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Abstract

Tests for heteroskedasticity in linear regressions are typically based on asymptotic approxima-
tions. We show that the size of such tests can be perfectly controlled in !nite samples through
Monte Carlo test techniques, with both Gaussian and non-Gaussian (heavy-tailed) disturbance dis-
tributions. The procedures studied include standard heteroskedasticity tests [e.g., Glejser, Bartlett,
Cochran, Hartley, Breusch–Pagan–Godfrey, White, Szroeter] as well as tests for ARCH-type het-
eroskedasticity. Sup-type and combined tests are also proposed to allow for unknown breakpoints
in the variance. The fact that the proposed procedures achieve size control and have good power
is demonstrated in a Monte Carlo simulation.
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1. Introduction

Detecting and making adjustments for the presence of heteroskedasticity in the
disturbances of statistical models is one of the fundamental problems of economet-
ric methodology. We study the problem of testing the homoskedasticity of linear
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regression disturbances, under parametric (possibly non-Gaussian) distributional as-
sumptions, against a wide range of alternatives, especially in view of obtaining more
reliable or more powerful procedures. The heteroskedastic schemes we consider include
random volatility models, such as ARCH and GARCH error structures, variances which
are functions of exogenous variables, as well as discrete breaks at (possibly unknown)
points.
The statistical and econometric literatures on testing for heteroskedasticity are quite

extensive. 1 In linear regression contexts, the most popular procedures include the
Goldfeld–Quandt F-test (Goldfeld and Quandt, 1965), Glejser’s regression-type tests
(Glejser, 1969), Ramsey’s versions of the Bartlett (1937) test (Ramsey, 1969), the
Breusch–Pagan–Godfrey Lagrange multiplier (LM) test (Godfrey, 1978; Breusch and
Pagan, 1979), White’s general test (White, 1980), Koenker’s studentized test (Koenker,
1981), and Cochran–Hartley-type tests against grouped heteroskedasticity (Cochran,
1941; Hartley, 1950; Rivest, 1986); see the literature survey results in Table 1. 2

The above methods do not usually take variances as nuisance parameters that must be
taken into account (and eventually eliminated) when making inference on other model
parameters (such as regression coeKcients). More recently, in time series contexts
and especially !nancial data analysis, the modeling of variances (volatilities) as a
stochastic process has come to be viewed also as an important aspect of data analysis,
leading to the current popularity of ARCH, GARCH and other similar models. 3 As
a result, detecting the presence of conditional stochastic heteroskedasticity has become
an important issue, and a number of tests against the presence of such e*ects have

Table 1
Survey of empirical literature on the use of heteroskedasticity tests

Heteroskedasticity test used Literature share (%)

Tests for ARCH and GARCH e*ects 25.3
Breusch–Pagan–Godfrey–Koenker 20.9
White’s test 11.3
Goldfeld–Quandt 6.6
Glejser’s test 2.9
Hartley’s test 0.3
Other tests 1.9
Use of heteroskedasticity consistent standard errors 30.3

Note: This survey is based on 379 papers published in The Journal of Business and Economic Statistics,
The Journal of Applied Econometrics, Applied Economics, the Canadian Journal of Economics, Economics
Letters, over the period 1980–1997. These results were generously provided by Judith Giles.

1 For reviews, the reader may consult Godfrey (1988), Pagan and Pak (1993) and Davidson and
MacKinnon (1993, Chapters 11 and 16).

2 Other proposed methods include likelihood (LR) tests against speci!c alternatives [see, for example,
Harvey (1976), Buse (1984), Maekawa (1988) or Binkley (1992)] and “robust procedures”, such as the
Goldfeld and Quandt (1965) peak test and the procedures suggested by Bickel (1978), Koenker and Bassett
(1982) and Newey and Powell (1987).

3 See Engle (1982, 1995), Engle et al. (1985), Bollerslev et al. (1994), LeRoy (1996), Palm (1996), and
GouriBeroux (1997).
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been proposed; see Engle (1982), Lee and King (1993), Bera and Ra (1995) and Hong
and Shehadeh (1999).
Despite the large spectrum of tests available, the vast majority of the proposed pro-

cedures are based on large-sample approximations, even when it is assumed that the
disturbances are independent and identically distributed (i.i.d.) with a normal distribu-
tion under the null hypothesis. So, there has been a number of recent studies that seek
to improve the !nite-sample reliability of commonly used homoskedasticity tests. In
particular, Honda (1988) and Cribari-Neto and Ferrari (1995) derived Edgeworth and
Bartlett modi!cations for the Breusch–Pagan–Godfrey criteria, while Cribari-Neto and
Zarkos (1999) proposed bootstrap versions of the latter procedures. Tests based on the
jackknife method have also been considered; see Giaccotto and Sharma (1988) and
Sharma and Giaccotto (1991). 4

A limited number of provably exact heteroskedasticity tests, for which the level
can be controlled for any given sample size, have been suggested. These include: (1)
the familiar Goldfeld–Quandt F-test and its extensions based on BLUS (Theil, 1971)
and recursive residuals (Harvey and Phillips, 1974), which are built against a very
speci!c (two-regime) alternative; (2) a number of procedures in the class introduced
by Szroeter (1978), which also include Goldfeld–Quandt-type tests as a special case
(see Harrison and McCabe, 1979; Harrison, 1980, 1981, 1982; King, 1981; Evans
and King, 1985a); (3) the procedures proposed by Evans and King (1985b) and
McCabe (1986). All these tests are speci!cally designed to apply under the assumption
that regression disturbances are independent and identically distributed (i.i.d.) according
to a normal distribution under the null hypothesis. Further, except for the Goldfeld–
Quandt procedure, these tests require techniques for computing the distributions of gen-
eral quadratic forms in normal variables such as the Imhof (1961) method, and they
are seldom used (see Table 1).
Several studies compare various heteroskedasticity tests from the reliability and

power view-points. 5 In addition, most of the references cited above include Monte
Carlo evidence on the relative performance of various tests. The main !ndings that
emerge from these studies are the following: (i) no single test has the greatest power
against all alternatives; (ii) tests based on OLS residuals perform best; (iii) the actual
level of asymptotically justi!ed tests is often quite far from the nominal level: some are
over-sized (see, for example, Honda, 1988; Ali and Giaccotto, 1984; Binkley, 1992),
while others are heavily under-sized, leading to important power losses (see Lee and
King, 1993; Evans, 1992; Honda, 1988, GriKths and Surekha, 1986; Binkley, 1992);
(iv) the incidence of inconclusiveness is high among the bounds tests; (v) the exact
tests compare favorably with asymptotic tests but can be quite diKcult to implement

4 In a multi-equations framework, Bewley and Theil (1987) suggested a simulation-based test for a par-
ticular testing problem; however, they did not supply a distributional theory, either exact or asymptotic.

5 See, for example, Ali and Giaccotto (1984), Buse (1984), MacKinnon and White (1985), GriKths and
Surekha (1986), Farebrother (1987), Evans (1992), Godfrey (1996), and, in connection with GARCH tests,
Engle et al. (1985), Lee and King (1993), Sullivan and Giles (1995), Bera and Ra (1995) and Lumsdaine
(1995).
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in practice. Of course, these conclusions may be inSuenced by the special assumptions
and simulation designs that were considered.
In this paper, we describe a general solution to the problem of controlling the size of

homoskedasticity tests in linear regressions. We exploit the technique of Monte Carlo
(MC) tests (Dwass, 1957; Barnard, 1963; JTockel, 1986; Dufour and Kiviet, 1996,
1998) to obtain provably exact randomized analogues of the tests considered. This
simulation-based procedure yields an exact test whenever the distribution of the test
statistic does not depend on unknown nuisance parameters (i.e., it is pivotal) under the
null hypothesis. The fact that the relevant analytical distributions are quite complicated
is not a problem: all we need is the possibility of simulating the relevant test statistic
under the null hypothesis. In particular, this covers many cases where the !nite-sample
distribution of the test statistic is intractable or involves parameters which are uniden-
ti!ed under the null hypothesis, as occurs in the problems studied by Davies (1977,
1987), Andrews and Ploberger (1995), Hansen (1996) and Andrews (2001). Further
the method allows one to consider any error distribution (Gaussian or non-Gaussian)
that can be simulated.
This paper makes !ve main contributions to the theory of regression based ho-

moskedasticity tests. First, we show that all the standard homoskedasticity test statistics
considered [including a large class of residual-based tests studied from an asymptotic
viewpoint by Pagan and Hall (1983)] are pivotal in !nite samples, hence allowing the
construction of !nite-sample MC versions of these. 6 In this way, the size of many
popular asymptotic procedures, such as the Breusch–Pagan–Godfrey, White, Glejser,
Bartlett, and Cochran–Hartley-type tests, can be perfectly controlled for any paramet-
ric error distribution (Gaussian or non-Gaussian) speci!ed up to an unknown scale
parameter.
Second, we extend the tests for which a !nite-sample theory has been supplied for

Gaussian distributions, such as the Goldfeld–Quandt and various Szroeter-type tests,
to allow for non-Gaussian distributions. In this context, we show that various bounds
procedures that were proposed to deal with intractable !nite-sample distributions (e.g.,
by Szroeter, 1978; King, 1981; McCabe, 1986) can be avoided altogether in this way.
Third, our results cover the important problem of testing for ARCH, GARCH and

ARCH-M e*ects. In this case, MC tests provide !nite-sample homoskedasticity tests
against standard ARCH-type alternatives where the noise that drives the ARCH process
is i.i.d. Gaussian, and allow one to deal in a similar way with non-Gaussian distur-
bances. In non-standard test problems, such as the ARCH-M case, we observe that the
MC procedure circumvents the unidenti!ed nuisance parameter problem.
Fourth, due to the convenience of MC test methods, we de!ne a number of new

test statistics and show how they can be implemented. These include: (1) combined
Breusch–Pagan–Godfrey tests against a break in the variance at an unknown point; (2)
combined Goldfeld–Quandt tests against a variance break at an unspeci!ed point, based

6 For the case of the Breusch–Pagan test, the fact that the test statistic follows a null distribution free of
nuisance parameters has been pointed out by Breusch and Pagan (1979) and Pagan and Pak (1993), although
no proof is provided by them. The results given here provide a rigorous justi!cation and considerably extend
this important observation.
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on the minimum (sup-type) or the product of individual p-values; (3) extensions of the
classic Cochran (1941) and Hartley (1950) tests, against grouped heteroskedasticity, to
the regression framework using pooled regression residuals. Although the null distri-
butions of many of these tests may be quite diKcult to establish in !nite samples and
even asymptotically, we show that the tests can easily be implemented as !nite-sample
MC tests. 7

Fifth, we reconsider the notion of “robustness to estimation e*ects” (see Godfrey,
1996, section 2) to assess the validity of residual-based homoskedasticity tests. In
principle, a test is considered robust to estimation e*ects if the underlying asymptotic
distribution is the same irrespective of whether disturbances or residuals are used to
construct the test statistic. Our approach to residual-based tests departs from this asymp-
totic framework. Indeed, since the test criteria considered are pivotal under the null
hypothesis, our proposed MC tests will achieve size control for any sample size, even
with non-normal errors, whenever the error distribution is speci!ed up to an unknown
scale parameter. Therefore, the adjustments proposed by Godfrey (1996) or Koenker
(1981) are not necessary for controlling size.
The paper makes several further contributions relevant to empirical work. Indeed,

we conduct simulation experiments [modelled after several studies cited above includ-
ing: Honda, 1988; Binkley, 1992; Godfrey, 1996; Bera and Ra, 1995; Lumsdaine,
1995] which suggest new guidelines for practitioners. Our results !rst indicate that the
MC versions of the popular tests typically have superior size and power properties,
which motivates their use particularly in ARCH or break-in-variance contexts. Second,
whereas practitioners seem to favor Breusch–Pagan–Godfrey type tests, Szroeter-type
tests clearly emerge as a better choice (in terms of power). In the same vein, our pro-
posed variants of Hartley’s test—although the latter test is not popular in econometric
applications—appear preferable to the standard LR-type tests (in terms of power versus
application ease). We also provide guidelines regarding the number of MC replications.
The paper is organized as follows. Section 2 sets the statistical framework and

Section 3 de!nes the test criteria considered. In Section 4, we present !nite sample
distributional results and describe the Monte Carlo test procedure. In Section 5, we
report the results of the Monte Carlo experiments and with Section 6 we conclude.

2. Framework

We consider the linear model

yt = x′
t� + ut ; (1)

ut = 	t
t ; t = 1; : : : ; T; (2)

where xt = (xt1; xt2; : : : ; xtk)′; X ≡ [x1; : : : ; xT ]′ is a full-column rank T × k matrix, � =
(�1; : : : ; �k)′ is a k×1 vector of unknown coeKcients, 	1; : : : ; 	T are (possibly random)
scale parameters, and

7 For example, the combined test procedures proposed here provide solutions to a number of change-point
problems. For further discussion of the related distributional issues, the reader may consult Shaban (1980),
Andrews (1993) and Hansen (2000).
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= (
1; : : : ; 
T )′ is a random vector with a completely speci!ed

continuous distribution conditional on X: (3)

Clearly, the case where the disturbances are normally distributed is included as a special
case. We are concerned with the problem of testing the null hypothesis

H0: 	2
t = 	2; t = 1; : : : ; T; for some 	; (4)

against the alternative HA: 	2
t �= 	2

s , for at least one value of t and s. More precisely,
we consider the problem of testing the hypothesis that the observations were generated
by a data-generating process (DGP) which satis!es assumptions (1)–(4).
The hypothesis de!ned by (1)–(4) does not preclude dependence nor heterogeneity

among the components of 
. No further regularity assumptions are assumed, including
the existence of the moments of 
1; : : : ; 
T . So we can consider heavy-tailed distributions
such as stable or Cauchy, in which case it makes more sense to view tests of H0 as tests
of scale homogeneity. So in most cases of practical interest, one would further restrict
the distribution of 
, for example by assuming that the elements of 
 are independent
and identically distributed (i.i.d.), i.e.


1; : : : ; 
T are i:i:d: according to some given distribution F0; (5)

which entails that u1; : : : ; uT are i.i.d. with distribution function P[ut6 v] = F0(v=	)
under H0. In particular, it is quite common to assume that


1; : : : ; 
T
i:i:d∼ N[0; 1]; (6)

which entails that u1; : : : ; uT are i.i.d. N[0; 	2] under H0. However, as shown in Section
4, the normality assumption is not needed for several of our results; in particular, it
is not at all required for the validity of MC tests for general hypotheses of the form
(1)–(4), hence, a fortiori, if (4) is replaced by the stronger assumption (5) or (6).
We shall focus on the following special cases of heteroskedasticity (HA), namely:

H1 : GARCH and ARCH-M alternatives;
H2 : 	2

t increases monotonically with one exogenous variable (x1; : : : ; xT )′;
H3 : 	2

t increases monotonically with E(yt);
H4 : 	2

t is the same within p subsets of the data but di*ers across the subsets; the
latter speci!cation is frequently termed grouped heteroskedasticity.

Note that H4 may include the hypothesis that the variance changes discretely at
some (speci!ed) point in time. We also propose exact tests for a structural break in
the variance at unknown points. In most cases, the tests considered are ordinary least
squares (OLS) based. For further reference, let:

	̂2 = û′û=T; û= (û 1; : : : ; û T )′ = y − X �̂; �̂ = (X ′X )−1X ′y: (7)

3. Test statistics

The tests we shall study, which include existing and new procedures, can be con-
veniently classi!ed in three (not mutually exclusive) categories: (i) the general class
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of tests based on an auxiliary regression involving OLS residuals and some vector of
explanatory variables zt for the error variance; (ii) tests against ARCH-type alterna-
tives; (iii) tests against grouped heteroskedasticity. Unless stated otherwise, we shall
assume in this section that (6) holds, even though the asymptotic distributional theory
for several of the proposed procedures can be obtained under weaker assumptions.

3.1. Tests based on auxiliary regressions

3.1.1. Standard auxiliary regression tests
To introduce these tests in their simplest form (see Pagan and Hall, 1983), consider

the following auxiliary regressions:

û2t = z′
t �+ wt; t = 1; : : : ; T; (8)

û2t − 	̂2 = z′
t �+ wt; t = 1; : : : ; T; (9)

|û t | = z′
t �+ wt; t = 1; : : : ; T; (10)

where zt = (1; zt2; : : : ; ztm)′ is a vector of m !xed regressors on which 	t may depend,
� = (�1; : : : ; �m)′ and wt; t = 1; : : : ; T , are treated as error terms. The Breusch–Pagan–
Godfrey (BPG) LM criterion (Breusch and Pagan, 1979; Godfrey, 1978) may be ob-
tained as the explained sum of squares (ESS) from the regression associated with (9)
divided by 2	̂4. The Koenker (K) test statistic (Koenker, 1981) is T times the centered
R2 from regression (8). White’s (W ) test statistic is T times the centered R2 from re-
gression (8) using for zt the r × 1 observations on the non-redundant variables in the
vector xt ⊗ xt . These tests can be derived as LM-type tests against alternatives of the
form HA: 	2

t = g(z′
t �) where g(·) is a twice di*erentiable function. Under H0 and stan-

dard asymptotic regularity conditions, BPG
asy∼ !2(m− 1); K

asy∼ !2(m− 1); W
asy∼ !2(r− 1),

where the symbol
asy∼ indicates that the test statistic is asymptotically distributed as in-

dicated (under H0 as T → ∞). The standard F statistic to test �2 = · · ·= �m =0 in the
context of (10) yields the Glejser (G) test (Glejser, 1969). Again, under H0 and stan-
dard regularity conditions, (T−k)G

asy∼ !2(m−1). Below, we shall also consider F(m−1;
T − k) distribution as an approximation to the null distribution of this statistic. Honda
(1988) has also suggested a size-correction formula [based on a general expansion
given by Harris (1985)] for the BPG test. White’s test was designed against the gen-
eral alternative HA. The above version of the Glejser test is valid for the special case
where the variance is proportional to z′

t �.
In Section 4, we describe a general solution to the problem of controlling the size

of these tests. Our analysis further leads to two new results. First, in the context of
the G test, Godfrey (1996) has recently shown that, unless the error distribution is
symmetric, the test is de!cient in the following sense. The residual-based test is not
asymptotically equivalent to a conformable !2 test based on the true errors. Therefore,
the G test may not achieve size control. We will show below that this diKculty is
circumvented by our proposed MC version of the test. Second, we argue that from a
MC test perspective, choosing the Koenker statistic rather than the BPG has no e*ect
on size control.
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3.1.2. Auxiliary regression tests against an unknown variance breakpoint
Tests against discrete breaks in variance at some speci!ed date " may be applied in

the above framework by de!ning zt as a dummy variable of the form zt = zt("), where

zt(") =

{
0 if t6 ";

1 if t ¿ ":
(11)

Typically, if the break-date " is left unspeci!ed and thus may take any one of the
values " = 1; : : : ; T − 1, a di*erent test statistic may be computed for each one of
these possible break-dates; see Pagan and Hall (1983). Here we provide a procedure to
combine inference based on the resulting multiple tests, a problem not solved by Pagan
and Hall (1983). Let BPG" be the BPG statistic obtained on using zt = zt("), where
" = 1; : : : ; T − 1. When used as a single test, the BPG" statistic is signi!cant at level
� when BPG"¿ !2�(1), or equivalently when G!1 (BPG")6 �, where !2�(1) solves the
equation G!1 [!

2
�(1)]=� and G!1 (x)=P[!2(1)¿ x] is the survival function of the !2(1)

probability distribution. G!1 (BPG") is the asymptotic p-value associated with BPG".
We propose here two methods for combining the BPG" tests.
The !rst one rejects H0 when at least one of the p-values for "∈ J is suKciently

small, where J is some appropriate subset of the time interval {1; 2; : : : ; T − 1}, such
as J = ["1; "2] where 16 "1 ¡"26T − 1. In theory, J may be any non-empty subset
of {1; 2; : : : ; T − 1}. More precisely, we reject H0 at level � when

pvmin(BPG; J )6p0(�; J ); where pvmin(BPG; J ) ≡ min{G!1 (BPG"): "∈ J}
(12)

or, equivalently, when

Fmin(BPG; J )¿ Fmin(�; J ) where Fmin(BPG; J )

≡ 1 − min{G!1 (BPG"): "∈ J}; (13)

p0(�; J ) is the largest point such that P[pvmin(BPG; J )6p0(�; J )]6 � under H0, and
Fmin(�; J )=1−p0(�; J ). In general, to avoid over-rejecting, p0(�; J ) should be smaller
than �. This method of combining tests was suggested by Tippett (1931) and Wilkinson
(1951) in the case of independent test statistics. It is however clear that BPG"; " =
1; : : : ; T − 1, are not independent, with possibly a complex dependence structure.
The second method we consider consists in rejecting H0 when the product (rather

than the minimum) of the p-values pv×(BPG; J ) ≡∏"∈J G!(BPG") is small, or equiv-
alently when

F×(BPG; J )¿ XF×(J ; �); where F×(BPG; J ) ≡ 1 −
∏
"∈J

G!1 (BPG"); (14)

XF×(J ; �) is the largest point such that P[F×(BPG; J )¿ XF×(J ; �)]6 � under H0. This
general method of combining p-values was originally suggested by Fisher (1932) and
Pearson (1933), again for independent test statistics. 8 We also propose here to con-
sider a modi!ed version of F×(BPG; J ) based on a subset of the p-values G!1 (BPG").

8 For further discussion of methods for combining tests, the reader may consult Folks (1984), Dufour
(1989, 1990), Westfall and Young (1993), Dufour and TorrZes (1998, 2000), and Dufour and Khalaf (2002a).
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Speci!cally, we shall consider a variant of F×(BPG; J ) based on the m smallest
p-values:

F×(BPG; Ĵ (4)) = 1 −
∏

"∈Ĵ (m)

G!1 (BPG") (15)

where Ĵ (m) is the set of the m smallest p-values in the series {G!1 (BPG"): "=1; 2; : : : ;
T − 1}. The maximal number of p-values retained (m in this case) may be chosen
to reSect (prior) knowledge on potential break dates; or as suggested by Christiano
(1992), m may correspond to the number of local minima in the series G!1 (BPG").
To derive exact tests based on Fmin(BPG; J ); F×(BPG; J ) and F×(BPG; Ĵ (m)) is

one of the main contributions of this paper. Indeed, their !nite-sample and even their
asymptotic distributions may be intractable. In Section 4, we show that the technique
of MC tests provides a simple way of controlling their size. Our simulation experiments
reported in Section 5 further illustrates their power properties.

3.2. Tests against ARCH-type heteroskedasticity

In the context of conditional heteroskedasticity, arti!cial regressions provide an easy
way to compute tests for GARCH e*ects. Engle (1982) proposed an LM test based
on (1) where

	2
t = �0 +

q∑
i=1

�i	2
t−i


2
t−i : (16)


t |t−1 ∼ N(0; 1) and |t−1 denotes conditioning of information up to and including
t − 1. The hypothesis of homoskedasticity may then be formulated as H0: �1 = · · · =
�p = 0. The Engle test statistic (which is denoted by E below) is given by TR2,
where T is the sample size, R2 is the coeKcient of determination in the regression of
squared OLS residuals û2t on a constant and û2t−i (i=1; : : : ; q). Under standard regularity

conditions E
asy∼ !2(q). Lee (1991) has also shown that the same test is appropriate

against GARCH(p; q) alternatives, i.e.

	2
t = �0 +

p∑
i=1

(i	2
t−i +

q∑
i=1

�i	2
t−i


2
t−i ; (17)

and the null hypothesis is H0: �1 = · · ·= �q = (1 = · · ·= (p = 0. Lee and King (1993)
proposed an alternative GARCH test which exploits the one-sided nature of HA. The
test statistic which is asymptotically standard normal under H0 is

LK ={
(T−q)

∑T
t=q+1 [(û t =	̂)2−1)]

∑q
i=1 û2(t−i)

}/{∑T
t=q+1 [(û t =	̂)2−1]2

}1=2

{
(T − q)

∑T
t=q+1

(∑q
i=1 û2t−i

)2 −
(∑T

t=q+1

(∑q
j=1 û2t−i

))2}1=2 :

(18)
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Tests against ARCH-M heteroskedasticity (where the shocks a*ecting the conditional
variance of yt also have an e*ect on its conditional mean) can be applied in the context
of

yt = x′
t� + 	t++ ut ; t = 1; : : : ; T: (19)

Bera and Ra (1995) show that the relevant LM statistic [against (16)] for given + is:

LM (+) =
1

2 + +2 -̂
′V
[
V ′V − +2

2 + +2V
′X (X ′X )−1X ′V

]−1

V ′-̂; (20)

where -̂ is a T×1 vector with elements -̂t=[(û t =	̂)2−1]++û t=	̂ and V is a T×(q+1)
matrix whose t-th row is Vt=(1; û2t−1; : : : ; û

2
t−q). In this case, under H0, the parameter +

is unidenti!ed. Bera and Ra (1995) also discuss the application of the Davies sup-LM
test to this problem and show that this leads to more reliable inference. It is clear,
however, that the asymptotic distribution required is quite complicated.
In Section 4, we describe a general solution to the problem of controlling the size of

these tests. Our analysis further yields a new and notable result regarding the ARCH-M
test: we show that the unidenti!ed nuisance parameter is not a problem for implement-
ing the MC version of the test. Indeed, it is easy to see that the statistic’s !nite sample
null distribution is nuisance-parameter-free. The simulation experiment in Section 5.1
shows that this method works very well in terms of size and power. 9

3.3. Tests based on grouping

An alternative class of tests assumes that observations can be ordered (e.g. according
to time or some regressor) so that the variance is non-decreasing. Let û (t); t=1; : : : ; T ,
denote the OLS residuals obtained after reordering the observations (if needed).

3.3.1. Goldfeld–Quandt tests against an unknown variance breakpoint
The most familiar test in this class is the Goldfeld and Quandt (1965, GQ) test which

involves separating the ordered sample into three subsets and computing separate OLS
regressions on the !rst and last data subsets. Let Ti; i = 1; 2; 3, denote the number of
observations in each of these subsets (T = T1 + T2 + T3). The test statistic, which is
F(T3 − k; T1 − k) distributed under (1)–(6) and H0, is

GQ(T1; T3; k) =
S3=(T3 − k)
S1=(T1 − k)

(21)

where S1 and S3 are the sum of squared residuals from the !rst T1 and the last
T3 observations (k ¡T1 and k ¡T3). The latter distributional result is exact pro-
vided the ranking index does not depend on the parameters of the constrained model.
Setting GF(T3−k;T1−k)(x) = P[F(T3 − k; T1 − k)¿ x], we denote pv[GQ;T1; T3; k] =
GF(T3−k;T1−k)[GQ(T1; T3; k)] the p-value associated with GQ(T1; T3; k).

9 Demos and Sentana (1998) proposed one-sided tests for ARCH. Similarly, Beg et al. (2001) introduced a
one-sided sup-type generalization of the Bera–Ra test, together with simulation-based cut-o* points, because
of the intractable asymptotic null distributions involved. For further discussion of these diKculties, see also
Andrews (2001). The MC test method should also be useful with these procedures.
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The GQ test is especially relevant in testing for breaks in variance. 10 Here we
extend this test to account for an unknown (or unspeci!ed) break-date. We propose
(as for the BPG test) statistics of the form:

Fmin(GQ;K) ≡ 1 − min{pv[GQ;T1; T3; k]: (T1; T3)∈K}; (22)

F×(GQ;K) ≡ 1 −
∏

(T1 ;T3)∈K

pv(GQ;T1; T3; k]; (23)

where K is any appropriate non-empty subset of

K(k; T ) = {(T1; T3)∈Z2: k + 16T16T − k − 1 and

k + 16T36T − T1}; (24)

the set of the possible subsample sizes compatible with the de!nition of the GQ statistic.
Reasonable choices for K could be K = S1(T; T2; L0; U0) with

S1(T; T2; L0; U0) ≡ {(T1; T3):L06T16U0 and T3 = T − T1 − T2¿ 0}; (25)

where T2 represents the number of central observations while L0 and U0 are minimal
and maximal sizes for the subsamples (06T26T −2k −2; L0¿ k+1; U06T −T2 −
k − 1), or

K = S2(T; L0; U0) = {(T1; T3):L06T1 = T36U0} (26)

where L0¿ k + 1 and U06 I [T=2]; I [x] is the largest integer less than or equal to x.
According to de!nition (25), {GQ(T1; T3; k) : (T1; T3)∈K} de!nes a set of GQ statis-
tics, such that the number T2 of central observations is kept constant (although the
sets of the central observations di*er across the GQ statistics considered); with (26),
{GQ(T1; T3; k) : (T1; T3)∈K} leads to GQ statistics such that T1 = T3 (hence with dif-
ferent numbers of central observations). As with the BPG statistics, we also consider

F×(GQ; K̂ (m)) ≡ 1 −
∏

(T1 ;T3)∈K̂ (m)

pv[GQ;T1; T3; k];

where K̂ (m) selects the m smallest p-values from the set {pv[GQ;T1; T3; k]:(T1; T3)∈K}.
It is clear the null distribution of these statistics may be quite diKcult to obtain,

even asymptotically. In this regard, this paper makes the following contribution: we
show in Section 4 that the level of a test procedure based on any one of these statistics
can be controlled quite easily by using the MC version of these tests. Our simulations,
reported in Section 5, further show that our proposed tests perform quite well in terms
of power.

3.3.2. Generalized Bartlett tests
Under the Gaussian assumption (6), the likelihood ratio criterion for testing H0

against H4 is a (strictly) monotone increasing transformation of the statistic:

LR(H4) = T ln(	̂2) −
p∑
i=1

Ti ln(	̂2
i ); (27)

10 Pagan and Hall (1983, p. 177) show that the GQ test for a break in variance and the relevant
dummy-variable based BPG test are highly related.
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where 	̂2 is the ML estimator (assuming i.i.d. Gaussian errors) from the pooled re-
gression (1) while 	̂2

i ; i = 1; : : : p, are the ML estimators of the error variances for the
p subgroups (which, due to the common regression coeKcients require an iterative
estimation procedure). If one further allows the regression coeKcient vectors to di*er
between groups (under both the null and the alternative hypothesis), one gets the exten-
sion to the linear regression setup of the well-known Bartlett (1937) test for variance
homogeneity. 11 Note Bartlett (1937) studied the special case where the only regressor
is a constant, which is allowed to di*er across groups. Other (quasi-LR) variants of the
Bartlett test, involving degrees of freedom corrections or di*erent ways of estimating
the group variances, have also been suggested; see, for example, Binkley (1992).
In the context of H2 Ramsey (1969) suggested a modi!cation to Bartlett’s test that

can be run on BLUS residuals from ordered observations. Following GriKths and
Surekha (1986), we consider an OLS-based version of Ramsey’s test which involves
separating the residuals û (t); t=1; : : : ; T , into three disjoint subsets Gi with Ti; i=1; 2; 3,
observations, respectively. The test statistic which is asymptotically !2(2) under H0 is:

RB= T ln(	̂2) −
3∑

i=1

Ti ln(	̂2
i ); 	̂2 =

1
T

T∑
t=1

û2(t); 	̂2
i =

1
Ti

∑
t∈Gi

û2(t): (28)

3.3.3. Szroeter-type tests
Szroeter (1978) introduced a wide class of tests based on statistics of the form

h̃=

(∑
t∈A

htũ2t

)/(∑
t∈A

ũ2t

)
; (29)

where A is some non-empty subset of {1; 2; : : : ; T}, the ũ t’s are a set of residuals,
and the ht’s are a set of non-stochastic scalars such that hs6 ht if s¡ t. Szroeter
suggested several special cases (obtained by selecting di*erent weights ht), among
which we consider the following [based on the OLS residuals from a single regression,
i.e. ũ t = û (t)]:

SKH =

[
T∑
t=1

2
[
1 − cos

(
5t

t + 1

)]
û2(t)

]/(
T∑
t=1

û2(t)

)
; (30)

SN =
(

6T
T 2 − 1

)1=2(∑T
t=1 tû

2
(t)∑T

t=1 û2(t)
− T + 1

2

)
; (31)

SF =

(
T∑

t=T1+T2+1

û2(t)

)/(
T1∑
t=1

û2(t)

)
≡ SF(T1; T − T1 − T2): (32)

11 In this case, the estimated variances are 	̂2i = Si=Ti; i = 1; : : : ; p, and 	̂2 =
∑p

i=1 TiSi=T , where Si is the
sum of squared errors from a regression which only involves the observations in the ith group. This, of
course, requires one to use groups with suKcient numbers of observations.
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Under the null hypothesis, SN follows a N(0; 1) distribution asymptotically. Exact crit-
ical points for SKH [under (6)] may be obtained using the Imhof method. Szroeter
recommends the following bounds tests. Let h∗

L and h∗
U denote the bounds for the

Durbin and Watson (1950) test corresponding to T + 1 observations and k regressors.
Reject the homoskedasticity hypothesis if SKH ¿ 4− h∗

L, accept if SKH ¡ 4− h∗
u , and

otherwise treat the model as inconclusive. King (1981) provided revised bounds for
use with SKH calculated from data sorted such that, under the alternative, the vari-
ances are non-increasing. Harrison (1980, 1981, 1982), however, showed there is a
high probability that the Szroeter and King bounds tests will be inconclusive; in view
of this, he derived and tabulated beta-approximate critical values based on the Fisher
distribution.
As with the GQ test, the Szroeter’s SF statistic may be interpreted as a variant

of the GQ statistic where the residuals from separate regressions have been replaced
by those from the regression based on all the observations, so that S3 is replaced
by S̃3 =

∑T
t=T1+T2+1 û2(t) and S1 by S̃1 =

∑T1
t=1 û2(t). Harrison and McCabe (1979)

suggested a related test statistic based on the ratio of the sum of squares of a subset
of {û (t); t = 1; : : : ; T}, to the total sum of squares:

HM =

(
T1∑
t=1

û2(t)

)/(
T∑
t=1

û2(t)

)
; (33)

where T1=I [T=2]. Although the test critical points may also be derived using the Imhof
method, Harrison and McCabe proposed the following bounds test. Let b∗

L=[1+b(T −
T1; T − k; T − k)]−1 and b∗

U = [1 + b(T − T1 − k; T1; T − k)]−1, where b(81; 82; 83) =
(81=83)F�(81; 82) and F�(81; 82) refers to the level � critical value from the F(81; 82)
distribution. H0 is rejected if HM ¡b∗

L, it is accepted if HM ¿b∗
U , and otherwise the

test is inconclusive. Beta approximations to the null distribution of the HM statistic
have also been suggested, but they appear to o*er little savings in computational cost
over the exact tests (see Harrison, 1981).
McCabe (1986) proposed a generalization of the HM test to the case of het-

eroskedasticity occurring at unknown points. The test involves computing the maxi-
mum HM criterion over several sample subgroups (of size m). The author suggests
Bonferroni-based signi!cance points using the quantiles of the Beta distribution with
parameters [m=2; (t − m − k)=2]. McCabe discusses an extension to the case where m
is unknown. The proposed test is based on the maximum of the successive di*erences
of the order statistics and also uses approximate beta critical points.
In this context, our contribution is twofold. First, we show in Section 4 that exact

MC versions of these tests can be easily obtained even in non-Gaussian context. Sec-
ondly, our simulation results reveal that MC Szroeter-type tests have de.nite power
advantages over the MC versions of commonly used tests such as the BPG test. This
observation has noteworthy implications for empirical practice, since it seems that in
spite of the many available homoskedasticity tests, practitioners (see Table 1) seem to
favor BPG-type tests.
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3.3.4. Generalized Cochran–Hartley tests
Cochran (1941) and Hartley (1950) proposed two classic tests against grouped het-

eroskedasticity (henceforth denoted C and H , respectively) in the context of simple
Gaussian location-scale models (i.e., regressions that include only a constant). These
are based on maximum and minimum subgroup error variances. Extensions of these
tests to the more general framework of linear regressions have been considered by
Rivest (1986). The relevant statistics then take the form:

C = max
16i6p

(s2i )
/ p∑

i=1

s2i ; H = max
16i6p

(s2i )= min
16i6p

(s2i ) (34)

where s2i is the unbiased error variance estimator from the ith separate regression
(16 i6p). Although critical values have been tabulated for the simple location-scale
model [see Pearson and Hartley (1976, pp. 202–203)], these are not valid for more
general regression models, and Rivest (1986) only o*ers an asymptotic justi!cation.
In this regard, this paper makes two contributions. We !rst show that the classic

Cochran and Hartley tests can easily be implemented as !nite-sample MC tests in
the context of the regression model (1)–(4). Secondly, we introduce variants of the
Cochran and Hartley tests that may be easier to implement or more powerful than
the original procedures. Speci!cally, we consider replacing, in the formula of these
statistics, the residuals from separate regressions by the OLS residuals from the pooled
regression (1), possibly after the data have been resorted according to some exogenous
variable. This will reduce the loss in degrees of freedom due to the separate regressions.
The resulting test statistics will be denoted Cr and HRr respectively. Clearly, standard
distributional theory does not apply to these modi!ed test criteria, but they satisfy
the conditions required to implement them as MC tests. These results are new and
have constructive implications for empirical practice; indeed, our simulations (reported
in Section 5) show that such tests tend to perform well relative to the LR-type test
presented above.

3.3.5. Grouping tests against a mean-dependent variance
Most of the tests based on grouping, as originally suggested, are valid for alternatives

of the form H2. A natural extension to alternatives such as H3 involves sorting the data
conformably with ŷ t . However this complicates the !nite-sample distributional theory;
see Pagan and Hall (1983) or Ali and Giaccotto (1984). Here we propose the following
solution to this problem. Whenever the alternative tested requires ordering the sample
following the !tted values of a preliminary regression, rather than sorting the data,
sort the residuals û t ; t = 1; : : : ; T , following ŷ t and proceed. Provided the !tted values
(ŷ 1; : : : ; ŷ T )′, are independent of the least-squares residuals (û 1; : : : ; û T )′ under the null
hypothesis, as occurs for example under the Gaussian assumption (6), this will preserve
the pivotal property of the tests and allow the use of MC tests. Note !nally that this
simple modi!cation [not considered by Pagan and Hall (1983) or Ali and Giaccotto
(1984)] solves a complicated distributional problem, underscoring again the usefulness
of the MC test method in this context.
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4. Finite-sample distributional theory

We will now show that all the statistics described in Section 3 have null distributions
which are free of nuisance parameters and show how this fact can be used to perform
a !nite-sample MC test of homoskedasticity using any one of these statistics. For that
purpose, we shall exploit the following general proposition.

Proposition 1 (Characterization of pivotal statistics). Under the assumptions and no-
tations (1)–(2), let S(y; X ) = (S1(y; X ); S2(y; X ); : : : ; Sm(y; X ))′ be any vector of real-
valued statistics Si(y; X ); i = 1; : : : ; m, such that

S(cy + Xd; X ) = S(y; X ); for all c¿ 0 and d∈Rk : (35)

Then, for any positive constant 	0 ¿ 0, we can write

S(y; X ) = S(u=	0; X ); (36)

and the conditional distribution of S(y; X ), given X, is completely determined by
the matrix X and the conditional distribution of u=	0 = \
=	0 given X, where @ =
diag (	t : t = 1; : : : ; T ). In particular, under H0 in (4), we have

S(y; X ) = S(
; X ) (37)

where 
 = u=	, and the conditional distribution of S(y; X ), given X , is completely
determined by the matrix X and the conditional distribution of 
 given X.

Proof. The result follows on taking c = 1=	0 and d= −�=	0, which entails, by (1),

cy + Xd= (X� + u)=	0 − X�=	0 = u=	0:

Then, using (35), we get (36), so the conditional distribution of S(y; X ) only depends
on X and the conditional distribution of u=	0 given X . The identity u0 = \
 follows
from (2). Finally, under H0 in (4), we have u=\
= 	
, hence, on taking 	0 = 	, we
get u=	0 = 
 and S(y; X ) = S(
; X ).

It is of interest to note that (36) holds under both the general heteroskedastic model
(1)–(2) and the homoskedastic model obtained by imposing (4), without any paramet-
ric distributional assumption on the disturbance vector u [such as (3)]. Then, assuming
(3), we see that the conditional distribution of S(y; X ), given X , is free of nuisance
parameters and thus may be simulated. Of course, the same will hold for any trans-
formation of the components of S(y; X ), such as statistics de!ned as the supremum or
the product of several statistics (or p-values).
It is relatively easy to check that all the statistics described in Section 3 satisfy

the invariance condition (35). In particular, on observing that model (1)–(2) and the
hypothesis (4) are invariant to general transformations of y to y∗ = cy + Xd, where
c¿ 0 and d∈Rk , on y, it follows that LR test statistics against heteroskedasticity,
such the Bartlett test based on LR(H4) in (27), satisfy (35) (see Dagenais and Dufour,
1991; and Dufour and Dagenais, 1992), and so have null distributions which are free
of nuisance parameters. For the other statistics, the required results follow on observing
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that they are scale-invariant functions of OLS residuals. For that purpose, it will be
useful to state the following corollary of Proposition 1.

Corollary 2 (Pivotal property of residual-based statistics). Under the assumptions and
notations (1)–(2), let S(y; X ) = (S1(y; X ); S2(y; X ); : : : ; Sm(y; X ))′ be any vector of
real-valued statistics Si(y; X ); i = 1; : : : ; m, such that S(y; X ) can be written in the
form

S(y; X ) = XS(A(X )y; X ); (38)

where A(X ) is any n × k matrix (n¿ 1) such that

A(X )X = 0 (39)

and XS(A(X )y; X ) satis.es the scale-invariance condition

XS(cA(X )y; X ) = XS(A(X )y; X ); for all c¿ 0: (40)

Then, for any positive constant 	0 ¿ 0, we can write

S(y; X ) = XS(A(X )u=	0; X ) (41)

and the conditional distribution of S(y; X ), given X, is completely determined by the
matrix X jointly with the conditional distribution of A(X )u=	0 given X. In particular,
under H0 in (4), we have S(y; X ) = XS(A(X )y; X ), where 
= u=	, and the conditional
distribution of S(y; X ), given X , is completely determined by the matrix X and the
conditional distribution of A(X )
 given X.

It is easy to see that the invariance conditions (38)–(40) are satis!ed by any scale-
invariant function of the OLS residuals from the regression (1), i.e. any statistic of the
form S(y; X )= XS(û; X ) such that XS(cû; X )= XS(û; X ) for all c¿ 0 [in this case, we have
A(X ) = IT − X (X ′X )−1X ′]. This applies to all the tests based on auxiliary regressions
described in Section 3.1 as well as the tests against ARCH-type heteroskedasticity
(Section 3.2). On the other hand, the tests designed against grouped heteroskedasticity
(Section 3.3) involve residuals from subsets of observations. These also satisfy the
suKcient conditions of Corollary 2 although the A(X ) matrix involved is di*erent. For
example, for the GQ statistic, we have:

A(X ) =



M (X1) 0 0

0 0 0

0 0 M (X3)


 ; (42)

where M (Xi) = ITi − Xi(X ′
i Xi)−1X ′

i ; X = [X ′
1 ; X

′
2 ; X

′
3]

′ and Xi is a Ti × k matrix. The
number n of rows in A(X ) can be as large as one wishes so several regressions of this
type can be used to compute the test statistic, as done for the combined GQ statistic [see
(22)]. Finally, the required invariance conditions are also satis!ed by statistics built on
other types of residuals, such as residuals based on least absolute deviation (instead of
least squares) and various M-estimators. Studying such statistics would undoubtedly be
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of interest especially for dealing with nonnormal (possibly heavy-tailed) distributions.
However, in view of the statistics considered in Section 3, we shall restrict ourselves
in the sequel to statistics based on least squares methods.
Let us now make the parametric distributional assumption (3). Then we can proceed

as follows to perform a !nite-sample test based on any statistic, say S0=S(y; X ), whose
null distribution (given X ) is free of nuisance parameters. Let G(x) be the survival
function associated with S0 under H0, i.e. we assume G :R → [0; 1] is the function
such that G(x) = PH0[S0¿ x] for all x, where PH0 refers to the relevant probability
measure (under H0). When the distribution of S0 is continuous, we have G(x)=1−F(x)
where F(x) = PH0[S06 x] is the distribution function of S0 under H0. Without loss of
generality, we consider a right-tailed procedure: H0 rejected at level � when S0 ¿c(�),
where c(�) is the appropriate critical value such that G[c(�)]=�, or equivalently (with
probability 1) when G(S0)6 � [i.e. when the p-value associated with the observed
value of the statistic is less than or equal to �].
Now suppose we can generate N i.i.d. replications of the error vector 
 according

to (3). This leads to N simulated samples and N independent realizations of the test
statistic S1; : : : ; SN . The associated MC critical region is

p̂N (S0)6 �; (43)

p̂N (x) =
NĜN (x) + 1

N + 1
; ĜN (x) =

∑N
i=1 1[0;∞)(Si − x)

N
;

1A(x) =

{
1 if x∈A;

0 if x �∈ A:

Then, provided the distribution function of S0 induced by PH0 under H0 is continuous,

PH0[p̂N (S0)6 �] =
I [�(N + 1)]

N + 1
; for 06 �6 1: (44)

Note that the addition of 1 in the numerator and denominator of p̂N (x) is important
for (44) to hold. In particular, if N is chosen so that �(N + 1) is an integer, we have
PH0[p̂N (S0)6 �] = �; see Dufour and Kiviet (1998). Thus the critical region (43) has
the same size as the critical region G(S0)6 �. The MC test so obtained is theoretically
exact, irrespective of the number N of replications used. 12 Note that the procedure
is closely related to the parametric bootstrap, with however a fundamental di*erence:
bootstrap tests are, in general, provably valid for N → ∞. See Dufour and Kiviet
(1996, 1998), Kiviet and Dufour (1997), Dufour and Khalaf (2001, 2002a, b, 2003)
for some econometric applications of MC tests. Finally, it is clear from the statement
of Assumption (3) that normality does not play any role for the validity of the MC

12 For example, for � = 0:05; N can be as low as N = 19. Of course, this does not mean that a larger
number of replications is not preferable, for raising N will typically increase the test power and decrease
its sensitivity to the underlying randomization. However the simulation results reported below suggest that
increasing N beyond 99 only has a small e*ect on power.
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procedure just described. So we can consider in this way alternative error distributions
such as heavy-tailed distributions like the Cauchy distribution. 13

5. Simulation experiments

In this section, we present simulation results illustrating the performance of the
procedures described in the preceding sections. We consider the most popular het-
eroskedastic alternatives studied in this literature [for references, refer to Section 1]:
(1) GARCH-type heteroskedasticity; (2) variance as a linear function of exogenous
variables; (3) grouped heteroskedasticity; (4) variance break at a (possibly unspeci-
!ed) point. Our designs are carefully modelled after several well known power studies
[including: Honda (1988), Binkley (1992), Godfrey (1996), Bera and Ra (1995) and
Lumsdaine (1995)] to make our results comparable with published work. 14

5.1. Tests for ARCH and GARCH eCects

For ARCH and GARCH alternatives, our simulation experiment was based on (17),
(19), with q = 1; T = 50; 100; k = I [T 1=2] + 1; � = (1; 1; : : : ; 1)′ and �0 = 1. Four ex-
periments were conducted with parameters set as follows, to make the results of our
study comparable with those obtained by Lee and King (1993), Lumsdaine (1995)
and Bera and Ra (1995): (i) += �1 = (1 = 0; (ii) += (1 = 0; �1 = 0:1; 0:5; 0:9; 1; (iii)
+=0; (�1; (1)=(0:1; 0:5); (0:25; 0:65); (0:4; 0:5); (0:15; 0:85); (0:05; 0:95); (iv) (1=0; +=
−2; �1 = 0; 0:1; 0:9. Note that some combinations fall on the boundary of the region
�1 + (16 1. In experiments (i)–(iii), 
t ∼ N(0; 1). In experiment (iv), we considered
alternative error distributions, according to the examples studied by Godfrey (1996):
N(0; 1); !2(2); t(5) and Cauchy. The regressors were generated as i.i.d. according to a
U(0; 10) distribution and kept constant over each individual experiment. In the case of
experiment (iv), we also considered an alternative regressor set, obtained by drawing
(independently) from a Cauchy distribution (centered and re-scaled conformably with
the previous design). For further reference, we shall denote by D1 the uniform-based
design D1 and by D2 the Cauchy-based design. Both D1 and D2 include a constant
regressor. The Engle and Lee-King tests were applied in all cases. In experiment (iv),
we also applied the Bera-Ra sup-LM test (see Section 3.2 for formulae and related
references), in which case we have only computed MC versions of the tests. The MC

13 As already pointed out, the only tests for which normality may play a central role in order to control
size are those designed against a variance which is a function of the mean and where the least squares
(LS) residuals are sorted according to the LS !tted values ŷ t ; t=1; : : : ; T . Since the distribution of the latter
depends on nuisance parameters (for example, the regression coeKcients �), it is not clear that a test statistic
which depends on both û=(û1; : : : ; û T )′ and ŷ=(ŷ 1; : : : ; ŷ T )′ will have a null distribution free of nuisance
parameters under the general distributional assumption (3).
14 The MC studies we consider assess the various tests, assuming a correctly speci!ed model. We do not

address the e*ects on the tests which result from misspecifying the model and/or the testing problem. For
space considerations, we report in the following a number of representative !ndings. More detailed results
are presented in Dufour et al. (2001).
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Table 2
Tests against ARCH and GARCH heteroskedasticity: normal error distribution and D1 design

99 MC reps. T = 50 T = 100

E LK E LK

(+; �1; (1) ASY MC ASY MC ASY MC ASY MC

H0 (0; 0; 0) 3.06 4.94 4.04 5.01 3.63 5.18 4.72 5.22
ARCH (0; 0:1; 0) 6.42 8.60 9.67 11.31 11.83 13.61 17.01 17.22

(0, 0.5, 0) 31.56 35.68 39.96 42.28 64.18 66.43 71.93 71.54
(0, 0.9, 0) 50.57 54.76 58.89 60.71 84.38 85.82 88.99 88.97
(0, 1, 0) 53.43 57.77 61.82 63.61 86.40 87.50 90.60 90.24

GARCH (0, 0.1, 0.5) 6.89 9.16 10.45 12.05 12.54 14.39 17.89 18.35
(0, 0.25, 0.65) 16.26 19.92 23.43 25.20 38.36 40.74 46.93 47.29
(0, 0.40, 0.50) 26.12 30.25 34.48 36.51 57.44 59.65 65.94 65.69
(0, 0.15, 0.85) 13.45 16.79 19.96 21.70 28.97 31.04 37.11 37.93
(0, 0.05, 0.95) 10.02 12.77 15.37 17.05 18.17 20.15 25.92 26.28

Table 3
Size and power of MC ARCH-M tests: various error distributions, D2 design

99 MC reps. T = 50 T = 100

+ = −2 E LK BR E LK BR

�1 Error ASY MC ASY MC MC ASY MC ASY MC MC

0 N(0,1) 3.28 4.82 5.19 4.83 5.16 3.55 5.15 5.60 5.31 5.36
!2(2) 2.86 5.12 4.32 5.13 5.29 3.16 4.79 4.80 4.82 5.04
t(5) 2.20 5.10 2.88 5.26 4.96 2.35 4.82 3.01 4.87 4.90
Cauchy 1.73 4.97 2.30 5.01 5.17 1.62 5.27 2.12 5.23 5.23

0.1 N(0,1) 8.79 11.55 14.10 13.18 14.52 16.95 18.80 24.02 22.24 25.01
!2(2) 31.38 40.97 40.29 42.74 48.42 54.44 60.07 61.48 60.88 66.50
t(5) 21.11 44.90 32.08 48.63 58.36 48.88 66.65 57.40 68.28 74.01
Cauchy 45.23 65.63 53.15 69.88 73.76 65.98 82.32 71.01 84.77 87.42

0.9 N(0,1) 39.79 43.16 47.77 45.96 62.65 63.00 64.64 68.47 66.75 83.26
!2(2) 27.99 34.37 32.89 35.71 55.27 37.62 42.78 43.22 43.62 68.35
t(5) 26.88 47.77 36.51 50.70 57.09 42.96 60.47 51.05 62.15 70.09
Cauchy 53.12 73.68 61.13 77.29 80.86 70.13 84.72 74.70 86.79 89.41

tests were implemented with N = 99 replications. In the case of experiment (iv), we
also considered N = 199; 499 and 999.
Tables 2 and 3 report rejection percentages for a nominal level of 5%; 10000 repli-

cations were considered; in these tables (as well as later ones), the !gures associated
with best performing exact procedures in terms of power (under the alternatives) are
set in bold face characters. In general, the most notable observation is that the Engle
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test is undersized, even with T =100, which can lead to substantial power losses. This
is in accordance with the results of Lee and King (1993) and several references cited
there. Although undersize problems are evident under D1 and normal errors, more se-
rious size distortions are observed with !2(2); t(5) and Cauchy errors. The size of the
Lee–King test is better than that of the Engle test but is still below the nominal level
particularly with non-normal errors.
These results show that MC tests yield noticeable e*ective power gains, even with

uniform designs and normal errors. In the case of !2(2); t(5) and Cauchy errors, im-
provements in power are quite substantial (such as a 50% increase with T = 50). As
emphasized in Bera and Ra (1995), power improvements are especially important for
ARCH and GARCH tests since failing to detect conditional variance misspeci!cations
leads to inconsistencies in conditional moment estimates. The Lee–King MC test is
always more powerful than the Engle test. For ARCH-M alternatives, there is a sub-
stantial power gain from using the sup-LM MC test. It is also worth noting that possible
problems at boundary parameter values were not observed. The power advantage of
the MC sup-LM along with the documented diKculties regarding the Davies sup-LM
test, makes the MC Bera–Ra test quite attractive. 15 Further, these results show clearly
that the MC test provides a straightforward !nite-sample solution to the problem of
unidenti!ed nuisance parameters.
Experiment (iv) allows to assess the e*ect of increasing MC replications. Our results

(reported in Table 4) show that e*ective power improvements are not noticeable beyond
N=99; indeed, power increases with N albeit quite modestly. This result, which agrees
with available evidence from the bootstrap literature (see for example Davison and
Hinkley, 1997, p. 143), con!rms that our simulation studies with 99 replications are
indeed representative.

5.2. Tests of variance as a linear function of exogenous variables

The model used is (1) with T = 50; 100 and k = 6. 16 The regression coeKcients
were set to one. The following speci!cation for the error variance were considered:
(i) 	2

t =x′
t �; t=1; : : : ; T , where �=(1; 0; : : : ; 0)′ under H0, and �=(1; 1; : : : ; 1)′ under HA,

and (ii) 	2
t =�0 +�1x2t ; t=1; : : : ; T , where �0 =1; �1 =0, under H0 and �0 =0; �1 =1,

under HA. The former speci!cation implies that the variance is a linear function of
E(Yt) and the latter is the case where the variance is proportional to one regressor.
The regressors are generated as U (0; 10). The tests examined are: the Goldfeld–Quandt
(GQ) test [see (21)], with T2 =T=5; T1 =T3 =(T −T2)=2; the Breusch–Pagan–Godfrey
(BPG) test [see (8)], based on the asymptotic distribution (ASY) or using the size
correction formula (BRT) proposed by Honda (1988, Section 2); Koenker’s (K) test
[see (9)]; White’s (W ) test [see (8)]; Glejser’s (G) test based on (10); Ramsey’s ver-
sion of Bartlett’s test (RB) [see (28)], with T1 = T3 = I [T=3] and T2 = T − (T1 + T3);

15 This also suggests that an MC version of the Beg et al. (2001) one-sided test for ARCH-M may also
result in power improvements.
16 Tables of critical points required for the Szroeter’s tests are available for n6 100 and k6 6; see King

(1981) and Harrison (1982).
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Table 4
Power of MC ARCH-M tests: increasing MC replications

+ = −2 T = 50 T = 100

�1 = 0:1 �1 = 0:9 �1 = 0:1 �1 = 0:9

Reps E LK BR E LK BR E LK BR E LK BR

N 99 11.55 13.18 14.52 43.16 45.96 62.52 18.80 22.24 25.01 64.64 66.75 83.26
199 11.61 13.45 14.76 43.74 46.63 63.12 19.19 22.56 25.33 64.75 67.01 83.5
499 11.92 13.62 15.03 44.17 46.77 63.33 19.40 22.75 25.64 64.93 67.27 83.78
999 11.88 13.56 14.89 44.22 47.16 63.44 19.39 22.63 25.63 64.89 67.38 83.88

!2 99 40.97 42.74 48.42 34.37 35.71 55.27 60.07 60.88 66.50 42.78 43.62 68.35
199 41.49 43.20 49.64 34.75 35.92 55.68 61.14 62.00 67.74 43.42 44.01 68.86
499 42.53 44.30 50.35 34.85 35.98 56.36 61.82 62.40 68.48 43.49 43.81 69.31
999 42.59 44.38 50.71 35.06 35.92 56.39 61.68 62.31 68.57 43.73 44.02 69.49

C 99 65.63 69.88 73.76 73.68 77.29 80.86 82.32 84.77 87.42 84.72 86.79 89.41
199 66.89 71.10 75.10 74.95 78.83 82.17 83.42 85.97 88.74 85.63 87.99 90.41
499 67.49 72.14 76.10 75.66 79.74 82.66 83.92 86.69 89.62 86.25 88.43 90.78
999 67.83 72.43 76.62 75.75 79.71 82.87 84.02 86.85 89.68 86.28 88.51 91.23

t 99 44.90 48.63 58.36 47.74 50.70 57.09 66.65 68.28 74.01 60.47 62.15 70.09
199 46.57 49.93 60.17 48.94 51.76 58.44 68.93 70.31 76.71 62.54 63.78 71.68
499 47.99 51.00 61.68 50.25 52.54 59.39 70.14 71.34 77.86 63.96 64.88 72.64
999 48.22 51.15 62.12 50.78 53.14 59.77 70.99 71.93 78.12 64.18 65.21 72.90

Szroeter’s SF test [see (32)], where for convenience, T1 and T2 are set as in the GQ test;
Szroeter’s SKH test [see (30)] where the bounds and beta-approximate critical points
are from King (1981, Table 2) and Harrison (1982, Table 4) respectively; Szroeter’s
SN test [see (31)]; the Harrison–McCabe (HM) test [see (33)], with T1 = I [T=2].
Table 5 reports rejection percentages for a nominal level of 5% and 10000 replica-
tions. The MC tests are implemented with 99 simulated samples. Based on these two
experiments, we make the following observations.
The BPG, K; SN and W tests reject the null less frequently than implied by their

nominal size, particularly in small samples. The G Wald-type test and the Harrison
approximate SKH test have a tendency to over-reject. The bounds tests based on the
HM and SKH statistics are inconclusive in a large proportion of cases. As expected,
MC tests have the correct size. In the case of the BPG criterion, Honda’s size correction
improves both the reliability and the power properties of the test; the superiority of the
MC technique is especially notable with small samples. Recall that whereas Honda’s
formula is generally e*ective, it is based on an asymptotic approximation; the MC
test is theoretically exact in !nite samples. Finally, we have observed that sorting the
observations or the OLS residuals by the value of ŷ leads to equivalent MC tests.
In order to compare tests of equal size, we only discuss the power of the MC tests.

We observe that the SN and the SKH MC tests (whose performance is very similar)
are most powerful, followed closely by the SF and the HM MC test, and by the G
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Table 5
Variance as a function of exogenous variables

Test 	2t = �0 + �1x2t 	2t = x′
t �

T = 50 T = 100 T = 50 T = 100

H0 HA H0 HA H0 HA H0 HA

GQ F 4.68 81.41 4.95 98.25 5.24 11.56 4.95 22.90
BPG ASY 4.14 80.57 4.59 98.75 4.38 8.69 5.01 16.57

BRT 4.64 81.67 4.71 98.79 4.19 8.39 4.95 16.22
MC 4.99 80.86 4.58 98.36 4.74 9.54 5.02 16.30

K ASY 4.74 75.14 4.51 97.52 4.02 7.06 4.32 13.77
MC 4.98 74.70 4.46 96.77 5.08 8.10 4.73 14.63

W ASY 2.60 20.20 4.42 34.64 2.60 3.45 4.42 7.53
MC 4.67 26.70 4.65 33.99 4.67 5.98 4.65 7.93

G ASYF 5.09 80.04 4.66 98.82 5.46 9.04 5.14 15.21
ASYW 5.76 81.30 5.03 98.90 7.66 12.05 5.98 17.42
MC 5.12 78.48 4.58 98.44 5.11 8.21 5.02 14.54

RB ASY 5.50 80.06 5.22 97.96 5.75 11.99 5.41 21.01
MC 4.58 77.03 4.76 97.49 5.03 11.02 4.90 19.78

SF MC 4.77 88.71 4.88 99.12 5.18 19.29 5.3 33.61
SN ASY 4.28 91.94 4.87 96.63 5.32 21.91 4.91 39.64

MC 5.08 92.09 4.69 99.51 5.07 21.38 4.84 38.90
SKH Beta 6.41 94.71 8.32 99.83 7.96 28.07 8.28 48.09

Bound 0.71 74.74 1.54 98.09 0.96 6.17 1.50 21.02
Bound inconc. 19.6 24.23 12.38 1.83 20.89 48.02 12.51 39.41
MC 4.98 91.68 4.79 99.43 4.97 21.04 5.01 37.49

HM Bound 0.79 61.31 1.91 94.61 0.74 4.18 1.85 16.25
Bound inconc. 13.48 33.75 9.67 4.52 14.67 34.61 10.06 30.44
MC 4.78 84.64 5.20 97.38 5.02 17.82 5.48 29.25

and BPG MC tests. The GQ and RB MC tests rank next whereas the W test performs
very poorly. Note that the Szroeter GQ-type test SF performs much better than the
standard GQ; this is expected since the latter is based on residuals from a single
regression on the whole sample. Overall, the most noticeable fact is the superiority
of the Szroeter MC tests when compared to the commonly used procedures (e.g. the
Breusch–Pagan TR2 type tests). 17 As mentioned earlier, the Szroeter tests as initially
proposed have not gained popularity due to their non-standard null distributions. Given
the ease with which exact MC versions of these tests can be computed, this experiment
clearly demonstrates that a sizable improvement in power results from replacing the
commonly used LM-type tests with either Szroeter-type MC test.

17 Similar conclusions are reported in GriKths and Surekha (1986) with respect to SN , the member of the
Szroeter family whose null distribution is asymptotically normal. However, these authors also document the
asymptotic tests’ incorrect !nite sample size.
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5.3. Grouped heteroskedasticity

To illustrate the performance of MC tests for grouped heteroskedasticity (H3), we
follow the design of Binkley (1992). The model used is (1) with Ti=15; 25; 50; ki=
4; 6; 8; m=4. 18 The regressors were drawn [only once] from a U (0; 10) distribution
and di*ered across subgroups. 19 The regression coeKcients were set to one, and the
variances across groups were selected so that B = 	2

max=	
2
min = 1; 3; 5, with the inter-

mediate variances set at equal intervals, where 	2
min and 	2

max represent respectively
the smallest and largest error variance among the m groups. The errors were drawn
from the normal distribution. We considered the LR statistic, the Breusch–Pagan and
Koenker statistics, the Cochran and Hartley criteria (C; H; Cr , and Hr). We also
studied alternative likelihood-based test criteria introduced in Binkley (1992, p. 565),
namely LR1; LR2; LR3 and BPG2, 20 and considered as well a Koenker-type adjust-
ment to BPG2 (which we denote Ku). Empirical rejections for a nominal size of 5%
in 10000 replications are summarized in Table 6. 21 The MC tests are obtained with
99 simulated samples.
Our !ndings can be summarized as follows. In general, LM-type asymptotic tests

are undersized, whereas the asymptotic LR-type tests tend to over-reject. The variants
of the LM and LR tests based on residuals from individual regressions are over-sized.
As expected, size problems are more severe with small samples. The behavior of the
size-corrected BPG appears to be satisfactory. Note however that we have applied the
latter modi!cation technique to BPGu and veri!ed that it still yields over-rejections.
Indeed, we observed empirical type I errors of 12.75, 11.14 and 8.37 for Ti = 15; 25
and 50, respectively. Finally, the empirical size of the Cochran and Hartley statistics
exceeds the nominal size. In contrast, the MC versions of all the tests considered
achieve perfect size control.
In order to compare tests of equal size, we again only discuss the power of the MC

tests. First of all, we observe that the MC technique improves the e*ective power of
the LM tests. Although the correction from Honda (1988) achieves a comparable ef-
fect, its application is restricted to the standard BPG criterion. Secondly, comparing the
LR and QLR tests, there is apparently no advantage to using full maximum likelihood
estimation [for a similar observation in the context of SURE models, see Dufour and
Khalaf (2002a, 2003)]. In general, the tests may be ranked in terms of power as fol-
lows. LR, QLR, BPG and H performed best, followed quite closely by the K and C.

18 Results with m = 2 and m = 4 are presented in Dufour et al. (2001), where we also study the Glejser
and White tests, and the Goldfeld–Quandt test when m = 2.
19 We considered other choices for the design matrices, including Cauchy, lognormal, and identical regres-

sors (across subgroups) and obtained qualitatively similar results.
20 LR1 is obtained as in (27) replacing s2i by estimates of group variances from partitioning s2. LR2 is

obtained as in (27) replacing s2i by variance estimates from separate regressions, over the sample subgroups,
and s2 by a weighted average of these. LR3 is obtained like LR2, using unbiased variance estimates. BPG2
is a variant of the BPG test for H3 based on residuals from individual group regressions.
21 For convenience, our notation di*ers from Binkley (1992). The QLR test refers to Binkley’s LR1, the

LRu (ASY1) and LRu (ASY2) refer to LR2 and LR3 tests; BPGu corresponds to BPG2. Note that LR3 obtains
as a monotonic transformation of LR2, which yields the same MC test.
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Table 6
Grouped heteroskedasticity (m = 4)

B Ti LR QLR LRu Cr Hr C

ASY MC ASY MC ASY1 ASY2 MC MC MC Tab. MC

1 15 9.70 5.25 5.70 5.30 14.41 5.75 5.34 5.60 5.30 12.52 5.37
25 8.05 4.64 5.23 4.92 11.82 5.35 5.01 4.96 4.94 7.25 4.97
50 6.70 5.05 5.24 4.90 9.02 4.98 4.93 4.65 5.26 4.34 4.92

3 15 46.38 34.23 36.42 34.04 49.70 31.98 29.03 24.83 32.19 37.88 22.28
25 67.58 57.20 59.13 56.94 68.72 52.91 50.93 39.34 55.89 42.43 34.14
50 94.03 91.31 92.09 91.10 93.27 89.02 87.82 68.41 90.42 64.77 65.01

5 15 76.88 65.17 66.65 63.34 77.78 60.85 56.69 38.98 63.37 52.99 34.99
25 94.59 90.65 91.22 89.81 94.18 87.65 85.47 60.91 89.96 63.55 54.60
50 99.99 99.95 99.98 99.93 99.98 99.89 99.86 91.13 99.96 89.09 88.34

B Ti BPG BPGu K Ku H

ASY BRT MC ASY MC ASY MC ASY MC Tab. MC

1 15 4.52 5.47 5.44 11.06 5.30 4.41 5.47 10.37 5.31 12.97 5.04
25 4.51 4.99 5.08 9.97 4.82 4.19 4.77 9.77 4.90 9.77 5.20
50 4.48 4.83 4.91 8.02 4.63 4.38 4.48 7.82 4.94 3.41 5.26

3 15 28.37 32.16 31.34 41.13 26.92 22.78 25.49 34.47 21.96 46.20 27.63
25 52.41 54.74 53.27 61.87 45.54 45.09 46.56 55.90 40.47 63.92 48.70
50 89.53 90.07 88.91 91.11 85.59 86.55 85.67 89.08 81.66 90.58 87.30

5 15 52.12 56.23 54.70 65.42 47.03 40.12 43.79 53.63 36.31 75.51 56.81
25 84.81 86.17 84.58 89.37 77.60 75.14 76.00 82.62 67.70 93.13 85.91
50 99.88 99.91 99.82 99.88 99.59 99.53 99.27 99.68 99.80 99.95 99.82

Overall, no test is uniformly dominated. The MC tests constructed using variance es-
timates from separate regressions have a slight power disadvantage. This is somewhat
expected, since the simulated samples where drawn imposing equality of the individual
regression coeKcients. Finally, note that the MC Hartley’s test compared favorably
with the LM and LR test. This, together with the fact that it is computationally so
simple, suggest that applying the MC technique to Hartley’s criterion yields a very
useful test.

5.4. Tests for break in variance

The model used is (1) with: T = 50 and k = 6. 22 The following speci!cation for
the error variance was considered: 	2

t = 	1, if t6 "0, and 	2
t = 	1 + B, if t ¿ "0, where

B¿ 0 and "0 is the break time (assumed unknown). The regressors and the regres-
sion coeKcients parameters were chosen as in Section 5.3. Furthermore �0 = 1, and
B and "0 were set so that: (	1 + B)=	1 = 1; 4; 16, and "0=T = 0:3; 0:5; 0:7. We

22 Results with T = 25 and T = 100 are presented in Dufour et al. (2001), where we also study the
K; W; G; RB, and HM tests. We have observed that the power of several tests converged to one with
T = 100; we have thus chosen to report the results with T = 50 to allow useful power comparisons.
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Table 7
Break in variance at unknown points

T = 50 H0 "0=T = 0:3 "0=T = 0:5 "0=T = 0:7

	2=	1 1 2 4 2 4 2 4

GQ F 5.5 35.0 59.9 71.2 99.8 57.1 99.3
BPG ASY 5.3 32.6 59.3 67.0 96.5 73.7 99.6

BRT 5.5 33.7 60.6 68.5 96.7 75.0 99.7
MC 5.8 33.7 59.1 67.2 96.3 73.2 99.6

SF MC 7.2 47.0 70.3 82.9 99.5 73.3 99.4
SN ASY 5.6 47.7 72.3 80.8 99.1 82.3 99.9

MC 6.2 45.5 70.8 77.4 98.1 80.4 99.7
SKH Beta 9.0 58.5 79.5 87.9 99.8 87.1 1.0

Bound 1.3 18.8 41.3 53.9 94.3 59.4 99.3
Bound inconc. 22.8 64.5 52.0 42.7 5.7 36.0 0.7
MC 6.8 46.7 71.9 81.9 99.0 81.1 99.8

Tests maximized over the whole sample

F×(BPG; Ĵ S(4)) MC 5.3 16.1 26.1 45.3 86.7 72.5 99.5
Fmin(BPG; Ĵ S(4)) MC 5.5 12.7 18.0 31.7 66.5 62.6 98.7
F×(GQ; Ĵ S(4)) MC 5.6 56.8 98.6 79.1 100 73.3 99.7
Fmin(GQ; Ĵ S(4)) MC 6.0 50.0 98.2 71.6 99.8 67.2 99.4

Tests maximized over a sub-sample

F×(BPG; Ĵ S(4)) MC 6.0 38.0 79.8 76.9 99.4 81.7 99.9
Fmin(BPG; Ĵ S(4)) MC 5.8 37.1 77.8 75.7 99.2 79.4 99.9
F×(GQ; Ĵ S(4)) MC 5.4 60.7 98.0 80.0 99.9 74.9 99.7
Fmin(GQ; Ĵ S(4) MC 6.2 53.1 98.3 78.7 100 75.0 99.5

applied the MC versions of the standard tests GQ and BPG (using arti!cial regres-
sions on zt = t; 16 t6T ), SF , SKH, and SN tests, as well as the proposed com-
bined tests Fmin(GQ;K); Fmin(BPG; J ); F×(BPG; Ĵ (m)), F×(GQ; K̂ (m)) with m = 4.
For each one of the combined tests, we considered two possible “windows” (J; K).
The !rst one is a relatively uninformative “wide” window: JA = {1; : : : ; T − 1}; KA =
S1(T; T2; k + 1; T − T2 − k − 1), with T2 = [T=5]. The second set of windows were
based on a predetermined interval around the true break-date, namely we considered:
J S = {L0; L0 + 1; : : : ; U0}; KS = S1(T; T2; "L0(k); "

L
0(k)), where T2 = [T=5]; "L0(k) =

max{k+1; "0 − I [T=5]}; "U0 (k)=min{T − k −T2; "0 + I [T=5]}. This yields the statistics
F×(BPG; Ĵ i

(4)); Fmin(BPG; J i); F×(GQ; K̂ i
(4)); Fmin(GQ;Ki); i= A; S. The results are

reported in Table 7.
As expected, the MC versions of all the tests achieve perfect size control. The results

on relative power across tests agree roughly with those from the other experiments.
Two points are worth noting. First, a remarkable !nding here is the good performance
of the Szroeter-type MC tests, which outperform commonly used tests such as the BPG
and the GQ tests. For "0=T =0:3, the SF test has the best power. Second, the combined
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criteria perform well, and in several cases exhibit the best performance. Among these
tests, product-type combined criteria perform better than min-type. The combined GQ
criteria clearly dominate the standard GQ; the same holds true for the BPG-based
tests, if the search window is not uninformative. Power increases substantially, where
we consider the sup-tests maximized over the shorter, more informative window. These
results have much to recommend the intuitively appealing combined tests, in association
with the MC test method, in order to deal with problems of unknown shift in variance.

6. Conclusion

In this paper, we have described how !nite-sample homoskedasticity tests can be
obtained for a regression model with a speci!ed error distribution. The latter exploit
the MC test procedure which yields simulation-based exact randomized p-values ir-
respective of the number of replications used. The tests considered include tests for
GARCH-type heteroskedasticity and sup-type tests against breaks in variance at un-
known points. On observing that all test criteria are pivotal, the problem of “robust-
ness to estimation e*ects” emphasized in Godfrey (1996) becomes irrelevant from our
viewpoint. It is important to note that the general approach used here to obtain exact
tests is not limited to the particular case of normal errors. In particular, the method pro-
posed allows one to consider non-normal—possibly heavy-tailed (e.g., Cauchy)—error
distributions, for which standard asymptotic theory would not apply.
The results of our simulation experiments suggest that Hartley-type and Szroeter-type

tests seem to be the best choice in terms of power. Such tests have not gained popu-
larity given the non-standard null distribution problem which we have solved here. We
have introduced various MC combined tests, based on the minimum (sup-type tests) or
the product (Fisher’s combination method) of a set of p-values, and demonstrated their
good performance. Although the particular test statistics considered here are designed
against a two-regime variance, it would be straightforward to implement, with similar
MC methods, statistics aimed at detecting a larger number of variance regimes. Fi-
nally, in the context of conditional heteroskedasticity, we have solved the unidenti!ed
nuisance parameter problem relating to ARCH-M testing.
The test procedures presented in this paper are provably valid (in !nite samples) for

parametric regression models with !xed (or stochastic strictly exogenous) regressors
as described in assumptions (1)–(4). To the extent that the test statistics considered
have the same asymptotic distribution under less restrictive regularity conditions, it
is straightforward to see that the simulation-based tests presented here will also be
asymptotically valid under these assumptions [for further discussion of this general
asymptotic validity, see Dufour and Kiviet (1998, 2002)]. It would undoubtedly be
of interest to develop similar !nite-sample procedures that would be applicable to
other models of econometric interest, such as: (1) dynamic models; (2) models with
endogenous explanatory variables (simultaneous equations); (3) nonparametric mod-
els (especially with respect to the assumptions made on the disturbance distribution);
(4) nonlinear models. These setups go beyond the scope of the present paper and are
the topics of ongoing research.
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