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Several exact results on the second moments of sample autocorrelations. for both Gaussian and 
non-Gaussian series, are presented. General formulae for the means, variances and covariances of 
sample autocorrelations are given for the case where the variables in a sequence are exchangeable. 
Bounds for the variances and covariances of sample autocorrelations from an arbitrary random 
sequence are derived. Exact and explicit formulae for the variances and covariances of sample 
autocorrelations from a Gaussian white noise are given It is observed that the latter results hold 
for all spherically symmetric distributions. A simulation experiment, with Gaussian series, indi- 
cates that normalizing each sample autocorrelation with its exact mean and variance, instead of the 
usual approximate moments, can improve considerably the accuracy of the asymptotic N(O,l) 
distribution to obtain critical values for tests of randomness. The exact second moments of rank 
autocorrelations are also studied. 

1. Introduction 

Sample autocorrelations are one of the main instruments of time series 
analysis. They are especially useful to test the randomness of a time series and 
to assess dependence at various lags. Further, important economic hypotheses 
can be verified by testing the randomness of certain series: market efficiency 
[Fama (1970)], rational expectations [Kantor (1979)], the life cycle-permanent 
income hypothesis [Hall (1978)], etc. The efficiency of a speculative market, for 
example, may be assessed by testing whether first differences of relevant asset 
prices, like stock prices or exchange rates, are independent (the random walk 
hypothesis). 

Several definitions of sample autocorrelations have been proposed. We 
consider here the most standard one, as it is used for example to identify time 
series models [Box and Jenkins (1976, p. 32)]: given n observations X,, . _ . , X,, 
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the sample autocorrelation at lag k is 

n-k 

rk= C(X,--X)(X,+,-X) 2(X,-X)‘, liksn-1, (1.1) 
r=l i=l 

where x = cy=, X,/n is the sample mean. We find especially important that 
the data be expressed in deviations from their sample mean because, in most 
practical situations, the true mean is unknown. This characteristic will play an 
important role below. 

We will be concerned here by some exact distributional properties of sample 
autocorrelations, under the important null hypothesis of randomness. Both 
normal and non-normal distributions will be considered. Tests based on 
sample autocorrelations typically use critical values based on their asymptotic 
normal distribution [Bartlett (1946), Anderson (1971, ch. S)]: both the mo- 
ments of rk (mean and variance) and the form of the distribution are usually 
approximate, especially when k 2 2. Despite the fact that autocorrelation 
coefficients are widely applied in empirical research, few exact results have 
been published on their sampling properties, in particular for k 2 2; see the 
reviews of Anderson (1971, ch. 6) and Kendall, Stuart and Ord (1983, ch. 48). 
Moran (1948) gave the exact mean of rk, k 2 1, for an arbitrary random series, 
and the exact variance of the first autocorrelation rl for a normal random 
series; later [Moran (1967)], he obtained an upper bound on the variance of rt, 
valid for all random series. Pan Jie Jian (1968) gave an expression for the 
distribution of rl for the case of a normal white noise and Goldsmith (1977) 
tabulated it. Using the method of Sawa (1978) De Gooijer (1980) gave 
formulae that enable the numerical evaluation of the first four moments of 
each sample autocorrelation, when the data come from a general autoregressive 
moving-average Gaussian process: his formulae however are not explicit and 
require numerical integrations that may be expensive. Actually, no author has 
given exact and explicit formulae for the variances var(r,), k 2 2, or the 
covariances between the different autocorrelations, even when the series is a 
normal white noise. The vast majority of the results available either deal with 
alternative definitions of autocorrelations (coefficients with known mean, cir- 
cular definition, etc.) or remain approximate.’ 

In this paper, we present several exact results on the first and second 
moments of sample autocorrelations, for both normal and non-normal series, 
and discuss their application in testing the randomness of a time series. We 
consider in turn four wide classes of series: (A) series of exchange- 
able random variables, (B) random series (or random samples), i.e., indepen- 
dent and identically distributed (i.i.d.) random variables with an arbitrary 

‘See, for example, T.W. Anderson (1971, ch. 6), O.D. Anderson (1982), Evans and Savin (1981), 
Kendall, Stuart and Ord (1983, ch. 48), Knoke (1977,1979), Phillips (1978), Tanaka (1983). 
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distribution, (C) series with a spherically symmetric distribution, (D) normal 

random series. Though we are most interested by the hypothesis of randomness 
(B or D), we will see that many results that hold for B or D actually hold under 
the more general assumptions A or C. 

In section 2, we derive general formulae for the means, variances and 
covariances of sample autocorrelations, from an arbitrary series of exchangea- 
ble random variables, for all lags and sample sizes. Since random series belong 
to this class, these formulae hold for i.i.d. continuous random variables. An 
important case of variables that are exchangeable without being independent is 
the sequence of ranks from a sample of i.i.d. random variables. In the sequel, 
we apply and specialize these formulae. We obtain upper bounds on the 
variances as well as upper and lower bounds for the covariances of autocorrela- 
tion coefficients (at all lags) when the variables in the series are exchangeable. 
Consequently these hold for any sequence of i.i.d. variables, irrespective of the 
form of the distribution. The bounds are tight in the sense that they are very 
close to what one gets assuming the variables are i.i.d. normal. They can be 
used to obtain exact distribution-free conservative tests of randomness. In 
section 3, we specialize the general formulae to the case of rank autocorrela- 
tions obtained by replacing each observation in (1.1) by its rank. Previous 
studies of such coefficients gave only approximate expressions for var(r,); see 
Wald and Wolfowitz (1943), Knoke (1977), Bartels (1982). 

In section 4, we consider series of i.i.d. normal random variables and, more 
generally, series that obey a spherically symmetric (s.s.) distribution. We first 
remark that the distribution of sample autocorrelations is exactly the same 
under these two assumptions: accordingly, to study the latter case, we can 
assume normality. We then give exact and explicit formulae for the variances 
and covariances of sample autocorrelations, applicable to all lags and sample 
sizes. We observe that the exact variances in the normal case are remarkably 
close to the upper bounds given in section 2, except possibly when n is small 
(n < 20). Finally, in section 5, we consider the standard problem of testing the 
randomness of a normal time series using sample autocorrelations. We suggest 
that each coefficient I-~ can and should be normalized with the exact mean and 
variance given above, as opposed to the often used approximate mean (zero) 
and variance: through a Monte Carlo simulation, we find that exactly normal- 
ized sample autocorrelations have distributions that are generally better ap- 
proximated by the asymptotic N(0, 1) distribution and thus yield more accurate 
critical values; in many cases, the difference is important. 

2. Results for exchangeable variables 

2.1. Dejinitions and notations 

Let Xi,. . . , X,, be a sequence of exchangeable random variables: i.e., for any 
permutation (d,, . . . , d,) of the integers (1,. . ., n), the distribution of 
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v,,,..., Xdn) is the same as the distribution of (Xi,. . . , X,). Clearly, indepen- 
dent and identically distributed random variables are exchangeable. On the 
other hand, exchangeable variables are not necessarily independent. For exam- 
ple, random variables having a joint symmetric normal distribution [see Rao 
(1973, p. 196)] are exchangeable even if the correlation p between‘any two of 
them is large (e.g., p = 0.99). The ranks of independent observations from a 
common continuous distribution have a uniform distribution and thus form a 
sequence of exchangeable variables; yet they are not independent. The same 
results on ranks actually hold if we only assume that the observations are 
exchangeable and have a continuous distribution, a common hypothesis in 
non-parametric statistics [see Hajek and &dak (1967, p. 37)]. We will use below 
the following property of exchangeable variables: if M = M( Xi,. . . , X,) is a 
permutation-symmetric function of the observations, i.e., 

M(X+..., X,“)=M(X,,..., X,), 

for any permutation (d,, . . . , d,) of (1,. . . , n), then the variables Xi - M,. . . , 
X, - M are also exchangeable [see Fligner, Hogg and Killeen (1976)]. For 
further details on the notion of exchangeability, see Galambos (1982) and the 
references therein. 

If we define 

z, = x, - x, i=l ,..., n, 

where _% is the mean of the Xi’s, we can write 

n-k 

rk= c ziz,+k iz122. llksn-1. 
1=1 i=l 

If the X,‘s are exchangeable, the Z,‘s are also exchangeable since 
permutation-symmetric function of Xi,. . . , X,. 

Assuming P[ Xi = X, = . . . = X,,] = 0, we will now derive results 

(2.1) 

X is a 

on the 
variances and covariances of the sample autocorrelations that hold under the 
mere assumption of exchangeability of the variables Xi,. . . , X,. In particular, 
they hold whenever Xi,. . . , X, are i.i.d. with an arbitrary continuous distribu- 
tion. 

2.2. Variance of rk 

Under the assumption that Xi,. . . , X, are i.i.d. (with a continuous distribu- 
tion), it is possible to show that 

E[rk] = - $-$ , llkln-1; (2.2) 
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see Moran (1948) Kendall, Stuart and Ord (1983, p. 551). However, one sees 
easily that the proof of this result depends only on the exchangeability of 

Z t, . . . , Z, and thus the result holds whenever XI,. . , X, are exchangeable. We 
require P[ X, = X2 = . . . = X,] = 0 to ensure that rk exists with probability 1. 

To obtain the variance of rk, we first observe that the numerator of ri can 
be written as 

i=l 

$- czizi+kz,z~+k~ 
* 

where c, denotes summation over i, j = 1,. . . , n - k such that i, i + k, j and 
j + k are all distinct. From the exchangeability of Z,, . . . , Z,, we can write 

-2((n-k)Z;Z;+2(n-2k)Z;Z2Z, 

+((n-k)‘-2(n-2k)-(n-k))Z,Z2Z,Z4) 1 
(n-k) iz2z2+ +-2k) iz2zz 

n(n-1) ’ I n(n-l)(n-2) ’ ’ ’ 

+ ((n-k)‘-2(n-2k)-(n-k)) * 

n(n - l)(n - 2)(n - 3) 

where c* denotes summation over all distinct suffixes varying from 1 to n. 
Denote the power sums by 

r2 1. 

Using the following identities [Kendall, Stuart and Ord (1983, p. 708)], 

iz;z; = s,z - s, ) 

iz,‘z,z,= 2s4 - SA 

iZ,Z,Z,Z, = 3s; - 6S,, 
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we get that 

+ {2+-2k)-3(n-k)(n-k-l)) (2E[S,S21 _1) 
n(n - l)(n - 2)(n - 3) 4 2 

=n(n-l)(nl-2)(n-3) 

x[{ -n3+(k+3)?+k(n+6k)}E[S,/S,2] 

+{n2(n-k-4)+3(n-k)+3k(n+k)}]. (2.3) 

The variance then follows from the familiar formula var( rk) = E[ r;] - (E[ rA]) 2, 
where E[ rk] is given by (2.2). In order to obtain an explicit formula for var( r,), 

all we need is E[.S,/$]. 
When E[S,/S$] cannot be evaluated analytically, the approximation dis- 

cussed by Moran (1967,197O) can be useful. Further, using Cauchy’s in- 
equality, it is easy to see that S,/S,’ 2 l/n for any probability distribution on 
the 2,‘s [Moran (1967, p. 397)].2 Then, if we notice that the coefficient of 
E[ S,/S,‘] in (2.3) is negative for all k (whenever n > 3), we get an upper bound 
for var( rk) by replacing E[ S,/S;] by l/n: 

var( rk) I 
n4-(k+7)n3+(7k+16)n2+2(k2-9k-6)n-4k(k-4) 

n(n - l)‘(n - 2)(n - 3) 
9 

(2.4) 

where k 2 1 and n > 3. For k = 1, we retrieve the result of Moran (1967): 
var(r,) s (n - 2)/n( n - 1). The bound (2.4) can be used to obtain exact upper 
limits on critical values for tests of randomness based on sample autocorrela- 
tions, without any assumption on the form of the distribution (except continu- 
ity). This can be done easily, for example, by using Chebyshev’s inequality; for 
details, see Dufour and Roy (1984). 

‘When Z, = 0, i = 1,. , n, we adopt the convention S,/S: = 1 
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2.3. Covariance between r, and r,, 

Let k < h. The numerator of rkrh can be written as 

n-kn-h n-h n-h-k 

c c Z,Z,+kZ,Z,+h = c Z?Z,+kZ,+h + c Z,2+hZ,+h+kZ, 

r=l J=l r=l j=l 

n-h-k 

+ c Z,Z,Z+kZ,+h+k 

I=1 

n-h 

+ c z,+(h-k,z,2+hz, +cz,z,+kz,z,+h> 

j=1 * 

where c, denotes summation over i=l,...,n-k and j=l,...,n-h such 
that i, i + k, j and j + h are all distinct. By a development similar to the one 
used to obtain E[r:], we find (for k < h) 

E[r,r,] = E[Sy2{ [2(n - h) + 2(~- h - k)] Z:Z,Z, 

+[(n-k)(n-h)-4(n-h)+X]Z,Z,Z,Z,}] 

1% -h) -2kl (2S _ s2) 

n(n-l)(n-2) 4 ? 

I [(n-h)(n-k-4)+2k] 

n(n - l)(n - 2)(n - 3) 

= {(n-h)(n+k)-2kh) 

n(n - l)(n - 2)(n - 3) (2E[ f%/$] - 1). (2.5) 

The covariance follows from the familiar formula 

cov( r,, rh) = E[ rkrhl - EbklE[rhl. 

It is possible to find bounds on the covariances by using the following 
inequality on S,/S,‘: for any sequence of real numbers Z,, . . . , Z,, 
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The lower bound was given above. To get the upper bound, set 

w,=z, i=l ,...,n. 

It is then immediate that 

s,,s,2=~w,4&v.2=1. 
i-l r=l 

We obtain bounds for E[rkr,,] and cov(r,, rh) from (2.5) and (2.6). If 
(n - h)(n + k) - 2kh 2 0 (this inequality holds if k, h I n/2), we have (for 
k<h) 

_ {(n-h)(n+k)-2kh) {(n - h)(n + k) -2kh) 

nyn - l)(n - 3) ‘E[rffr~lr h(n_l)(n-2)(n-3) . 

(2.7) 

Bounds for cov( rk, rh) follow by subtracting E[rk]E[rh] from each member of 
(2.7). Up to order n-3, the bounds are (for k <h) 

2(rr - h + 3) 
+ 0( K”) < cov( rk, rh) I 

2(k + 2) - 
n3 n3 

+ o( n-4). (2.8) 

For (n - h)(n + k) - 2kh < 0, upper and lower bounds in (2.7) are inter- 
changed. 

3. Rank serial correlations 

Let Xl,. . ., X, be exchangeable continuous random variables and let 

(R i,“‘, R,) be the corresponding vector of ranks. Then 

P[( R1,...,Rn)= &..,d,)] = l/n!, 

for any permutation (d,, . . . , d,) of (1,. . ., n), and thus the ranks are also 
exchangeable variables. The rank serial correlation at lag k is defined by 

n-k 

%k= C(R,-R)(R,+,-R) 
I 
f(~,-Fi)', I<k<n--1, 

i=l i=l 

(3.1) 
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where 

In this case, the denominator of h2k is constant so that it is equivalent to study 
the rank serial covariances 

n-k 

Ck= C (R,-R)(Ri+k-R), IlklH-1. 

Wald and Wolfowitz (1943) proposed to use a circular version of ak to test 
randomness and proved its asymptotic normality. Rank serial correlations, in 
circular and non-circular form, were studied further or compared with other 

tests by various authors; e.g., Stuart (1956) Knoke (1977), Dufour (1981) 
Bartels (1982). 

In order to obtain the exact variance-covariance structure of the rank 
(non-circular) autocorrelations, we need to evaluate E[S,/Sj’-1. In this situation, 
we see easily that 

s +12- 1)(3n2 - 7) 
2 

= n(n + l)(n - 1) 
12 ’ s, = 240 (3.2) 

Consequently, 

3 (3n2 - 7) -=- 
:; 5 n(n2- 1). 

(3.3) 

Var(ak) and cov(r,, ah) can be obtained directly by substituting (3.3) in (2.3) 
and (2.5). For example, the variance of t1 is 

var( Br) = (5n3 - 19n2 + 10n + 16)/[5n2( n - l)‘] . (3.4) 

4. Results for normal and spherically symmetric distributions 

We will now specialize the above results to the case of a normal random 
sample. Since results obtained under the normality assumption remain exactly 
valid for the more general class of spherically symmetric distributions, we will 
cast them in this framework. 



266 J.-M. Dufour and R. Roy, Exaci results on sample autocorrelations 

4.1. Spherically symmetric distributions 

Let X and p be n X 1 vectors with X random and ~,r fixed. The vector X 
has a spherically symmetric (s.s) distribution about ZL if and only if G(X - cl) 
has the same distribution as X - p for all orthogonal n x n matrices G. 
Chmielewski (1981) provides an extensive bibliography on this class of distri- 
butions. Statistical applications are discussed by Kariya and Eaton (1977) and 
King (1979,198O). 

The density of a vector X with a S.S. distribution, if it exists, is a function of 
the norm of X - ~1 only and its characteristic function +(t) is of the form 
+(z) = #(t’t)exp(i+), where f = (ti,. . . , r,)’ E R”. The class of S.S. distribu- 
tions includes such distributions as the multivariate normal and the multi- 
variate Student-t with covariance matrix u21,,, a multivariate Cauchy, a 
multivariate exponential, etc. 

Let X=(X,,..., X,)’ and p = ~2, where 2 = (1,. . . , 1)' is n x 1. Denote 
2, = X; - 3, i = 1 , . . . , n, and Z = (Z,, . . . , 2,)‘. We can write 

Z=MX, (4.1) 

where M= Z, - (l/n)ZZ’ is a n x n symmetric idempotent matrix of rank 
n - 1. Further we can find a n X n orthogonal matrix P such that 

z 0 

p’Mp= i-l i 1 0 . 

Let P = (PI, Pz) where P, is n X (n - 1) and P2 is n X 1. Then, if X has a S.S. 
distribution about CL, the vector W= Z/j\Z 11 h, as a distribution identical to the 
one of the vector Pl(U/((U(l), where U has a multinormal distribution 
N(O, I,_,); 11. )I denotes the Euclidean norm. We can see this as follows. Let 
u = P'X = ( dl, V;)', where ui = P;X and u, = P;X. It is then simple to check 
that 

z= P,o,, z'z=v;v,, w= P,b,/ll~lll)~ (4.2) 

where P{P, = I,_, and PiI = 0. Further, by considering the characteristic 
function of vl, we can see easily that or has a S.S. distribution about zero. The 
result then follows by applying Theorem 2.1 of Kariya and Eaton (1977). 

A useful consequence of this property is the following: any statistic of the 
form T(W) has a distribution which is independent of the functional form of 
the S.S. distribution of X, provided ZJ = ~2. We can thus study its distribution 
assuming X is N(@, I,,). In particular, from the definition of sample autocor- 
relations, we have 

n-k 

rk= c qwt+k? l_<k<n-1, 
I=1 
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where W = (IV,, . . . , W,)‘. Therefore, the vector of sample autocorrelations has 
the same distribution whenever X has a S.S. distribution with /.I = ~1: we can 
study its distribution by assuming X is N(pZ, 1,).3 

4.2. Exact variances and covariances 

To obtain explicit formulae for var(r,) and cov(r,, rh), we need E[S,/S;]. 
Since 

s,/s,’ = i w;, 
I=1 

where W= Z/ljZlj, we know from the previous section that the distribution of 
S,/S,’ is the same for all S.S. distributions. Assuming normality, Moran (1948) 

found that 

If we substitute (4.3) into (2.3) we find after some algebra: 

var( rk) = 
n4-(k+3)n3+3kn2+2k(k+l)n-4k2 

(n + l)n2(n - 1)’ ’ 

(4.3) 

(4.4) 

where 1 I k I n - 1. With k = 1, we retrieve the result of Moran (1948) 

var(rl)=(n-2)*/[rz’(n-l)]. 

For large n, the exact variance for a normal sample, say a&, is almost 
identical to the upper bound (I+?” obtained for exchangeable random variables. 
Since 

u& = 
n-(k+2) 

+ O(n?), 2 -n-k 

n2 akU -7+o(n+), 

it is immediate that 

We computed the exact ratio u,&,/u,‘, for various values of k and n. We 

3This result can also be derived from an unpublished theorem given by King (1979, ch. 5) in the 
context of linear regression models. 
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found that the upper bound is nearly attained in the normal case even for 
samples as small as 20. With n 2 25, the ratio is smaller than or equal to 1.10 
for k < 20 and, with n 2 40, the ratio is smaller than or equal to 1.05 for 
k I 25. 

Similarly, we derive the covariance between rk and r,, and get 

cOV(rL rh)=2{kh(n-I)-(n-h)(n2-k)} 
? 

(n + l)nZ(n - 1)2 . 
(4.5) 

where 1 I k -C h I n - 1. Developing up to order n-2, we have 

cov(rk,rh)= -22/n2+O(K3), 

which is in agreement with a result of Fuller (1976, p. 242). 
Another statistic considered by Knoke (1977) is T = c:r: r,/j; critical values 

were determined from a normal approximation with the exact mean obtained 
from (2.2) and an empirical variance. If we use the formula 

n-ln-1 

var(T) = c c cov(rj, rk)/jk, 
j=l k=l 

and substitute the expressions (4.4) and (4.5) of this paper, we get the exact 
variance of T. For example, for n = 10, 16, 32, and 64, the exact variances are 
0.0455, 0.0394, 0.0278 and 0.0174, respectively, while the empirical variances 
obtained by Knoke were 0.041, 0.036, 0.027 and 0.018. 

5. Monte Carlo results 

Tests of randomness that use sample autocorrelations r, are usually based 
on an asymptotic normal distribution. Further, even though the exact mean of 
rk and the variance of rl (in the normal case) have been available for some 
time [Moran (1948)], many authors still use or recommend using the approxi- 
mate mean zero and the approximate standard errors n-1/2 [Box and Pierce, 
(1970), Box and Jenkins (1976, ch. 6)] or {(n - k)/n(n + 2)}‘/* [Ljung and 
Box (1978)]. The latter standard error is correct when the sample mean is not 
subtracted from the observations and the true mean is zero, but is not exact 
when the observations are centered. It is worthwhile to see what is the gain 
realized by replacing the approximate mean and variance by the exact mean in 
(2.2) and the exact variance in (4.4). 

To investigate this issue, we conducted the following Monte Carlo experi- 
ment. For each of five different series lengths (n = 10, 20, 30, 50, loo), 10,000 
independent realizations of a normal white noise were generated using the 



T
ab

le
 1

 

E
m

pi
ri

ca
l 

le
ve

ls
 o

f 
te

st
s 

ba
se

d 
on

 s
am

pl
e 

au
to

co
rr

el
at

io
n

s 
fo

r 
di

ff
er

en
t 

n
or

m
al

iz
at

io
n

s 
(i

n
 p

er
ce

n
ta

ge
).

” 

T
es

t 

Sl
 

s2
 

S
3 

S
e l

ev
el

 

5 10
 

20
 5 

10
 

20
 5 

10
 

20
 

S
id

e 

R
 

L
 

B
 

R
 

L
 

B
 

R
 

L
 

B
 

R
 

L
 

B
 

R
 

L
 

B
 

R
 

L
 

B
 

R
 

L
 

B
 

R
 

L
 

B
 

R
 

L
 

B
 

n 
= 

10
 

n
 =

 2
0 

k 
k 

1 0.
8 

5.
5 

2.
2 

3.
2 

13
.4

 
6.

3 

X
.9

 
28

.2
 

16
.7

 

1.
9 

9.
x 

5.
3 

5.
2 

18
.6

 
11

.7
 

11
.4

 
33

.2
 

23
.X

 

5.
6 

4.
6 

4.
6 

10
.6

 
10

.6
 

10
.2

 

20
.7

 
21

.5
 

21
.2

 

3 
5 

0.
5 

0.
0 

2.
X

 
0.

0 
0.

7 
0.

0 

2.
6 

0.
9 

8.
8 

3.
3 

3.
3 

0.
0 

X
.1

 
7.

9 
23

.0
 

18
.0

 
11

.3
 

4.
1 

2.
7 

3.
3 

9.
4 

9.
4 

5.
x 

4.
7 

6.
0 

8.
3 

17
.7

 
18

.6
 

12
.1

 
12

.7
 

12
.5

 
16

.9
 

31
.7

 
32

.2
 

23
.7

 
26

.9
 

5.
6 

5.
9 

4.
x 

3.
3 

4.
9 

2.
6 

10
.5

 
12

.6
 

10
.2

 
10

.3
 

10
.5

 
9.

3 

20
.3

 
22

.x
 

21
.4

 
22

.3
 

20
.7

 
23

.0
 

~
__

_~
_~

~
 
I 1 

3 

1.
9 

1.
6 

5.
X

 
4.

7 
3.

0 
2.

7 

5.
1 

4.
6 

12
.7

 
11

.1
 

7.
7 

6.
3 

13
.0

 
11

.5
 

25
.6

 
23

.9
 

17
.X

 
15

.7
 

2.
6 

2.
9-

 
7.

7 
7.

x 
4.

6 
5.

1 

6.
3 

6.
4 

14
.9

 
15

.0
 

10
.3

 
10

.7
 

14
.5

 
14

.2
 

27
.6

 
27

.6
 

21
.1

 
21

.4
 

4.
9 

5.
1 

4.
6 

4.
x 

4.
2 

4.
1 

10
.4

 
9.

9 
10

.1
 

10
.2

 
9.

5 
9.

9 

20
.9

 
20

.2
 

20
.4

 
20

.6
 

20
.5

 
20

.1
 

5 
; 

1.
4 

3.
6 

1.
6 

3.
x 

9.
1 

4.
9 

10
.8

 
22

.0
 

12
.9

 

3.
1 

7.
6 

5.
2 

6.
6 

14
.7

 
10

.7
 

14
.6

 
27

.5
 

21
.3

 

5.
0 

5.
0 

4.
5 

10
.0

 
10

.2
 

10
.0

 

20
.4

 
20

.9
 

20
.3

 

10
 

1 

0.
1 

2.
5 

0.
8 

6.
5 

0.
0 

4.
3 

1.
9 

5.
9 

4.
4 

13
.0

 
0.

9 
9.

0 

x.
9 

14
.1

 
15

.5
 

25
.2

 
6.

3 
1x

.9
 

3.
x 

3.
1 

7.
5 

7.
6 

5.
2 

5.
4 

x.
4 

6.
7 

14
.7

 
14

.6
 

11
.3

 
10

.7
 

17
.2

 
14

.9
 

27
.2

 
26

.4
 

23
.1

 
21

.3
 

5.
3 

5.
0 

4.
3 

10
.9

 
10

.2
 

10
.3

 

21
.5

 
21

.1
 

21
.1

 

4.
x 

5.
2 

4.
9 

9.
x 

10
.6

 
9.

9 

lY
.9

 
21

.0
 

20
.4

 

n
 =

 3
0 

k 

3 
5 

2.
5 

2.
0 

5.
7 

4.
5 

3.
5 

2.
6 

5.
7 

5.
2 

12
.0

 
10

.2
 

x.
1 

6.
5 

13
.5

 
12

.9
 

23
.9

 
22

.2
 

17
.7

 
15

.5
 

3.
4 

3.
5 

7.
7 

7.
1 

5.
5 

5.
2 

7.
2 

7.
4 

14
.5

 
13

.7
 

11
.1

 
10

.6
 

15
.3

 
15

.5
 

25
.9

 
25

.5
 

21
.x

 
21

.0
 

__
_~

 
~

 
5.

0 
5.

0 
5.

2 
4.

x 
5.

1 
4.

7 

10
.2

 
10

.0
 

10
.7

 
10

.1
 

10
.2

 
9.

9 

20
.0

 
20

.2
 

20
.7

 
20

.5
 

20
.8

 
20

.1
 

__
_-

 
~

 

10
 

15
 

1.
2 

2.
x 

1.
4 

0.
4 

0.
8 

0.
2 

3.
9 

7.
x 

4.
1 

11
.7

 
1x

.7
 

11
.6

 
_~

 3.
x 

7.
4 

5.
6 

2.
4 

4.
3 

1.
2 

9.
5 

14
.7

 
6.

7 

4.
4 

1.
2 

5.
1 

71
9 

13
.7

 
11

.2
 

16
.5

 
25

.x
 

21
.6

 

x.
7 

13
.7

 
11

.6
 

17
.x

 
25

.X
 

22
.4

 

5.
1 

5.
3 

5.
1 

5.
5 

4.
9 

4.
5 

10
.4

 
10

.6
 

10
.6

 
10

.7
 

10
.3

 
10

.4
 

20
.4

 
20

.8
 

20
.5

 
21

.0
 

21
.1

 
21

.3
 



T
ab

le
 

1 
(c

on
tin

ue
d)

 

T
es

t 
%

 l
ev

el
 

5 10
 

20
 5 10
 

20
 5 10
 

20
 

-_
_ 

Si
de

 
1 

3 
5 

R
 

L
 

B
 

R
 

L
 

B
 

R
 

L
 

B
 

R
 

L
 

B
 

R
 L
 

B
 

R
 

L
 

B
 

R
 

L
 

B
 

R
 

L
 

B
 

R
 

L
 

B
 

3.
1 

6.
1 

4.
2 

2.
9 

5.
0 

3.
3 

1.
2 

12
.1

 
9.

1 

16
.1

 
23

.1
 

19
.3

 

2.
8 

5.
4 

3.
9 

6.
5 

11
.3

 
8.

1 

14
.X

 
23

.3
 

17
.8

 

6.
4 

10
.4

 
7.

9 

15
.1

 
22

.0
 

16
.8

 

3.
4 

6.
7 

4.
9 

7.
8 

13
.0

 
10

.1
 

16
.8

 
23

.8
 

20
.7

 

3.
3 

3.
x 

6.
4 

6.
4 

4.
8 

4.
9 

1.
5 

7.
6 

12
.6

 
12

.4
 

9.
7 

10
.2

 

15
.X

 
16

.6
 

24
.7

 
23

.9
 

20
.1

 
20

.0
 

5.
0 

4.
6 

4.
9 

5.
0 

4.
X

 
4.

X
 

4.
X

 
4.

9 
4.

6 
4.

7 
4.

7 
4.

7 

10
.1

 
9.

9 
9.

9 

9.
7 

9.
x 

9.
5 

19
.8

 
20

.2
 

19
.4

 

10
.0

 
9.

9 
10

.7
 

10
.2

 
9.

1 
10

.0
 

9.
6 

10
.5

 
9.

8 
9.

9 
10

.2
 

10
.0

 

20
.5

 
19

.7
 

20
.0

 

20
.3

 
19

.5
 

21
.1

 
20

.4
 

19
.7

 
20

.4
 

19
.9

 
20

.5
 

19
.7

 
19

.9
 

20
.3

 
20

.7
 

n 
= 

50
 

k _ 

2.
1 

3.
x 

2.
6 

5.
5 

9.
3 

5.
X

 

13
.2

 
20

.8
 

14
.8

 

3.
X

 
6.

5 
4.

8 

7.
7 

12
.7

 
10

.3
 

15
.7

 
24

.0
 

20
.4

 

15
 

25
 

0.
5 

3.
x 

3.
6 

1.
0 

5.
6 

5.
6 

0.
3 

4.
1 

4.
6 

5.
1 

7.
2 

4.
5 

2.
3 

7.
6 

4.
2 

11
.6

 
1.

4 
9.

4 

13
.x

 
1X

.2
 

12
.3

 

9.
X

 
16

.7
 

14
.3

 
23

.2
 

6.
6 

19
.3

 

4.
4 

6.
1 

5.
0 

4.
1 

3.
9 

6.
5 

6.
0 

5.
0 

4.
5 

8.
6 

12
.x

 
10

.6
 

17
.x

 
23

.7
 

20
.8

 
__

. 5.
6 

4.
6 

4.
9 

17
.8

 
23

.6
 

21
.5

 
~_

__
 5.

0 
5.

1 
4.

5 

1 X
.0

 
12

.0
 

9.
9 

17
.0

 
23

.7
 

20
.0

 

4.
x 

4.
7 

4.
6 

19
.7

 
20

.4
 

20
.1

 

3 

~
._

__
 

5 
__

~ 
3.

5 
5.

3 
3.

9 

7.
7 

7.
X

 
11

.0
 

10
.8

 
9.

2 
8.

X
 

16
.X

 
16

.5
 

22
.2

 
22

.5
 

1X
.7

 
18

.6
 

3.
9 

6.
0 

5.
1 

x.
3 

11
.6

 
9.

9 

17
.4

 
22

.X
 

19
.x

 

3.
9 

6.
2 

4.
X

 

x.
5 

11
.7

 
10

.1
 

17
.4

 
23

.5
 

20
.2

 

4.
X

 
5.

1 
5.

0 

9.
9 

9.
9 

9.
9 

20
.1

 
20

.2
 

19
.7

 
~_

_ 

4.
9 

4.
9 

4.
x 

10
.1

 
9.

9 
9.

x 

20
.4

 
20

.2
 

20
.1

 

II 
=

 
10

0 
_ - _ 

k 
__

__
_~

 

10
 

15
 

3.
4 

3.
0 

5.
1 

4.
2 

3.
9 

3.
2 

1.
3 

6.
X

 
10

.6
 

9.
6 

X
.4

 
7.

1 

16
.3

 
15

.5
 

22
.0

 
20

.7
 

17
.9

 
16

.4
 

__
_ 

~~
 

4.
3 

4.
2 

6.
3 

5.
9 

5.
2 

5.
1 

X
.5

 
8.

5 
12

.3
 

12
.0

 
10

.6
 

10
.1

 

17
.X

 
17

.6
 

23
.5

 
23

.2
 

20
.8

 
20

.5
 

5.
3 

5.
1 

5.
2 

4.
x 

5.
1 

5.
0 

10
.2

 
10

.0
 

10
.3

 
10

.2
 

10
.4

 
9.

9 

20
.3

 
20

.5
 

20
.8

 
20

.3
 

20
.5

 
20

.2
 

25
 

50
 

-_
 

__
_ 

2.
1 

1.
0 

3.
3 

1.
2 

2.
3 

0.
6 

5.
6 

3.
1 

X
.0

 
3.

9 
5.

3 
2.

1 

14
.2

 
11

.2
 

19
.0

 
13

.1
 

13
.6

 
7.

0 
-_

__
__

 
3.

9 
4.

9 
6.

1 
5.

1 
4.

7 
5.

3 

X
.3

 
9.

x 
11

.7
 

11
.6

 
10

.0
 

10
.6

 

17
.5

 
19

.0
 

22
.9

 
21

.9
 

20
.0

 
21

.3
 

4.
x 

5.
5 

4.
9 

4.
X

 
4.

6 
5.

2 

9.
9 

10
.8

 
10

.1
 

10
.0

 
4.

7 
10

.3
 

19
.X

 
21

.0
 

20
.2

 
19

.X
 

20
.0

 
20

.9
 

‘T
es

ts
 

ar
e 

ba
se

d 
on

 
as

ym
pt

ot
ic

 
N

(O
,l)

 
ap

pr
ox

im
at

io
n 

of
 

R,
 

= 
( 

rA
 -

 
pj

)/u
k,

 
oA

 =
 

n-
l’*

 
fo

r 
Sl

, 
ok

 =
 

((
n 

- 
k)

/n
(n

 
+ 

2)
)’

 
* 

fo
r 

S2
, 

an
d 

ok
 =

 
( 

w
he

re
 

pk
 =

 0
 

fo
r 

Sl
 

an
d 

S2
. 

pk
 =

 
~ 

(~
1 - 

k 
)/

{ 
)I

( ,
I ~

 1
))

 
fo

r 
S3

, 
va

r(
 r

A
)}

 /
’ 

fr
om

 
fo

rm
ul

a 
(4

.4
) 

fo
r 

S3
. 

R
 

an
d 

L
 

re
fe

r 
to

 
on

e-
si

de
d 

te
st

s 
ag

ai
ns

t 
po

si
tiv

e 
an

d 
ne

ga
tiv

e 
de

pe
nd

en
ce

. 
re

sp
ec

tiv
el

y.
 

B
 r

ef
er

s 
to

 a
 t

w
o-

si
de

d 
te

st
. 

T
he

 
st

an
da

rd
 

er
ro

r 
of

 
th

e 
em

pi
ri

ca
l 

le
ve

ls
 

is
 0

.2
%

 
fo

r 
th

e 
no

m
in

al
 

le
ve

l 
5%

. 
0.

3%
 

fo
r 

10
%

 
an

d 
0.

4%
 

fo
r 

20
%

. 

‘_
,“

~
, 

..“
__

 
.-

--
-.

_-
_-

-.
.-

_-
 

-.
_-

._
 

. 
.~

., .-
-“

-”
 

_^
..-

 
“-

_,
~

--
--

--
--

 



J.-M. Dufour und R. Roy, Exact results on sumple autocorrehons 271 

subroutine GGUBS of IMSL (1980) and for each realization, sample autocor- 
relations rk at several lags were computed. We then examined the quality of 
the asymptotic N(O,l) approximation for three different versions of the nor- 
malized statistics R, = (rk - ~~)/a,. The three normalizations Sl, S2 and S3 
were defined as follows: for Sl, pLk = 0 and ok = np1j2; for S2, pk = 0 and 

u,, = {(n - k)/n(n + 2)) I/‘. for S3, pLk is the exact mean in (2.2) and uk the , 
exact standard error from (4.4). To appreciate the accuracy of the N(O,l) 
approximation, we examined the empirical frequencies of rejection of the null 
hypothesis of randomness by tests with three different nominal levels (5, 10 
and 20 percent). Further, for each value of n and k, we considered three types 
of tests: one-sided tests against positive serial dependence (R), one-sided tests 
against negative serial dependence (L) and two-sided tests (B). 

The results of the experiment are presented in table 1. We make the 
following observations. First, for Sl, the N(O,l) distribution provides a rela- 
tively poor approximation, even for series of 100 observations. Second, the 
approximation is better for S2, but the empirical significance levels of the 
one-sided tests remain appreciably different from the theoretical levels (at least 
for short series of 50 observations or less). Third, the best results are obtained 
with the normalization S3: the agreement between the empirical and the 
theoretical levels is very good both for one-sided and two-sided tests and the 
approximation is satisfactory even for series of 10 observations. These results 
clearly suggest that the normalization based on the exact mean and variance of 
rk is preferable to the approximate normalizations often used. Further, it is 
easy to implement the exact formulae in computer programs. We thus strongly 
recommend to use the exact means and variances when testing randomness 
with sample autocorrelations. 

Note finally that tail probabilities for sample autocorrelations (in the normal 
case) can in principle be obtained by using the methods of Imhof (1961) or Pan 
Jie Jian (1968); see Goldsmith (1977) Sneek (1983) Ali (1984). This remains, 
however, relatively costly and no table of exact critical values for sample 
autocorrelations is yet available (for k 2 2). Clearly, simple improvements in 
the quality of the asymptotic normal approximation, as described above, 
remain an attractive practical alternative. 
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