atθ = θ 0 in the
interior of Θ .

Assumption B.5 UNIFORM CONVERGENCE OF SECOND DERIVATIVES. Mn(θ ; ω) is a twice
continuously differentiable function inθ and there is a fixed (non-random) function G(θ) such that

P

[
{ω : sup

θ

∥∥∥
∂ 2Mn

∂θ∂θ ′ (θ ; ω)−G(θ)
∥∥∥−→

n→∞
0}
]

= 1.

Assumption B.6 OBJECTIVE FUNCTION ASYMPTOTIC REGULARITY. For all θ ∈Θ , G(θ) is a
nonsingular matrix.

Assumption B.7 OBJECTIVE FUNCTION ASYMPTOTIC NORMALITY.

√
n

∂Mn

∂θ
(θ 0; ω)

L−→
n→∞

N[0, H(θ 0)] .

Proposition B.8 CONVERGENCE AND ASYMPTOTIC NORMALITY OF CONTINUOUSLY UPDATED

GMM ESTIMATOR.

(a) Under the assumptionsB.1 to B.5, there is a sequencêθ n = argminMn(θ) that converges
almost surely toθ 0.

(b) Under assumptionsB.1 to B.7,

√
n
(
θ̂ n−θ 0

) L−→
n→∞

N
[
0, G(θ 0)

−1H(θ 0)G(θ 0)
−1] . (B.1)

If we consider the specific caseMn(θ) = Dn(θ)′In(θ)−1Dn(θ) assumptionB.2 is fulfilled when
Dn(θ) and In(θ) are continuous vectors and matrices. AssumptionB.3 will be verified if Dn(θ)
andIn(θ) are strongly consistent for allθ . Since plim

n→∞
Dn(θ 0) = 0, the minimum ofM(θ) is 0 and

since plim
n→∞

Dn(θ) 6= 0 whenθ 6= θ 0, M(θ) > 0 whenθ 6= θ 0, if In(θ) is bounded for alln and
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θ . AssumptionB.5 requiresDn(θ) andIn(θ)−1 are twice continuously differentiable. And in the

present context
√

nDn(θ 0)
L−→

n→∞
N[0, I(θ 0)] andIn(θ 0)

p−→
n→∞

I(θ 0) ensures assumptionB.7.

The unconstrained estimatorθ̂ n satisfies the first order conditions

∂Mn

∂θ
(
θ̂ n
)

= 0 ,

while, on using the LagrangianL = Mn(θ)− λ ′ψ(θ), the constrained estimator̂θ 0
n solves the

system:

∂Mn

∂θ
(
θ̂ 0

n

)
− ∂ψ ′

∂θ
(
θ̂ 0

n

)
λ̂ n = 0 ,

ψ
(
θ̂ 0

n

)
= 0 ,

whereψ (θ) = 0 is the null hypothesis tested.

If we add the assumptionsA.8 andA.9 of Appendix A toB.1 - B.7, θ̂ n and θ̂ 0
n are strongly

consistent and asymptotically normal vectors. We can now prove Proposition 5.1.
PROOF OFPROPOSITION5.1 The consistency and normal limits ofθ̂ n andθ̂ 0

n yield the classical
developments :

0 =
∂Mn

∂θ
(
θ̂ n
)

=
∂Mn

∂θ
(θ 0)+

∂ 2Mn

∂θ∂θ ′ (θ 0)
(
θ̂ n−θ 0

)
+e1n , (B.2)

0 =
∂Mn

∂θ
(θ 0)+

∂ 2Mn

∂θ∂θ ′ (θ 0)
(
θ̂ 0

n−θ 0
)
− ∂ψ ′

∂θ
(
θ̂ 0

n

)
λ̂ n +e2n , (B.3)

0 = ψ
(
θ̂ 0

n

)
= ψ (θ 0)+

∂ψ
∂θ ′ (θ 0)

(
θ̂ 0

n−θ 0
)
+e3n , (B.4)

whereein, i = 1,2,3, areop(1/
√

n) . Taking into account the assumptions of sections 2 and 3 jointly
with the convergence ofIn(θ 0) to I (θ 0) ≡ I0, we see that:

√
n

∂Mn

∂θ
(θ 0)

L−→
n→∞

N(0,U0) ,
∂ 2Mn

∂θ∂θ ′ (θ 0)
p−→

n→∞
V0 ,

where
U0 = 4J′0I−1

0 J0 = 2V0 .

The latter identity can be shown as follows. We have:

√
n

∂Mn

∂θ
(θ 0) = 2

∂D′
n

∂θ
(θ 0) In(θ 0)

−1√nDn(θ 0)+
√

nζ n(θ 0)
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whereζ n(θ 0) is a p−dimensional vector with elements

tr

[
∂ I−1

n

∂θ i
(θ 0)Dn(θ 0)Dn(θ 0)

′
]
, i = 1,2, . . . , p .

Since
√

nDn(θ 0) converges in distribution toN(0, I0) and ∂D′
n

∂θ (θ 0) converges in probability toJ0,√
nζ n(θ 0) is op(1) . Consequently,

√
n

∂Mn

∂θ
(θ 0)

L−→ N(0,U0) with U0 = 4J0I−1
0 J0 .

Using similar arguments, we see that:

∂ 2Mn

∂θ∂θ ′ (θ 0) = 2
∂D′

n

∂θ
(θ 0) In(θ 0)

−1 ∂Dn

∂θ ′ (θ 0)+Σn

whereΣn is a p× p matrix with elements :

∂ 2D′
n(θ 0)

∂θ i∂θ j
In(θ 0)

−1Dn(θ 0)+
∂D′

n

∂θ i
(θ 0)

∂ I−1
n

∂θ j
(θ 0)Dn(θ 0)

+ tr
∂ I−1

n

∂θ i
(θ 0)

[
∂Dn

∂θ j
(θ 0)D

′
n(θ 0)+Dn(θ 0)

∂D
′
n

∂θ j
(θ 0)

]

+ tr
∂ I−1

n

∂θ i
(θ 0)

[
∂Dn

∂θ j
(θ 0)D

′
n(θ 0)+Dn(θ 0)

∂D
′
n

∂θ j
(θ 0)

]

+ tr
∂ 2I−1

n

∂θ i∂θ j
(θ 0)Dn(θ 0)D

′
n(θ 0) .

SinceDn(θ 0) is op (1) , Σn is alsoop(1) and

∂ 2Mn

∂θ∂θ ′ (θ 0)
p−→

n→∞
V0 = 2J′0I−1

0 J0 =
U0

2
.

Under the null hypothesisψ (θ 0) = 0, equations (B.2), (B.3) and (B.4) can be rewritten:

Xn +V0
(
θ̂ n−θ 0

)
+e∗1n = 0, (B.5)

Xn +V0
(
θ̂ 0

n−θ 0
)
−P′

0λ̂ n +e∗2n = 0, (B.6)

P0
(
θ̂ 0

n−θ 0
)
+e∗3n = 0, (B.7)

whereXn = ∂Mn
∂θ (θ 0) ,

√
nXn

L−→
n→∞

N(0,U0) ,e∗in, i = 1,2,3 areop(1/
√

n). We can then write, after

some algebra :

θ̂ n−θ 0 = −V−1
0 Xn + ε1n , (B.8)
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θ̂ 0
n−θ 0 = −AXn + ε2n , (B.9)

λ̂ n = −CXn + ε3n , (B.10)

whereε in, i = 1,2,3 areop(1/
√

n) and

A = V−1
0 −V−1

0 P′
0

(
P0V

−1
0 P′

0

)−1
P0V

−1
0 , C = −

(
P0V

−1
0 P′

0

)−1
P0V

−1
0 .

Consider now the modified Newey-West statisticD̄(ψ) = nξ n, where

ξ n = Mn
(
θ̂ 0

n

)
−Mn

(
θ̂ n
)

.

Developingξ n up to order 2, we see that

ξ n =
∂Mn

∂θ ′ (θ 0)
(
θ̂ 0

n−θ 0
)
− ∂Mn

∂θ ′ (θ 0)
(
θ̂ n−θ 0

)

+
1
2

{(
θ̂ 0

n−θ 0
)′ ∂ 2Mn

∂θ∂θ ′ (θ 0)
(
θ̂ 0

n−θ 0
)

−
(
θ̂ n−θ 0

)′ ∂ 2Mn

∂θ∂θ ′ (θ 0)
(
θ̂ n−θ 0

)}
+en (B.11)

whereen is op
(

1
n

)
. Using (B.8) and (B.9), (B.11) becomes :

ξ n = X′
n

(
V−1

0 −A+
1
2

AV0A− 1
2

V−1
0

)
Xn +e∗n (B.12)

with e∗n = op
(

1
n

)
. SinceAV0A = A, we have

ξ n =
1
2

X′
n

(
V−1

0 −A
)
Xn +e∗n

=
1
2

X′
nV

−1
0 P

′
0

(
P0V

−1
0 P′

0

)−1
P0V

−1
0 Xn +e∗n

hence

D̄(ψ) = nξ n
L−→

n→∞

1
2

u′U1/2
0 V−1

0 P′
0

(
P0V

−1
0 P′

0

)−1
P0V

−1
0 U1/2

0 u , whereu∼ N(0, Ip) .

UsingU0 = 2V0, we see that

Q =
1
2

U1/2
0 V−1

0 P′
0

(
P0V

−1
0 P′

0

)−1
P0V

−1
0 U1/2

0 = V−1/2
0 P′

0

(
P0V

−1
0 P′

0

)−1
P0V

−1/2
0

Q′ = Q , QQ= Q,
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soQ is an orthogonal projector with rankp1 = dim(ψ). Thus, under the hypothesisψ (θ) = 0,

D̄(ψ)
L−→

n→∞
χ2(p1) .
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