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ABSTRACT

The concept of causality introduced by Wiener (1956) andh@ea (1969) is defined in terms of
predictability one period ahead. This concept can be gépedaby considering causality at any
given horizonh as well as tests for the corresponding noncausality [DudodrRenault (1998), Du-
four, Pelletier and Renault (2006)]. Instead of tests fanqawsality at a given horizon, we study
the problem of measuring causality between two vector gsE® EXisting causality measures have
been defined only for the horizohand fail to capture indirect causality. We propose geneaali
tions to any horizork of the measures introduced by Geweke (1982). Nonparanagtd@arametric
measures of unidirectional causality and instantanedestefare considered. On noting that the
causality measures typically involve complex functionsrafdel parameters in VAR and VARMA
models, we propose a simple simulation-based method taaeathese measures for any VARMA
model. We also describe asymptotically valid nonparameinfidence intervals, based on a boot-
strap technique. Finally, the proposed measures are dgplistudy causality relations at different
horizons between macroeconomic, monetary and financiablas in the U.S.
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1. Introduction

The concept of causality introduced by Wiener (1956) anch@ea (1969) constitutes a basic no-
tion for studying dynamic relationships between time serighis concept is defined in terms of
predictability at horizon one of a (vector) variabke from its own past, the past of another (vec-
tor) variableY, and possibly a vectat of auxiliary variables. In particular, Granger (1969) defin
causality fromY to X in terms ofpredictability one period aheadY” causesX if observations on
Y up to timet — 1 can help to predicX (¢) given the past ofX and Z up to timet — 1. More
formally, Y causesX if the variance of the forecast error &f obtained by using the past &f is
smaller than the variance of the forecast erroXobbtained without using the past bf. In such a
setup, the time order is used to distinguish between “ingatiables (past values of different vari-
ables) and “output” variables (current values). Furthegyeri‘correlations” that could be driven a
third set of variables can be eliminated by allowing for tihesence of auxiliary variablgs?). The
theory of Wiener-Granger causality has generated a caadideliterature; for reviews, see Pierce
and Haugh (1977), Newbold (1982), Geweke (1®84.Gtkepohl (1991), Boudjellaba, Dufour and
Roy (1992, 1994) and Gouriéroux and Monfort (1997, Chapdgr 1

Most of the work in this field focuses on predictability at izon 1. In Dufour and Renault
(1998), the concept of causality in the sense of GrangeQ)li8@eneralized by considering causality
at a given (arbitrary) horizoh and causality up to horizoh, whereh is a positive integer and can be
infinite (1 < h < o0); for related work, see also Sims (1980), Hsiao (1982), artddpohl (1998).
This extension is motivated by the following observatiamthie presence of auxiliary variablég),
even ifY does not caus& at horizon oneY may causeX at a longer horizom > 1. In such case,
we haveindirect causalitytransmitted byZ. Necessary and sufficient conditions of noncausality
between vectors of variables at any horizofor stationary and nonstationary processes have also
been derived, but they are notably more complex for horizonger than one, even in simple VAR
models [Dufour and Renault (1998)].

This type of analysis distinguishes between three basistgb causality: fromX to Y, fromY
to X, and instantaneous causality. In practice, it is posshae dll three causality relations coexist,
hence the importance of finding means to quantify their degdnfortunately, causality tests fail to
accomplish this task, because they only provide evidendhepresence or the absence of causality,
and statistical significance depends on the available detdest power. A large effect may not be
statistically significant (at a given level), and a statilly significant effect may not be “large” from
an economic viewpoint (or more generally from the viewpaifthe subject at hand) or relevant
for decision making. As emphasized by McCloskey and Zilia896), it is crucial to distinguish
between the numerical value of a parameter and its statistignificance. Indeed, the importance of
this distinction was well understood by Neyman and Pear$683, p. 296): Is it more serious to
convict an innocent man or to acquit a guilty? That will depem the consequences of the error; is
the punishment death or fine; what is the danger to the comgnahieleased criminals; what are
the current ethical views on punishment? From the point @inaof mathematical theory all that we
can do is to show how the risk of errors may be controlled andmized. The use of these statistical
tools in any given case, in determining just how the balafmukl be struck, must be left to the
investigatofr.

In studying Wiener-Granger causality, predictabilitylie tentral issue. So, beyond accepting or
rejecting noncausality hypotheses — which state thatioeviiables do not help forecasting other
variables — we wish to assess the magnitude of the forecasbi@ment, where the latter is defined
in terms of some loss function (such as mean-square erreehn iEthe hypothesis of no improvement
(noncausality) cannot be rejected from looking at the atd data (for example, because the sample
size or the structure of the process do allow for high testgrhveizeable improvements may remain



consistent with the same data. Or by contrast, a statistisanificant improvement — which may
easily be produced by a large data set — may not be relevantdiaractical viewpoint. Furthermore,
in comparing causality properties at different horizong, mvay wish to compare the magnitudes
of improvement for different horizons. Reporting the résalf causality tests at different horizons
simply does not provide this type of information. This susigehat building causality measures at
different horizons along with associated confidence irtisrwould yield a much more informative
analysis of Granger-Wiener causality than tests of noratiys

As pointed out by Geweke (1982), much research has beenedieiobuilding and applying tests
of noncausality. However, once it is admitted that a “cawstation” (in the sense of Granger) may
be present, it is usually important to assess the strengteatelationship. This topic has attracted
much less attention. To answer this type of question, GeWEd@2, 1984%) introduced measures
of causality, based on mean-square forecast errors. GouxieMonfort and Renault (1987) pro-
posed causality measures based on the Kullback informafolasek (1994) showed how causality
measures can be calculated using the Akaike Informatiotei@m (A/C). Polasek (2002) also in-
troduced new causality measures in the context of unieaaad multivariate ARCH models and
their extensions based on a Bayesian approach.

Existing causality measures have been established onlhéoone period horizon and fail to
capture indirect causal effects. In this paper, we devetosality measures at different horizons
which can detect indirect causality apparent only afteessvperiods. Specifically, we propose
generalizations to any horizdnof the measures proposed by Geweke (1982) for the horizon one
Important properties of these measures include: (1) theynannegative, and (2) they cancel only
when there is no causality at the horizon considered. Byoagyalith Geweke (1982, 1984, we
also define a measure dépendencat horizonh, which combines causality measures fromto
Y. from Y to X, and an instantaneous effect at horizanWhen both causalities fronX to Y and
from Y to X do exist, the effect (or predictability) may be stronger ire@f these directions. The
causality measures studied do allow one to assess thisdbrhesizon considered.

After noting that analytical formulae for causality measim VAR and VARMA models typi-
cally involve complex functions of model parameters and teylifficult to evaluate, we propose a
simple method based on a long simulation of the process efdst and we show that the approach
suggested works well in practice.

For empirical implementation, both parametric and nonpatac empirical estimates of the
causality measures are considered. Parametric estinmatdsecderived - using the long simulation
approach — from consistent estimates of the parameters ARaovY VARMA model of known order
and the associated impulse response coefficients. Nonp#rarastimates involve approximating
the process of interest by a long VAR whose degree increasesappropriate rate.

Because of its simplicity, we focus on the second approackrfipirical application. We show
that the proposed nonparametric estimates are considmnte their asymptotic distribution under
standard regularity conditions, and suggest a bootstcmigue to build confidence intervals based
on these estimates.

The proposed causality measures can be applied in diffemriexts and may help solve some
puzzles from the economic and financial literatures. Inphiser, we illustrate their use by studying
causality relations at different horizons between ma@oemic, monetary and financial variables in
the U.S. The data set considered is the one used by Bernaddibov (1998) and Dufour, Pelletier
and Renault (2006). This data set consists of monthly obens on nonborrowed reserves, the
federal funds rate, the gross domestic product deflatorreaddyross domestic product.

The plan of the paper is as follows. Section 2 provides thevadn behind an extension of
causality measures at horizén> 1. Section 3 presents the general theoretical frameworkiwhic
underlies the definition of causality at different horizors Section 4, we propose nonparametric

2



short-run and long-run causality measures. In Section Syiveeparametric expressions for the pro-
posed causality measures in the context of linear statianaertible processes, including VARMA
processes. In Section 6, we propose consistent estimdttbrs causality measures. In Section 7, we
suggest a simple method to evaluate the measures basedmulatisin approach. In Section 8, we
establish the asymptotic distribution of the measures hadasymptotic validity of nonparametric
bootstrap confidence intervals. Section 9 is devoted to guireral application and the conclusion
relating to the results is given in Section 10. Proofs appetre appendix.

2. Motivation

The causality measures proposed in this paper constitté@sgns of those developed by Geweke
(1982, 19848, 1984) and others. The existing causality measures quantify fleeteof a vector of
variables on another one at the one period horizon. Thefgignce of such measures is however
limited in the presence of auxiliary variables, since itasgible that a vectdr causes another vector
X at an horizon, strictly higher thanl even if there is no causality at horizdn In this case, we
speak of an indirect causality induced by the auxiliaryalslesZ. Causality measures defined for the
horizon1 do not capture this indirect causality. This paper propasesality measures at different
horizons to quantify short- and long-run causality betwestdom vectors. Such causality measures
can detect and quantify the indirect causalities due tolianxivariables. To see the importance of
such causality measures, consider the following examples.

Example 2.1 Suppose we have two variabl&andY. (X,Y")’ follows a stationary VAR(1) model:

e o ][50 [2] es

Since the coefficient oY (¢) in the first equation of (2.1) i6.7, we can conclude that causesX
in the sense of Granger. However, this does not providenmdition on causality at horizons larger
than1. To study causality at horiza?y consider the system (2.1) at time- 2 :

seea)-[om w30 ][0 s [zen ]+ (262

The coefficient oy’ (¢) in the equation forX (¢ 4 2) is 0.595, soY causesX at horizon2. But, how
can one measure this “longer-run” causality? Existing ma@&s do not answer this question.

Example 2.2 Suppose now that the information set contains not only tleevariables of interest
X andY but also an auxiliary variabl&. Consider a trivariate stationary proc€ss, Y, Z)’ which
follows a VAR(1) model:

X(t+1) 0.60 0.00 0.80 ] [ X(¢) ex(t+1)
Y(t+1) | =] 000 040 0.00 Y(t) |+ | ev(t+1) |. (2.2)
Z(t+1) 0.00 0.60 0.10 Z(t) ez(t+1)

Since the coefficient of (¢) in the first equation foX (¢ 4+ 1) is 0, Y does not caus& at horizonl.
Attimet + 2, thenX (¢ 4 2) is given by

X(t+2) = 0.36 X (t)+0.48Y (t)4+0.56 Z(t)+0.6ex (t+1)+0.8:z(t+ 1) +ex(t+2). (2.3)



The coefficient ofY (¢) in the latter equation i6.48, which implies thafy” causesX at horizon2.
This shows that the absence of causality at horizdpes not preclude causality at a longer horizon.
This indirect causality is transmitted by the variafle

Y -7 > X
~—
0.60 0.80
where0.60 and0.80 are the coefficients of the one period effecttobn Z and the one period effect

of Z on X, respectively. Sohow can one measure the degree of this indirect causalfgain,
existing measures do not answer this question.

3. Framework

The notion of noncausality studied here is defined in termertifogonality conditions between
subspaces of a Hilbert space of random variables with figit®ersd moments. We denofeé =
L?(02, A, Q) a Hilbert space of real random variables with finite secondnenats, defined on a
common probability spacéf?, A, @), with covariance as the inner product. Af and F' are two
Hilbert subspaces of.?, we denoteE + F the smallest subspace &f which contains both
and F, while E\F represents the smallest Hilbert subspace.dfwhich contains the difference
E—-F=FENnF ={x:2€E,x¢ F}[If E— Fisempty, we seE\F = {0}.]

“Information” is represented here by nondecreasing sempsenf Hilbert subspaces @f. In
particular, we consider a sequentef “reference information sets'(¢),

I={I(t):teZ,t>wtwitht <t' = I(t) CI()forallt > w, (3.1)

wherel(t) is a Hilbert subspace df?, w € Z U {—oo} represents a “starting point”, aritlis the
set of the integers. The “starting point’'is typically equal to a finite initial date (such as= —1,

0 or 1) or to —oo; in the latter casé (¢) is defined for allt € Z. We also consider three multivariate
stochastic processes

X=AX({t):teZ t>w}, Y={Y(t):teZ t>w},Z={Z(t):t€Z,t>w}, (3.2)

whereX (t) = (z1(t), ..., Tm, (8)), Y (&) = (11(t), - -+, Ymao (8))'s Z(t) = (21(t), ..., Zmy (1)),

my > 1, mo > 1, mg > 0, andx;(t) € L?, y;(t) € L?, z(t) € L2, for all i. Further, we letd

be a (possibly empty) Hilbert subspaceldf whose elements represent information available at any
time, such as time independent variableg( the constant in a regression model) and deterministic
processes (e.g., deterministic trends). We deidte, ¢| the Hilbert space spanned by the compo-
nentsz;(7),i = 1,...,my, of X(7), w < 7 < t, and similarly forY (w, t] and Z (w, t] : X (w, t],

Y (w, t] and Z(w, t] represent the information contained in the history of theatdes X, Y and

Z respectively up to time. Finally, the information sets obtained by “adding’(w, ¢ to I(¢) and

Y (w, t] to Ix(t) are defined as

IX(t) = I(t) + X(w> t] ’ IXY(t) = IX(t) + Y(wv t] ) (33)
and similarly forly (t), I7(t), Ixz, etc. In most cases considered below, the information’ get

containsZ (w, t| but may not contairX (w, t] or Y (w, t].
For any information sef3; [some Hilbert subspace df?] and positive integeh, we denote



Plz;(t + h) | By] the best linear forecast of (¢ + h) based on the information sé&,
u[z;(t + h)| By] = zi(t + h) — Plx;(t + h) | B]

the corresponding prediction error, anélz;(¢t + h) | B;] = E{u[z;(t + h)| B;]*}. Then, the best
linear forecast ofX (¢ + h) is

P[X(t +h)| B = (P[z1(t +h)| By, ..., Plam, (t+h)|B]),
the corresponding vector of prediction errors is
UIX(t+h)|By] = (ulz1(t+h) | B, ..., ulem, (t+h)|B)), (3.4)
and the corresponding matrix of second moments is
Y[X(t+h)| B =E{UX(t+h)|BJUX(t+h)|B]'}. (3.5)

ProvidedB, contains a constang,/[X (¢t + h) | B] is covariance matrix ot/ [ X (¢ + h) | B;]. Each
componentP[z;(t + h) | B;] of P[X(t + h) | B,] is the orthogonal projection af;(¢t + k) on the
subspaceB;.

Following Dufour and Renault (1998), noncausality at hamiz is defined as follows, given an
information set/.

Definition 3.1 NON-CAUSALITY AT HORIZON h. Leth > 1. () Y does not caus& at horizon
h givenI [denotedY’ - X |I]iff P[X(t+ h)|Ix(t)] = P[X(t+ h)|Ixy(t)], Vt > w,where

Ix(t) =1(t) + X(w, tjand Ixy(t) = Ix(t) + Y (w, t]; (i7) Y does not caus& up to horizonh
given! [denotedY’ (73 X|1I]iffY - X|Ifork=1,2,..., h;(iti) Y does not caus& at any

horizon given/ [denotedY” (+>) X|I]iffY - X|Iforallk=1,2,....

This definition corresponds to causality framto X. It means thal” causesX at horizonh if
the past oft” improves the forecast of (¢ 4+ h) based on the information if(t) and X (w, ]. Itis
slightly more general than the one considered in Dufour aggiaRIt (1998, Definition 2.2), because
the conformability assumptioX (w, t| C I(¢) is not imposed. Clearly ifX (w, t] C I(t), then
Ix(t) = I(t). So, if the conformability assumption is added, Definitiofh 3. equivalent to the one
in Dufour and Renault (1998, Definition 2.2). Below, relaxithe assumptioX (w, t] C I(t) will
facilitate the definition of causality measures. Given theva definition, the natural specification
for I(t) is one whereZ (w, t] is a subset of (¢), but X (w, t] andY (w, t] are not subsets df(t), i.e.
X(w, t] € I(t), Y(w, t]| £ I(t), Z(w, t] C I(t).

An alternative characterization of noncausality can beresged in terms of the variance-
covariance matrix of the forecast errors. The followinguiess easily deduced from Definition
3.1.

Proposition 3.1 COVARIANCE CHARACTERIZATION OF NON-CAUSALITY AT HORIZON h. Let
h > 1. (i) Y does not caus& at horizonh given iff

det {X[X(t +h)|Ix(t)]} =det {Z[X(t+ h)|Ixy(t)]}, Yt > w,
whereX[X (t + h) | -] is defined by3.5); (i7) Y does not caus&’ up to horizonh given I iff

det {Z[X (t + k) | Ix ()]} = det {Z[X(t + k) | Lxy ()]}, VE>w, k=1, 2, ..., h;
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(7i7) Y does not caus& at any horizon giverd, iff
det {Z[X(t+k)|Ix®)]} =det {X[ X+ k)| Ixy(@)]}, VE>w, k=1,2,....

Below, we also consider unconditional causality propertieluced by eliminating the auxil-
iary variable vectorZ from the information set. This suggests considerifigunconditional non-
causalitywhich is defined as follows.

Definition 3.2 UNCONDITIONAL NON-CAUSALITY AT HORIZON h. Leth > 1. (i) Y does not
causeX at horizonh givenI, unconditionally with respect t& [denotedY” - X [z iff

WhereI(Z)X(t) = I(Z)(t) —l—X(w, t], -[(Z)XY(t) = I(Z)X(t) —l—Y(w, t] andI(Z)(t) = I(t)\Z(w, t],

(74) Y does not caus& up to horizonh given !, unconditionally with respect t& [denotedY’ (+>h)

X|[Iip)iffY - X|[Iiz fork = 1,2,..., h; (iii) Y does not caus&X at any horizon given
I, unconditionally with respect t& [denotedy” (+>) X |[Iz)]iffYy " X[z forallk=1,2,....

If Z is empty(ms = 0), there is no effective conditioning and we use the convestigp, x (t) =
Ix(t) and I z)xy (t) = Ixy(t). Onreplacingl by (), itis straightforward to see that Proposition
3.1 also holds foZ —unconditional non-causality.

4. Causality measures

We will now develop multi-horizon extensions of the cauyaineasures introduced by Geweke
(1982, 1984, 1984) for the horizon 1. Important properties of these measurelside: (1) they
are nonnegative, and (2) they cancel only when there is neatiguat the horizon considered.
Specifically, we propose the following causality measutdsosizonh > 1, where by convention
In(0/0) = 0 andln(z/0) = +oo for z > 0.

Definition 4.1 MEAN-SQUARE CAUSALITY MEASURE AT HORIZONA RELATIVE TO AN INFOR-
MATION SET. Forh > 1,

det {Z[X(t + h) | Ix ()]}

det {X[X(t + h)|Ixy ()]} 1

C’L(YﬁX\I):ln

is themean-square causality meas{a#., theintensityof the causalityfromY to X at horizonh,
givenI.

Since we consider here only mean-square measures, the negan“square causality measure
will be abbreviated to “causality measure”. Cleaxdy;, (Y - X|I)=0if Y(w, t] C Ix(t), so

CL(Y - X | I) provides useful information mainly whe¥i(w, t| € I(t). Form; = mg = 1,
Definition 4.1 reduces to

o?[X(t+h) [Ix (1))
o[ X(t+h)|Ixy(t)]

Cu(Y — X|I)=In

CL(y - X | I) measures the causal effect frdmto X at horizonh given I and the past ofX.
In terms of predictability, this can be viewed as the amodiiformation brought by the past &f
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which can improve the forecast &f (¢ + h). Following Geweke (1982), this measure can also be
interpreted as the proportional reduction in the variariceeforecast error oK (¢ + ) obtained by
taking into account the past &f. This proportion is equal to

(X (t+h) | Ix(8)] = o®[X(t + h) | Ixy (t)]
o?[X(t + h) [ Ix(t)]
It can be useful to consider unconditional causality propgfinduced by eliminating the aux-

iliary variable vectorZ from the information set. Such unconditional causality sueas can be
defined as follows.

zl—exp[—CL(YTX\I)].

Definition 4.2 UNCONDITIONAL MEAN-SQUARE CAUSALITY MEASURE AT HORIZONhA. For
h>1,
. det {Z[X(t+h) | I7)x(t)]}

det {X[X (t + h) | I 7)xy ()]}

CLlY — X 1) =1

is the Z-unconditional mean-square causality mea$un® Y to X at horizonh, given!.

When there is no ambiguity concerning the reference inftond, we shall also use the more
intuitive notation:
C(X?Y|Z) :CL(X?YU(Z)).

As in Geweke (1984), we can rewrite (conditional) causality measures [Dafini#.1] in terms of
unconditional causality measures wherés eliminated from the reference information set:

CL(Y7 X|I) = CL((v, 2) -~ X|Iizx)—CL(Z > X [I1z)x)
= C((Y, 2) —>X|Z) C(Z7X|Z),
C’L(XTYH) = Cn((X, Z—>Y\I(Z y) — CL(Zﬁy\I(Z)Y)
= C(X, 2) —>Y|Z) C(Z;>Y|Z),
where (Y, Z) and (X, Z) represent the joint proces§Y (t)’, Z(t)) : t € Z, t > w} and

{(X@), 2(t)) : t € Z,t > w}, respectively
We now define an instantaneous causality measure betWesndY at horizonh.

Definition 4.3 MEASURE OF INSTANTANEOUS CAUSALITY AT HORIZONA. For h > 1,

det {X[X ([ +h) [ Ixy ()]} det {ZY(+h)|Ixy ()]}
det {Z[X(t+h), Y(t+h) [ Ixy (t)]}

CL(X -Y|I)=In
h

where X[X (¢t + h), Y(t + h) | Ixy (t)] = E{UW(t + h) | Ixy (t)][UW (t + h)|Ixy(t)]'} and
W) = (X, Y(t)/)’, is themean-square instantaneous causality medsiirghe intensity of
the instantaneous causalithetweeny” and X at horizonh.

Form, = ms = 1 and providedI(¢) includes a constant variable, we have:

det { Z[(X (¢t +h), Y(t+h)) | Ixy (t)]} = o?[X(t + h) [ Ixy ()] *[Y (¢ + h) | Ixy (1))
—(cov[(X(t+h), Y(t+h) | Ixy (£)]),



1
Cr(X —Y[I)=In L —p[X(t+h), Y(t+h) |Ixy(t)]2]

o?[X(t+h) Ixy ()] ] _ [ o?[Y (t + h) Uxy (1)) ]

=1In
a?[X(t+h) | Ixy(t) + Iy(Hh)] a?[Y(t+h) | Ixy(t) + IX(t+h)]

where

cov[X(t+h), Y(t+h)|Ixy(t)]
[(X(t+h) [ Ixy (D)]o[Y (¢ +h) [ Ixy (1))

plX(t+h), Y(t+h)|Ixy(t)] = .

is the conditional correlation coefficient betwe&tit + h) andY (¢ + k) given the information set
Ixy(t), Iy4n) represents the Hilbert subspace spanned by the comporfeyitg & ») and simi-
larly for I'y 4. Thus, instantaneous causality increases with the absedilite of the conditional
correlation coefficient.

We also define a measure of dependence betweandY at horizonh. This will enable one to
check whether, at a given horizénthe processeX andY must be considered together or whether
they can be treated separately.

Definition 4.4 DEPENDENCE MEASURE AT HORIZON:. Forh > 1,
c(x, Y |I)=Cp(X Y|+ CY — X| D) +Cr(X Y |1) (4.2)

is theintensityof the dependence betwe&nandY at horizonh, givenI.

Itis easy to see that the intensity of the dependence betWesmmdY at horizonh can be written
in the alternative form:
det {Z[X(t +h)|Ix(t)]} det {Z[Y (t + h) | Iy (t)]}
det {X[X(t+h), Y(t+h)|Ixy(t)]}

CM(X,Y|I)=Tn

When there is no ambiguity on the definition of the referemfermation set/(¢), we shall also use
the following notations:

CY - X)=Cr(Y » X|I), CY — X[2) = Cp(Y — X|1(z),

C(X-Y)=C(X -Y|I), cCM(X,v)=c"(x,V|I).
h h

Now, it is possible to build a recursive formulation of cditganeasures. This one will depend
on the predictability measure introduced by Diebold andaKil(2001). Fom; = my = 1, these
authors proposed a predictability measure based on tleafegxpected losses of short and long run
forecasts:

E[LUIX(t +j)| 2])]
E[L(U[X(t + k)| 2])]

where(2; is the information set at timg L is a loss functionj andk represent respectively the short
and the long-runl/ [ X (t + s) | £] = X (t +s) — P[X (t + s) | £2], for s = j, k, is the forecast error
at horizont + s. This predictability measure can be constructed accordinlye horizons of interest
and it allows for general loss functions as well as univar@t multivariate information sets. In this
paper, we focus on the case of a quadratic loss function:

P(L>Qt7j>k):1_

L(U[X(t+5)|2]) = U[X(t+s)| ) fors=j, k.
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Then, we have the following relationships.

Proposition 4.1 RELATION OF CAUSALITY MEASURES WITH PREDICTABILITY MEASURES. Let
hy and hsy be two different horizonsnp; = ms = 1, and

o2 (X (t+h) | Ix(t)

Px (Ix(t), h, ha) =1 o2 (X (t+ ha) | Ix(t)

g : (4.3)

o2 (X(t+h)|Ixy (1))
o2(X(t+ho) | Ixy (1))’

the predictability measures fak based on the information sefs (¢) and Ixy (t), respectively
Then, forhy > hy > 1,

Px (Ixy(t), b1, ho) =1 — (4.4)

CL(Y = X 1) = Cp(Y > X 1) = In{1 = Px[Ix(t), b1, hal} = In{L = Px[Lxy (1), h. hal}

The following identity follows immediately from the latt@roposition: forh > 2 andm; =
mo = 1,

CL(Y — X | 1) =Cp(Y - X | 1) +In[l — Px (Ixy(t), 1, h)] — In[l — Px (Ix(t), 1, h)].

Predictability measures look at the effect of changing tredast horizon, for given information
set while causality measures look at the joint effect of chagghe information set and the forecast
horizon.

5. Causality measures for VARMA models

We now consider a more specific set of linear invertible psees which includes vector autoregres-
sive (VAR), moving average (VMA), and mixed (VARMA) model§fite order as special cases. It
is possible to provide parametric expressions for shartand long-run causality measures in terms
of reduced-form impulse responses.

We consider in turn two distinct cases. First, we calculaemetric measures of short-run and
long-run causality in the context of an autoregressive mgpaverage model. We assume that the
procesIV (t) = (X (), Y (t)', Z(t)") is a VARMA(p, ¢) model, hereafter thenconstrainednodel,
wherep andq can be infinite. The structure of the procésg(t) = (X (¢)’, Z(t)')’, hereafter the
constrainednodel, can be deduced from the unconstrained model usimgl@uyr6.1.1 in Litkepohl
(1993, pages 308-309). This model is a VARMA ¢) with p < mp andg < (m—1)p+q. Second,
we provide a characterization of the parametric causalégsures in the context of VMA) model,
whereq is finite.

Without loss of generality, let us consider the discretex 1 vector process with zero mean
W(t) = (X(t),Y(t), Z(t)") defined on? and characterized by the following autoregressive mov-
ing average representation:

S(LYW(t) = O(L)u(t) (5.1)

wherem = mi + mo + ms,

exx (L) eoxy(L) exz(L) Oxx(L) Oxy(L) O0xz(L)
P(L)=| eyx(L) eyy(L) ¢yz(L) |, O(L)=]| Oyx(L) Oyy(L) Oyz(L) |,
ozx (L)  pzyv(L)  wzz(L) Ozx(L) Ozy(L) 0zz(L)




p
ou(L Z‘Plh , (L) = — Z el

Ou(L )—Iz+29m[ﬂ 01 (L Z%Lﬂ forl £ kandl, k=X, Y, Z,
Jj=1 7j=1

E[u(®)] =0, E[u(t)u(s)] = { Eou Ig: Z ;i '

We assume thai(t) is orthogonal to the Hilbert subspace spannedB¥(s) : s <t — 1} with X,
is symmetric positive definite matrix. Under stationarlty¢) has a VMAEo) representation:

W (t) = (L)u(t) (5.2)

00 oo | Yxx; Yxy; Yxzj ,

W(L)=o(L)'O(L) = Z%’LJ = Z Yyx; Vyy; Yyz; | Yo=1In.  (5.3)

=0 =0 | Yzx; Yzv; Vzzj

From Section 4, measures of dependence and causality arediefi terms of variance-
covariance matrices of the constrained and unconstraimetdst errors. Thus, to calculate these
measures, we need to know the structure of the constraindélrimposing noncausality). This one
can be deduced from the structure of the unconstrained ngddglusing the following proposition
and corollary [LUtkepohl (1998 pages 231-232)].

Lemma5.1 LINEAR TRANSFORMATION OF AVMA (¢q) PROCESS Letu(t) be am-dimensional
white noise process with nonsingular variance-covarianesrix X, and let

W(t)=p+ Y Tult—j)+u(t)
j=1

be am-dimensional invertible VMAy] process. Furthermore, I&f be an(m x m) matrix of rank
m. Then then-dimensional proces®/y(t) = FW (t) has an invertible VMA]) representation:

Z et —j) +e(t)

wheree(t) is mm-dimensional white noise with nonsingular variance-céaace matrixX., thed;,
j=1,...,q, arem x m coefficient matrices ang < q.

Lemmab5.2 LINEAR TRANSFORMATION OF A VARMA (p,q) PROCESS Let W (t) be am-
dimensional, stable, invertible VARNIA ¢) process and lef’ be anm x m matrix of rankm. Then
the processV(t) = FIW (t) has a VARMAp, ¢) representation with

p<mp, §<(m—1)p+q.

If we assume thalV/ (¢) follows a VAR(p) [or VARMA (p, 0)] model, then its linear transforma-
tion Wy (t) = FIW (t) has a VARMA(p, ¢) representation withh < mp andg < (m — 1)p. Suppose
now we are interested in measuring causality fronio X at a given horizorh. We need to apply
Lemma 5.2 to obtain the structure of procéBgs(t) = (X (¢)’, Z(t)")’. If we left-multiply equation
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(5.1) by the adjoint matrix oP(L), say®(L)*, we get
S(L)*P(L)W (t) = (L)*O(L)u(t) (5.4)

where®(L)*®(L) = det {®(L)}. Since the determinant @¥(L) is a sum of products involving
one operator from each row and each columnp¢f.), the degree of the VAR polynomial, here
det {®(L)}, is at mostmp. We write:

wherep < mp. Itis also easy to check that the degree of the operatdn*©(L) is at mostp(m —
1) + ¢. Thus, equation (5.4) can be written as follows:

det {B(L)} W (t) = B(L)"O(L)u(?). (5.5)

This equation is another stationary invertible VARMA regeatation of proces®/ (t), called the
final equation form. The model of the procéds(¢) = (X (t)’, Z(t)')’ can be obtained by choosing
FinLemmab5.2 as

o [ I, 0 0 } '

0 0 Ins
On premultiplying (5.5) byF, we get

det {B(L)} Wy (t) = FS(L)*O(L)u(t). (5.6)

The right-hand side of (5.6) is a linearly transformed fiatder VMA process which, by Lemma
5.1, has a VMA(q) representation witlh < p(m — 1) 4+ ¢ . Thus, we get the model:

det {(L)} Wo(t) = B(L)=(t) = [ Z)Zf;féf)) Z)Z"j(%) (1), (5.7)

9”(1;) = Iml + iélljlij élkz(L) = iélkzglij forl 75 k andl, k=X, 7, (58)
J=1 j=1

Ef] =0, Els=)] = { T et 9)

The coefficients@lkj and the elements ok, are functions ofY,, v, Owj, Lk = X, Z, Y,
1 <i<p,1<j<gq. Thisis possible by solving the following system:

Ve(v) = 7, (v), v=0,1,2, ..., (5.10)

where ~v.(v) and v,(v) are the autocovariance functions of the proces8és)s(t) and
Fo(L)*O(L)u(t), respectively.

Example 5.1 Suppose we have two variabl&sandY . If we assume that the joint proceGk, V')’
follows a stationary VAR1) model, then the marginal proce&sis an ARMA(2, 1). The parameters
of the autoregressive part of the ARNIAA 1) model are functions of the VAR) parameters. How-
ever, the moving average coefficient [s8yof the ARMA(2, 1) and the variance of new error terms
[sayagx] can be determined by solving the system (5.10)fee 0 andv = 1. These parameters
must satisfy the constraints | < 1 ando?, > 0.

11



The VMA(x) representation of model (5.7) is given by

Wolt) = dec (2D} D) = D dyele -5 = Do | DX Dxe [ ]
Jj=0 J

— | Yzx, Vzz ez(t =)

(5.11)
where¥y = I,,,+m,. TO quantify the degree of causality frol to X at horizonh, we need to
calculate the variance-covariance matrices of the unainst and constrained forecast errors of
X(t + h). From (5.2), the forecast error & (¢t + k) and its covariance matrix are given by

h—1

UW(t+n) | Iw()] = > Tult+h—1i), (5.12)
1

SW(t+n) [ Iw®)] = > GVu®)] ¥ => 2,7 (5.13)
=0 1=0

Consequently, the variance-covariance matrix of the ustcaimed forecast error of (¢ + h) is

h—1
SIX(E+h) [Iw ()] = W20
1=0
whereJ; = [ I,,, 0 0 ].Similarly, the forecast error dfi’y(t + k) and its covariance matrix
are given by:
h—1 ~
Uo[Wo(t + h) | Tw, ()] = > Tie(t + h— i),
1=0
h—1 - -
E[W()(t + h) | IWO(t)] = v, 3. z,

o

=

Then the variance-covariance matrix of the constraineelctst error ofX (¢ + h) is

h—1
DX+ h) | Tny (1)) = > Jo; D] J
=0
whereJy = [ Iy, O ] . We can immediately deduce the following result by using tbnition

of a causality measure froii to X [Definition 4.1].

Theorem 5.1 REPRESENTATION OF CAUSALITY MEASURE IN TERMS OF REDUCEFORM IM-
PULSE RESPONSES Under AssumptionSs.1and5.2,

det { ) (o 5.7, 13))
det { Z?;Ol (1% 2.9]J7) }

CL(YTX |I) =1In

forh > 1,whereJy =[ I,,, 0 0 ]andJo=][ I, 0 |.

We can, of course, repeat the same argument switching thefahe variablesY andY. For
a bivariate VAR(1) model, it is relatively easy to analytiga&gompute the causality measures at any
horizonh using only the unconstrained parameters [see Example 5.1].
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Now, we will determine the parametric measure of instardasecausality betweeN andY at
given horizonh. We know from Section 4 that a measure of instantaneous ldguisalefined only in
terms of the variance-covariance matrices of unconstidioescast errors [see Definition 4.3]. The
variance-covariance matrix of the unconstrained foremast of joint proces$ X (t+h)’, Y(t+h)’)'
is given by

h—1
B ‘ I vt | Im, O 0
2(X(E+h), Y(t+h) | Iw(t) = ;G%EMG , G = [ o L. 0 ] .

Consequently,

h—1 h—1
DX+ Iw@t) => huEwJ, D(Y(E+h)| Iw(t) = JW%IW 3,

=0 i=0

whereJ; = I,,, 0 0 ]and/o=[0 Iy, O |.Wecanimmediately deduce the following

result by using the definition of the instantaneous caysalgasure [see Definition 4.3].

Theorem 5.2 REPRESENTATION OF THE INSTANTANEOUS CAUSALITY MEASURE IN TEMS OF
REDUCED-FORM IMPULSE RESPONSES Under AssumptionS.1and5.2,

det { 10 (72,0 0)} det { S0 (LW 2,00 05) }
det { X0 (G ¥ 2,9/G")}

CL(X =Y |I)=In [
h

Im, 0 0

> =
for h > 1, whereG [ 0 In, 0

}, Ji=[1Im 0 0],andJo=[0 In, 0 ]
The parametric measure of dependence betweemdY™ at horizonh can be deduced from its
decomposition given by equation (4.2).
Let us finally consider the special case where the prodégs = (X (¢), Y (t)', Z(t)")’ follows
an invertible VMA(g) model:
W(t) = O(L)u(t) (5.14)
with
Oxx(L) Oxy(L) Oxz(L)
O(L)=| Oyx(L) Oyy(L) 6yz(L) |,
Ozx(L) Ozy(L) 0zz(L)

9”([/) =1+ Zj‘:l Hllej, Qlk(L) = 3-:1 Hlkij ,forl 75 k, I, k=X,Z, Y, andl;is an identity
matrix. The following result then follows from Propositidnl.

Theorem 5.3 CHARACTERIZATION OF CAUSALITY MEASURES FORVMA( ¢). Leth; andhs be
two different horizons. Under Assumptibri4and forhy > hy > g,

CL(Y—X |I) = CL(Y—X |I).
h1 h2

6. Estimation

We know that short-run and long-run causality measuresrdepa the parameters of the model
describing the process of interest [see Section 5]. Comselyuthese measures can be estimated by
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replacing the unknown parameters by their estimates fromita 8ample.

There are at least three different approaches to the egiim@tcausality measures. The first and
simplest approach assumes that the process of interestddl finite-order VARp) model which can
be estimated by OLS. The second approach assumes that tesgfollows a finite-order VARMA
model. But standard methods for the estimation of VARMA nmigdsuch as maximum likelihood
and nonlinear least squares, require nonlinear optinoizai his is difficult to implement in practice
especially when the number of parameters is large, as ipisally the case in VARMA models. The
last approach assumes that the process is autoregressiveotentially infinite order, but can be
approximated by a VAR:) model, wherek = k(T') depends on the sample size. It is the focus of
this section.

The precise form of the parametric model appropriate fooagss is typically unknown. For this
reason, several authors have considered a nonparametricagp to predicting future values using
an autoregressive model fitted to a serie® abservations; see, for example, Parzen (1974), Bhansali
(1978) and Lewis and Reinsel (1985). This approach is basedsuming the process considered has
an infinite-order autoregressive model, which can be apprabed in finite samples by a finite-order
autoregressive model. In particular, stationary invé&tMARMA processes belongs to this class.
We will now describe how this approach can be applied to egérocausality measures at different
horizons. We first discuss the estimation of the fitted agr@ssive constrained and unconstrained
models. Then we construct a consistent estimator of the-stmorand long-run causality measures.

Consider a stationary vector procddst) = (X(¢)',Y (), Z(t)"). By Wold's theorem, this
process can be written in the form of a VM#&() model:

W (t) = u(t)+ > Tult — ).
j=1

We assume tha 22, || ¥; [|[< oo anddet{¥(z)} # 0for z € Cand |z| < 1, where| ¥; [|=
tr(¥;%;) and ¥(z) = > 22, W27, with ¥ = I,,, anm x m identity matrix Under the latter
assumptionsi¥ () is invertible and can be written as an infinite autoregrespiocess:

W(t)=> &;W(t—j)+ult) (6.1)
j=1
where} 72, || &; [[< oo and®(z) = I, — > 72, P;2) = W(2)~! satisfiesdet{®(2)} # 0 for
zeCand|z| <1.

Given a realization{W(1),... ,W(T)}, we can approximate (6.1) by a finite-order VAR
model, where: depends on the sample size

k
W(t) =" ®pW(t—j) +u(t).
j=1

The least squares estimators of the coeffici@ns) = [Py, Do, ... , Pri| Of the fitted VAR k)
model and variance-covariance matkiy,;, of the error termu,(t) are given by

A . a1 e 1 o
dk) = [D1, qs%,...,@kk]:rklrkl,zu‘k:m ST an(t)a(ty
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T T

w(t)=W(@),... WEt—k+1)) anda(t) = W(t) — Eg‘f:l qukW(t — 7).

Suppose now we are interested in measuring causality fotm X at a given horizor. For
that, we need to define the structure of the marginal prodess) = (X (¢t)’, Z(t)’)’. Under general
condition [and as there i8/(¢) follows a VARMA(p, ¢) model as in Lemma 5.2]iW(¢) has a
VAR(c0) representation:

Wo(t) =Y _®;Wo(t — j) +=(t). (6.2)
j=1

Model (6.2) can also be approximated by a a finite-order YWARnodel, wherek depends on the
sample sizd" :

k
Wo(t) = @uW(t — j) + ex(t).
j=1

It is more convenient to calculate the causality measuredmgidering the same ordérfor the
constrained and unconstrained models. This is to ensudesant comparison of the determinants
of the variance-covariance matrices of the constraineduacdnstrained forecast errors.

The estimators of the autoregressive coeffici@ns) = [@1x, Par, - - . , Pyi] Of the fitted con-
strained VAR k) model and variance-covariance matfix;, of the error terne, (t) are given by the
following equation:

T
~ ~ ~ - ~y o~ - 1 _ _
(k) = [P1k, Poky - Prr] = L Iy ' Do = I § Eu()E(t)
t=k+1

wherely,;, I}, andé(t) are defined as for unconstrained model.

Now, to estimate the degree of causality framto X at horizonh, we need to estimate the
variance-covariance matrices of the unconstrained ansti@dned forecast errors, using the corre-
sponding fitted VARE) models. The variance-covariance matrix of the unconsthaforecast error
of W(t + h) based on th& AR(co) model is given by

h—1
L(h) =) w27 (6.3)
j=0

wherey; = (ng) and
o = o) 4 ) ¢, ¢V =@y, B0 =1, forj > 1; (6.4)

see Dufour and Renault (1998). An estimator of the variamariance matrix (6.3) based on the
fitted V AR(k) model is given by
h—1
Li(h) =) Lty (6.5)
7=0

where;;, = 39 and#\? are calculated using (6.4) [wit”) replaced byp'?)]. Similarly, the
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variance-covariance matrix of the forecast errobiGf(t + h) is given by
So(h) = ;L0 (6.6)

wherey; = (iigj) andqﬁ(lj) are defined in similar way as in (6.4). Furthermore, an estimaf the

variance-covariance matrix (6.6) based on the fitteti? (k) model is given by
Sop(h) = WS, 0), (6.7)

Where@k is an estimate of the corresponding population paranigte€onsequently, from Theorem
5.1an estimator of the causality measure frbhto X at horizonh is given by

det { [Jo Zoj(h) J§) }]
det {[J1 Zx(R)J}]} |

~

CL(Y—X |I)=In

(6.8)

The most basic property that the above estimator should isax@nsistency To prove consis-
tency, additional regularity assumptions are needed. \Weider here the set of standard assumptions
originally considered by Lewis and Reinsel (1985) to dedeasistency of parameter estimates for a
VAR (o0) model. Of course, alternative — eventually weaker — assomptould also be considered.

Assumption 6.1 The following conditions are satisfied:

(1) E|up(t)ui(t)u;(@)w(t)| < v4 < oo, forl < h,i,j,1 < m; whereup(t), u;(t), u;(t), and
u;(t) are elements of the vector of the error teutt);

(2) kis chosen as a function df such thatc®/T — 0 ask, T — oc;

(3) kis chosen as a function df such thatk!/2 322, | || &; ||— 0 ask, T — oo;

(4) the series used to estimate parameter¥ éfR(k) and the series used for prediction are gener-
ated from two independent processes having the same stincsiagcture.

Theorem 1 in Lewis and Reinsel (1985) ensures convergenéélofunder conditions 1 and 3 of
Assumption 6.1 and by choosirigas a function ofl” such that:?/T" — 0 ask, T — co. The latter
is an implication of condition 2 of Assumption 6.1. Consetflye Assumption 6.1 is sufficient for
the consistency ofb(k). Furthermore, their Theorem 4 derives the asymptotic Bistion for & (k)
under Assumption 6.1 and by assuming that there efi$tg} a sequence dfm? x 1 vectors such
that0 < M; <|| I(k) ||?= I(k)'I(k) < My < oo, for k = 1,2, ... Under similar conditions the
estimatord(k) converges ta (k) and asymptotically follows a normal distributiofFinally, we note
thatEAu‘k (§€|k) converges ta’, ;. (X ), ask andT — oo [Lutkepohl (1993, pages 308-309)].

Proposition 6.1 CONSISTENCY OF CAUSALITY MEASURES Under Assumption G,ﬁL(Y —
X | I) is a weakly consistent estimator ©f, (Y - X |I).

In practice, one must choose the valuekadfo use for any given seri€s. Lewis and Reinsel
(1985, pages 408-409) suggest to use Akaike’s informatib@rion, which was originally proposed
to select the order of a finite autoregressive process bysiomgdhe value of which minimizes
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the determinant of the estimated one-step ahead mean guuedlietion error matrix, to determine
a finite-order approximation to a true infinite order autoesgive process [see also Bhansali (1978)
and Parzen (1974)].

7. Evaluation by simulation of causality measures

Except for very simple specifications, it is quite difficutderive analytical expressions for causality
measures. To bypass this difficulty, we propose here a sismpiglation-based technique to calcu-
late causality measures at any horiZgrior . > 1. To illustrate the proposed technique we consider
the examples of Section 2 and limit ourselves to horizbasd2. Since one source of bias in au-
toregressive coefficients is sample size, the proposeditpsh consists of simulating a large sample
from the unconstrained model whose parameters are assoreceither known or estimated from
a real data set. Once the large sample, hereafter largeagionylis simulated, we use it to estimate
the parameters of the constrained model (imposing nonkigyisan what follows, we describe an
algorithm to calculate the causality measure at given barfzusing a simulation technique.

1. Given the parameters of the unconstrained model andtitd values, simulate a large sample
of T" observations under the assumption that the probabilityiloligsion of the error termu(t)
is completely specified [in our work, we have used valueg ak high ag000000]. Note that
the form of the probability distribution af(¢) does not affect the value of causality measures.

2. Estimate the constrained model using a large simulation.

3. Calculate the variance-covariance matrices of the wicg@ined and constrained forecast errors
at horizonh [see Section 6].

4. Calculate the causality measure at horizamsing for example (6.8).

To see better how this works, consider again Example 2.1 cid@e2. Our illustration involves
two steps. First, we calculate the theoretical values ofcthesality measures at horizohsand 2.
We know from Example 5.1 that for a bivariate VAR(1) modelsitrelatively easy to compute the
causality measure at any horizbmsing only the unconstrained parameters. Second, we ¢évdhea
causality measures using a large simulation technique ancbwpare them with theoretical values
from step 1. The latter are recovered as follows.

1. We compute the variances of the forecast errorX aft horizonsl and2 using its own past
and the past of. We have:

X+ Ixy ()] =1, o?[X(t+2)| Ixy(t)] = 1.74.

2. We compute the variances of the forecast errorX @ft horizonsl and2 using only its own
past. To do that we need to determine the structure of tharedimsd model ofX. This one is
given by the following equation:

X(t+1)=0.85X(t) +0.105X (t — 1) + ex(t + 1) + fex (t).
The parameter8 andV (e x (t)) = o2, are the solutions to the following system:

(1+46%02, =16125, 602 = —0.35.

3
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Table 1. Evaluation by simulation of causality measuresatzbnsl and2 for Model (2.1)

P CL(YT)X) CL(YT)X)
1 0.519 0.567
2 0.430 0.220
3 0.427 0.200
4 0.425 0.199
5 0.426 0.198
10 | 0.425 0.197
15 | 0.426 0.199
20 | 0.425 0.197
25 | 0.425 0.199

Table 2. Evaluation by simulation of causality measureazbns1 and2 for Model (2.2)

p | CL(Y— X 1) | CL(Y— X [])
1 [ 0.000 0.121
2| 0.000 0.123
3~ ] 0.000 0.122
4 [ 0.000 0.123
5 | 0.000 0.124
10 | 0.000 0.122
15 | 0.000 0.122
20 | 0.000 0.122
25 | 0.000 0.124

The set of possible solutions {§6, 02 ) = (—4.378, 0.08), (—0.2285, 1.53)}. To get an
invertible solution we must choose the combination whidiisBas the condition| 6| < 1,
i.e. the combination(—0.2285, 1.53). Thus, the variance of the forecast error6fat horizon

1 using only its own past is?[X (¢ + 1) | Ix (t)] = 1.53, and the variance of the forecast error
of X at horizon2 is o2[X (t + 2) | Ix (t)] = 2.12. Consequently,

CLY —X) = 0425, C1(Y—X) = 0.197. (7.1)

In a second step we use the algorithm described at the bagiithis section to evaluate the
causality measures using a large simulation techniqude Taghows results that we get for different
lag orders in the constrained model (usifig= 600000). These results correspond to the theoretical
values of the causality measures calculated in (7.1) anfirgothe convergence ensured by the law
of large numbers.

Now consider Example 2.2 of Section 2. In this example, ditallycalculation of causality
measures is not easy. In model (22)does not caus& at horizon one, but causes it at horizon
2 (indirect causality). Consequently, we expect that daysaeasure fromY” to X will be equal
to zero at horizonl and different from zero at horizon 2. Using a large simulatiechnique and
by considering different lag ordegsin the constrained model, we get the results in Table 2. These
results confirm our expectation and show clearly the presehan indirect causality fror™ to X.
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8. Confidence intervals

In this section, we assume tha&tandY are univariate processesi{ = my = 1) while Z can be
multivariate (ns > 0). This corresponds to the case of most practical interestth&umore and
for simplicity of exposition, we assume that the proc®8$t) = (X (¢), Y (t), Z(t)") follows a
VAR (p) model:

p
W(t) =Y ®W(t—i)+u(t)

i=1
where {u(t)}{2, is a sequence dfi.d. random variables with zero mean and a positive definite
variance-covariance matriX,,, the polynomiald(z) = I,,, — >.F_, &;2* satisfiesdet {®(2)} # 0,
for z € Cwith |z| <1, andI,, is anm x m identity matrix!

For a realization W (1), ... ,W(T)} of procesdV, estimates o = [¢1,... ,P,] andX, are

given by the following equations:

d = NI 2, =—0 a(t)a(t), (8.1)
T- p t=p+1
R 1 T K 1 T
= & wt)wt), I = 7— w(t)W(t+1), (8.2)
T—p t=p+1 T—p t=p+1

wherew(t) = (W (t),... ,W(t —p+ 1)), anda(t) = W(t) — SP_, &;W (t —i).

Suppose that we are interested in measuring causality ¥aim X at given horizomh. To do
that we need to know the structure of the marginal pro¢gs&) = (X (¢)’, Z(¢)')’. This one has a
VARMA (p, q) representation witlh < mp andg < (m — 1)p,

S(L)Wo(t) = 6°(L)e(t) (8.3)
whered®(L) = Iz, — P{L — -+ = DCLP, 0°(L) = Iz, + O L+ -- -+ 05L7, for m = m3 + 1, I, an
m x 1m identity matrix, and{e(t) }{2, is a sequence of uncorrelated random variables with zera mea
and a positive definite variance-covariance matix We assume that(z) = I + 23:1 é)jzj

satisfiesdet {#°(z)} # 0for z € Cand |z| < 1. Under the latter assumption, the VARNMA q)
process is invertible and has a VAR] representation:

Wolt) =Y @ Wo(t — j) +(t). (8.4)
7j=1

We approximate (8.4) by a finite-order VAR) model, where: depends on sample siZé:

M-

Wo(t) =) PiuWy(t — j) + ex(t).

1

J

The estimators of the coefficient k) = (@1, Do, ... , Pri] Of the fitted constrained VAR)
model and variance-covariance matfix; of the error termey(t) are given by the following equa-

LIf the processdV follows a VAR (o) model, then we can use Inoue and Kilian's (2002) approagetoesults that are
similar to those developed in this section.
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tion:

- - - Lo 1 o
(k) = [P1k, Dok, -« Pr) = [y Iy ', e = EL(DER(),

wherel, I, andé(t) are calculated as for the unconstrained model.
The theoretical value of causality measure frno X at horizonh is given by

det Lo5303) SU
CL(Y—X |T) =1 CSoh) = SR, D) =S v D,
L(Y—X [1) n[det{Jlx(h)J{} o(h) ]Z::OJEJ (h) ]Z::OJ j

where?; = @gj), v = qﬁ(lj) andqﬁ(lj) andqs(lj) are defined in similar way as in (6.4). Using Lemma
5.2 CL(YTX | I) may be written as follows:

Cr(Y—X |I) =In det {G(®, 2) } |
h det {H (2, X,) }
h—1 h—1
G(D,2,) =Y JoW; 200y, H(D, ) =Y LW 2,001,
=0 =0

whereG(-) and H (-) are continuous and differentiabfienctions of(®, X,,). A consistent estimator
of Cr(Y - X |I)is given by

h—1 h—1
] , Sope(h) =) U Ty, S(h) = 01,0,
j=0 j=0

. det { JoXoi (h)JS
CL(Y—X |T) =Tn | = {o>or (M) 1}
h det {J; 5(h)J|}

where®;, ¥, ¥;;,, and £, ;, are estimates of the corresponding population quantties,, 7y,
andX., .

To establish the asymptotic distribution 6t(Y - X | I), we recall the following result [see
Litkepohl (1993, Chapter 3) and Kilian (1998, page 221)].

vec(P) — vec(P) d
e ( vech(X,) — vech(X,) ) — N[0, 9] (8.5)

where ‘vec” denotes the column stacking operatore¢h” is the column stacking operator that stacks
the elements on and below the diagonal only,

-1
0— [ I, 0 (8.6)

0 2Dy, D) ' Dy (20 ® £0)Dy( Dy, D)~ |7

and D,, is the duplication matrix, defined such thaich(F') = D,,vech(F') for any symmetric
m X m matrix F'. Thereafter, we will consider the following assumptions.

Assumption 8.1 The following conditions are satisfied:

(1) Elep(t)ei(t)ej(t)er(t)| < vy < oo, forl < h,i, 7,0 < m;whereey(t), e;(t), €;(t), ande;(t)
are elements of the vector of the error tetin);

(2) kis chosen as a function @ such thatx® /T — 0 ask, T — oo;
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(3) kis chosen as a function of such thatk!/2 322, | || &; ||— 0 ask, T — oo;

(4) the series used to estimate parameter¥ dfR(k) and the series used for prediction are gener-
ated from two independent processes having the same stiochiagcture.

Proposition 8.1 ASYMPTOTIC DISTRIBUTION OF CAUSALITY MEASURES Under Assumptions
8.1, we have:

T/? [C’L(YTX 1) = CL(Y —X|1)] 4 N[0, 00(h)?]

whereo.(h)?> = Dcf2Dy, Do = OCL(Y—X [1) /00, 0 = (vec(®)', vech(%,)) and 2 is
given by(8.6).

Differentiating analytically the causality measures wihpect td is typically difficult. One way
to build confidence intervals for causality measures is éoauigrge simulation technique [see Section
7] to calculate the derivative numerically. Another way sists of building bootstrap confidence
intervals. As mentioned by Inoue and Kilian (2002), for bded measures, as in our case, the
bootstrap approach is more reliable than the delta-metBoek reason is because the delta-method
interval is not range respecting and may produce confiderteevals that are logically invalid. In
contrast, the bootstrap percentile interval preservesobgteuction these constraints [see Inoue and
Kilian (2002, pages 315-318) and Efron and Tibshirani (393

Let us consider the following bootstrap approximation @distribution of the causality measure
at given horizom.

1. Estimate a VARp) process and save the residuals

p
u Z W(t—q),fort=p+1,..., T,
& = [dy,...,P,) is given by (8.1) and the OLS estimate 8f, is given by ¥, =
ZtT p+1 0()(t)'/(T —p), wherea(t) = a(t) — Yot per @(t)/(T — p) andii(t) = W(t) —

DWW (t — ).

2. GeneratdT — p) bootstrap residuala*(¢) by random sampling with replacement from the
residualsi(t), t=p+1,...,T.

3. Choose the vector gfinitial observationsv*(0) = (W (1), ..., W(p)'). 2

4. Givend = [y,... ,®,], {u*(t)}L,,,, andw*(0), generate bootstrap data for the dependent
variableW*(t) from equation:

P
Z *(t—i)+u(t), for t=p+1,...,7T. (8.7)

The choice of using the initial vecto(W(l)/, cees W(p)/)/ seems natural, but any block of p vectors frévh =
{W(),...,W(T)} would be appropriate. Berkowitz and Kilian (2000) note @tditioning each bootstrap replicate on
the same initial value will understate the uncertainty aisded with the bootstrap estimates, and this choice isormisked
in the simulations by choosing the starting value frim= {W (1),... ,W(T)} [see Patterson (2007)].
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5. Calculate the bootstrap OLS regression estimates

X x Tk Tk e Pk’ Trk— sk 1 ~ % ~ %
4 :[b@%"'v@p]:FIF 17 Zu:rzu(t)u(t),>
pt:p—i-l

where

A ] T A ] T

" =7 w(B)w (1), IT = 77— w (W (t + 1),

P P

wi(t) = (WH),... , Wt —p+ 1)), @*(t) = a*(t) — X4, @*(t)/(T — p), and

@ (t) = WH(t) = S0, &y W (¢ — ).

6. Estimate the constrained model of the marginal pro¢&ss7) using the bootstrap sample

(W)}

7. Calculate the causality measure at horiipsayég)*(Y - X | I), using equation (6.8)
and the bootstrap sample.

8. ChooseB such%a(B + 1) is an integer and repeat the steps (2){#7imes.

We have the following result which establish the validitytioé percentile bootstrap technique.

Proposition 8.2 ASYMPTOTIC VALIDITY OF THE RESIDUAL-BASED BOOTSTRAR Under As-
sumptions 8.1, we have

T/ [C’E(YTX 1) — C‘L(YTX D] % N[0, 0.(h)?]

whereo..(h)? and 2 are defined in Proposition 8.1.

Kilian (1998) proposes an algorithm to remove the bias inulsg response functions prior to
bootstrapping the estimate. As he mentioned, the small leglniges in an impulse response function
may arise from bias in slope coefficient estimates or fronrmir@inearity of this function, and this
can translate into changes in interval width and locatiéhd ordinary least-squares small-sample
bias can be responsible for bias in the estimated impulg®nsg function, then replacing the biased
slope coefficient estimates by bias-corrected slope caaffiestimates may help to reduce the bias
in the impulse response function. Kilian (1998) shows that @dditional modifications proposed
in the bias-corrected bootstrap confidence intervals ndettwonot alter its asymptotic validity. The
reason is that the effect of bias corrections is negligislggptotically.

To improve the performance of the percentile bootstrapryate described above, we can con-
sider a similar algorithm to the one in Kilian (1998). Beftwaotstrapping the causality measures, we
correct the bias in the VAR coefficients. We approximate tlas termBias =FE[d — @] of the VAR
coefficients by the corresponding bootstrap bidgs* = E* [qﬁ* — qﬁ], whereE* is the expectation
based on the bootstrap distributiondf. This suggests the bias estimate

1 B

/.\*__ /\*()_ A~

Bias = BZ;¢ I — @
j:

We substituted — Bias in equatlon (8.7) and generaf® new bootstrap replicationg*. We use
the same bias estlmaths , to estimate the mean bias of né [see Kilian (1998)]. Then we
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calculate the bias-corrected bootstrap estimétoe= ¢* — Bias that we use to estimate the bias-
corrected bootstrap causality measure estimate. Basdubatiscussion by Kilian (1998, page 219),
given the nonlinearity of the causality measure, this pdace will not in general produce unbiased
estimates, but as long as the resulting bootstrap estinmtgpproximately unbiased, the implied
percentile intervals are likely to be good approximatidrsrther, to reduce the bias in the causality
measure estimate, one can consider another bias correqgied directly on the measure itself,

CLO"(Y— X 1) = C" (v — X |1) - [C(Y — X 1) = CL(Y — X | D],

CL(Y—>X|I Y—>X|I)

||Mm

In practice, specially when the true value of causality meass close to zero, it is possible that for
some bootstrap samples the quanﬁty(j)*(YT X | I) becomes negative. In this case we impose

the following non-negativity truncation:

CM(Y — X | 1) = max {CF" (v — X |1),0}.

9. Empirical application

We apply our causality measures to examine whether or noetagnpolicy can cause at different
horizons the real economy and vice versa. Further, we camiber causal effects that different
measures of monetary policy can have on the real economygvihe latter is represented by gross
domestic product. We follow Bernanke and Blinder (1992) &minanke and Mihov (1998) to
consider as measures of monetary policy nonborrowed resand federal funds rate.

The data set considered is the one used by Bernanke and MiBe8) and Dufour et al. (2006).
This data set consists of monthly observations on nonb@dorgserves (NBR), federal funds rate
(R), gross domestic product deflator (P), and real gross stierygroduct (GDP). The monthly data
on GDP and GDP deflator were constructed using state spat®aserom quarterly observations
[for more details, see Bernanke and Mihov (1998)]. The sampis from January 1965 to December
1996 for a total of 384 observations. All variables are iraldgnmic form. These variables were also
transformed by taking first differences, consequently thesality relations have to be interpreted in
terms of growth rates.

We performed augmented Dickey-Fuller tests (hereattbrF-testg for nonstationarity of the
four variables of interest and their first differences. Téguits show that all variables in logarithmic
form are nonstationary. However, their first differences stationary except for the GDP deflator
We performed a nonstationarity test for the second difiegerof the GDP deflator. The test statistic
values are equal te-11.04826 and —11.07160 for the AD F-test with only an intercept and with
both intercept and trend, respectively. The critical valireboth cases are equal +2.8695 and
—3.4235. Thus, the second differences of the GDP deflator are stayiona

Once the data is made stationary, we use the nonparamepricaegh described in Section 6 for
the estimation and Akaike’s information criterion to sfig¢he orders of the corresponding fitted
VAR (k) models. Applying Akaike’s criterion for the unconstraingdR model, which corresponds
to four variables, we find that it is minimized at order= 16. The orders of the constrained VAR
models, which correspond to different combinations oféhrariables, are all less than or equal to
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Causality Measure

Causality Measure

Causality Measure

Figures 1 -8. Causality profiles

These figures present measures of causality between nonlsatreserves (NBR), federal funds rate (R), the
gross domestic product deflator (P), and real gross donmmsiittict (GDP), unti#t0 months. The sample runs
from January 1965 to December 1996 for a total of 384 obsenst

Figure 1: Causality measures from Nonborrowed reserves to Federal funds rate Figure 2: Causality measures from Nonborrowed reserves to GDP Deflator
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Figure 3: Causality measures from Nonborrowed reserves to Real GDP Figure 4: Causality measures from Federal funds rate to GDP Deflator
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Figure 5: Causality measures from Federal funds rate to Real GDP Figure 6: Causality measures from Real GDP to Federal funds rate
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Causality measures

Figure 7: Comparison the impacts of NBR and R on Real GDP Figure 8: Comparison the impacts of real GDP on NBR and R
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16. To calculate the causality measures we consider the satee /or= 16 for the constrained
and unconstrained models. This ensures a relevant coroparighe determinants of the variance-
covariance matrices of the constrained and unconstraoreddst errors. We compute the causality
measures for horizons = 1,...,40 [see Figure 1- 8]. Higher values of the measures indicate
larger causality. We also calculate the corresponding nalab% bootstrap confidence intervals as
described in the previous section.

Figure 1 shows that nonborrowed reserves strongly Granger causiedieal funds rate (one
period ahead). This causality is well known in the literatand can be explained by the theory of
supply and demand for money. The nonborrowed reservesalse ¢the real GDP and GDP deflator:
these causality measures are not significantly differemhfeero aftek months for real GDP and
after6 months for the GDP deflator, although the confidence interstil cover sizeable values. The
causality measures from the federal funds rate to the GDRtdeflecline gradually, although they
are significantly different from zero only for the two-mosthorizon [see Figur4]. We also observe
that real GDP strongly causes the federal funds rate duhi@dinst three months. This causality is
statistically significant for the first or 5 months. Another interesting result is the one which cor-
responds to the causality from the federal funds rate to®&#P. This causality is sizeable (in the
range of0.05) and statistically significant during the firs months, after which it becomes statisti-
cally non significant although possibly sizeable from annecoic viewpoint [see Figurg]. These
findings are consistent with conclusions obtained by Dufgual. (2006). Statistically significant
causality measures — in the sense thatig confidence intervals do not cover zero — are summa-
rized in Table 3. The above results do not change substgnivalen we consider second — rather
than first — differences of the GDP deflator.

From the above results, we draw the following conclusiongstfFmonetary policy — as mea-
sured by nonborrowed reserves and federal funds — affezte#t economy. Second, nonborrowed
reserves cause federal funds rate in the short-term, whahdauses real GDP over several months
(see figured and5). These findings are consistent with the literature; seeefample Bernanke
and Blinder (1992), Bernanke and Mihov (1998), and Irele&2@DB). Third, except for the first two
months, where the both measures of monetary policy haveatihe slegree of causal effect on real
GDP, the federal funds rate causes the real economy momgghtrthan nonborrowed reserves at
longer horizons (see Figuf®. The latter result is also supported by the literaturehe results are
striking: the Federal funds rate is markedly superior to ti@h monetary aggregatdM1 and M2
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money supplieshnd to most other interest rates as a forecaster of the ecghdBernanke and
Blinder (1992, page 903)]Finally, Figure8 shows that the real economy (real GDP) affects the
federal funds rate more than nonborrowed reserves.

10. Conclusion

New concepts of causality were introduced in Dufour and BEr{a998): causality at a given (ar-
bitrary) horizonh, and causality up to any given horizanwhereh is a positive integer and can be
infinite (1 < h < o0). These concepts are motivated by the fact that, in the presafran auxiliary
variableZ, it is possible to have a situation in which the variableloes not cause variahl€ at hori-
zonl1, but causes it at a longer horizér> 1. In this case, this is an indirect causality transmitted by
the auxiliary variableZ.

A related problem arises when measuring the degree of dgusatween two variables. Existing
causality measures have been established only for hotiaon fail to capture indirect causal effects.
In this paper, we have proposed a generalization of suchuresafr any horizor, both parametric
and nonparametric. Parametric measures are defined in ¢éimpulse response coefficients in the
VMA representation. On observing that the relevant pardamekpressions can be quite complex,
an original approach based on simulating a large sample tiherprocess of interest was suggested.
Bootstrap nonparametric confidence intervals were alsgeter

The causality measures are applied to examine whether axgrpailicy causes the real economy
at different horizons. The results show that nonborrowesgmess cause the federal funds rate in
the short-term, while the federal funds rate causes theeamalomy (real gross domestic product)
for several months ahead. Further, the federal funds radentae impact on the real economy
than nonborrowed reserves. The federal funds rate is arlfeteraster of the real economy than
nonborrowed reserveshis also suggests that nonborrowed reserves affect theagaomy mainly
through their effect on interest rates.

The long VAR approach used in this paper to estimate the tausseasures can have some
drawbacks. Given the dimension of VAR and the large numbdags that we put in the model to
capture the structure of the infinite autoregressive matiel,estimated slope coefficients and the
corresponding reduced-form impulse responses can be émmprespecially in small sample. Con-
sequently, a small sample bias in the causality measuresans®s from bias in the reduced-form
impulse coefficients estimates or from the nonlinearityhafse measures. To remove this bias, one
may replace the biased reduced-form impulse responses atisality measures by bias-corrected
reduced-form impulse responses estimates using boctstierpgbootstrap method discussed in Kil-
ian (1998).

The choice of the appropriate order of VAR models can alsorbengortant issue for causality
measures. Recently, Kapetanios, Pagan and Scott (20019 #rgt the order of VAR needed to
reproduce the reduced-form impulse responses for actoabetes is likely to be far higher than
those suggested in practice and quite infeasible givendh®lke sizes in macroeconomics. The
investigation of the impact of those issue on the small saraptimates of causality measures is the
topic of on-going research.
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Table 3. Summary of causality relations at various horiZonseries in first difference

h 1 2 3 4 5 6 7 8 9 10 |11 |12 |13 |14 |15 |16 | 17| 18 | 19 | 20
NBR — R yes

NBR — P yes| yes| yes| yes| yes| yes

NBR — GDP | yes| yes| yes| yes

R — NBR

R—P yes | yes

R — GDP yes|yes| yes| yes| yes|yes|yes| yes|yes|yes| yes| yes| yes| yes| yes
P — NBR

P—R

P—GDP

GDP — NBR

GDP — R yes | yes| yes| yes| yes

GDP — P

Note: This table summarizes the results of different causalitgations between nonborrowed reserves (NBR), the fedenals rate (R), the gross
domestic product deflator (P), and real gross domestic ptd@DP), up to20 months. “yes” means that the corresponding causality neasu
significant at leveD.05. (i.e.,, the 95% bootstrap confidence interval does not cover zero). The lgaraps from January 1965 to December 1996
(384 observations).



A. Appendix: Proofs

PrROOF OF PROPOSITION4.1 Leth; and hy be two different horizons andh; = my = 1.
According to Diebold and Kilian (2001), the predictabilityeasures foX based on the information
setsIx(t) andIxy (t) are, respectively, defined as

) o?(X(t+hy) | Ix(t

Px (Ix(t), b, he) = 11— UQEXEtJJ:hS:Iﬁt;; 7
B c2(X(t+h)|I t
Px(Ixy (t), b1, ho) = 1- U2EX§t j: h;; } Igﬁtig '

By Definition 4.1, we then see that

[ X+ ) |Ix (1) o?[X(t + ho) | Ix (¢)]
Cr(Y W X|I)-CLY w7 X|I) =In [ [X(t+h1; |IXY( )J In [ [X(t+h2§\IXY(t)]

:m[ [ (t+hy) [ Ix(t) } [ X(t+ h)|Ixy(t)]
2[X (t+ ho) [Ix(t)] X (t+ ho) | Ixy (t)]
=1In {1 — Px(Ix(t), h1, ho)} — {1—PX(IXY , b, ho)}

O

PROOF OFPROPOSITIONG6.1  Under Assumption 6.1 and using Theorem 1 in Lewis anddegin
(1985), we have )
D(k) = (k) + op(1).

Using (4.1) of Lewis and Reinsel (1985) and Assumption 64 have:

ﬁk(h) = <1+m?k) Y(h)+o0p(1) = X(h) + E(h)op(T_5) +0,(1), ford %
hence .
Zr(h) T%@ 2(h). (A.1)
Similarly, we have: i
Zo(h) 2 o(h). (A2)
From (A.1) and (A.2), we get
det {JoZo(h) T4} ] » det {JoXo(h).Jo }
- = (A.3)
det {J 2 (h)J,} | T—oo | det {J12(R)J]}
C’L(YTX\I) T%OOC’L(YTX\I). (A.4)
O

PROOF OFPROPOSITION8.1  We know that, fop <

wno

G(2(k), 1) = (1 +0p(T_5))G(Q5, ) + op(1).
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In (G(®(k), Z.1z)) = In (G(D, 2,)) + 0,(T~°) + 0,(1). (A.5)

In(G(2, £,)) =In(G(®, £)) + 0p(1). (A.6)

Consequently, X )
CLY — X |1) = Cr(Y — X|I) + 0p(T7%) + 0,(1)

- B det (G(9, 2,))
Cr(Y — X|I)=1In (det (@, 2u))> .

SinceCr (Y - X | I) =0,(1), the asymptotic distribution af'r, (Y - X | I) will be the same

where

as that ofC, (Y’ - X | I). Using a first-order Taylor expansion 6%, (Y - X | I), we get

v xm-cirox e T, )i

where
LY —X |I)  0CL(Y—X |I)
Dc = b = L (A7)
0 (vec(®)', vech(X,)") 00
for 6 = (vec(®)', vech(5,)")', hence
TV2 |G (Y —X |T) = CL(Y—X | I)| = Do T2 Vec@) — vec(P)
h h B T 2vech(%,) — vech(%,) |
Using (8.5),
T'/? [CL(Y —X |I) = Cu(Y —X ID]SN(0, o.(h)?).
Consequently,
TV2[C (Y — X |I) = CL(Y —X | 1)]-LN(0, 00(h)?)
whereo.(h)? = DCQD,C,
I'tex, 0
=10 2Dy Do)~ Dl (B © Z) Don( Dl D)L | (A8

and D,,, is the duplication matrix, defined such thaich(F) = D,,vech(F') for any symmetric
m X m matrix F'. O

PROOF OFPROPOSITION8.2  We start by showing that conditional on the sample

vec ((ﬁ*) L vec (qﬁ) , vech(ﬁ’i) T£> \/ech(ﬁ’u)7

T—oo —00
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Vec(i)*(k)) 2, vec(i)(k:)), Vech(i’;k) 2, Vech(i’e‘k).

T—oo T—o0o
We first note that
. . 1 KL .
vec(9*) = Vec(Fl*lF**l) = Vec(T Z W(t+ 1)*w*(t)’F**1>
- pt:erl
1 & .. .
- Vec( T 3 [Bwr () ut (¢t 1)]w*(t)’F*_1>
t=p+1
U . 1 & .
= vec(@(— Z w*(t)w*(t)')F*_l) + Vec( Z u*(t+ 1)w*(t)'F*_1)
P I “ P
A T A
= vec(d) + vec( Z u*(t + l)w*(t)’F*A) .
P o
Let3} = o (u*(1), ..., u*(t)) denote ther-algebra generated hy (1), ... ,u*(¢). Then,

A

By the law of large numbers,

T
1 ~ ~
i St + Dwt () 7 = B [ut (¢ + Dw* (8 T Y] + 0p(1)
t=p+1

andvec(¢*) — vec(®) % 0. Now, to prove thatech(£7%)  vech(,), we observe that
T—oo T—o0
T 1 T
vech (51— 5,) :vech{ . (u*(t)u*(t)/—— a(s)a(s)’) }
T- p s=p+1

Conditional on the sample and by the law of iterated expiectatwe have:

_ 1 T
E* |u*(s)u*(s) — =—— a(s)i(s)
_ Py (s)a(s)'|
- 1 T
= EJE o)) 197] - ﬂ(s)&(s)/}
s=p+1
- el ET: ity - Ly a(s)a(s)] =0
T—p s=p+1 T=p s=p+1
Since
R 1 < 1 <
— u* ()u (1) ——=—— a(s)a(s)') = E*|u*(t)u(t) ——=—— a(s)a(s)
_pt:p—l—l ( T-p s=p+1 ) |: T _ps:p-I—l :|
+OP(1) )
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we getvec (L) — vec(ﬁu)Tﬂ 0. Similarly, we can show that
—00

vec(®*(k)) T%OO vec(®(k)), vech(i’;k) T& vech (2,1

— 00

SinceG(-) and H (-) are differentiable functions, we have:

n (H(4",57))

In (H(é,ﬁu)) +0,(1),
n (G (& (k).25,) )

In (G((i)(k:),ﬁdk)) +0,(1).

By Theorems 2.5-3.4 in Paparoditis (1996) and Theorem 6wid.and Reinsel (1985), we have

In (G(é*(k), i’;ﬁk)) —In (G(qﬁ, 26)) +0,(T7%) + 0, (1)
for § < 2. Consequently,

CLY — X | 1) = C*(Y— X|I) +0,(T"") +0,(1)
where

C'(Y—X |I)=In

det {G(®*, 2%)}
det {H(&*, £)} |
We have shown that far < % [see the proof of Proposition 8.1],

C’L(YTX |I) =1In

det {G(2, 2,)}

Su
det {H (%, £,))

+ 0p,(T7%) + 0,(1).
Consequently,

CHY = X (1) =n | 3 {G(@.

)}

L,
det {H(®, £,)}

+ OP(T_6) + 0p(1).

Conditional on the sample, we can expaiit{Y — X |I) aroundC‘L(YT X |I):

(S

OE(YTX | 1) = OL(YT X |1) +DC< vec(P*) — vec(P)

vech(%F) — vech(2,) > +op(T2),

hence

TVRCHY X 1) = ColY - X | )] = Dc< T treel®) — vec(d)

b)
T2 (vech(3F) — vech(3,)) |-
Conditional on the sample, we have:

/ vec(dg*) — vec( A) > d
T ( vech(5%) — vech(Z,) N1, £2], (A.9)
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where(? is given by equation (A.8); see Inoue and Kilian (2002). Thus
TV [CHY —X |I) = CL(Y— X | I)] 4 N0, oo(h)?],
T/? [C‘Z(YT X |I)-Cp(Y — X |I)] 4 N0, oe(h)?],

whereo..(h)? =D 2Dl and D¢ is given by equation (A.7). O
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