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ABSTRACT

Asymptotic and bootstrap tests for inequality measures are known to perform poorly in finite

samples when the underlying distribution is heavy-tailed. We propose Monte-Carlo permutation

and bootstrap methods for the problem of testing the equality of inequality measures between

two samples. Results cover the Generalized Entropy class which includes Theil’s index, the

Atkinson class of indices, and the Gini index. We analyze finite-sample and asymptotic con-

ditions for the validity of the proposed methods, and we introduce a convenient rescaling to

improve finite-sample performance. Simulation results show that size correct inference can be

obtained with our proposed methods despite heavy tails if the underlying distributions are suffi-

ciently close in the upper tails. Substantial reduction in size distortion is achieved more gener-

ally. Studentized rescaled Monte Carlo permutation tests outperform the competing methods we

consider in terms of power.
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1 Introduction

Income and wealth distributions are typically non-normal and can take various shapes. In view

of this, distribution-free approaches are especially well suited to the task of comparing inequality

measures. However, despite a sizable literature, non-parametric methods for inference on such

measures perform poorly in finite samples. As the sample size grows, concern shifts from finite-

sample distortions to asymptotic problems caused by the failure of the assumptions needed to

ensure size control. These problems are often associated with heavy tails, a common situation in

applied work. In economics for example, income inequalities are of primary interest and income

distributions are characterized by a prominently heavy right tail. In addition, inequality measures

can be equal even if the underlying distributions differ, which also confounds inference.

Consider two variables x and y drawn from two distributions Fx and Fy. We study distribution-

free tests of

H0 : θ(Fx) = θ(Fy) (1)

where θ(.) is some functional on some subset F of distributions (further structure is provided

below). Inequality indices constitute special cases of θ(.) and provide the motivation for our

work. Formally, we analyze centered and uncentered moments, the Generalized Entropy (GE)

class of inequality measures which includes Theil’s index, the Atkinson class of inequality in-

dices (Atkinson, 1970) and the Gini index.

While bootstrapping offers a natural alternative to standard asymptotic approximations for

this problem, Davidson and Flachaire (2007), Cowell and Flachaire (2007), Schluter and van

Garderen (2009) and Davidson (2009, 2012) show that heavy tails also cause bootstrap failures.

A few improvements have been proposed. Davidson and Flachaire (2007) consider a bootstrap

data generating process (DGP) which combines a parametric estimate of the upper tail with a

non-parametric estimate of the rest of the distribution. Schluter and van Garderen (2009) pro-

pose normalizing transformations of inequality measures using Edgeworth expansions, to adjust

asymptotic Gaussian approximations. Such corrections can be effective in specific instances –
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for example, when the null hypothesis takes the form H1 : θ(Fx) = δ0 with δ0 known – but still

fail for heavy-tailed distributions.

This paper analyzes permutation methods for testing H0 in (1) and shows that permutational

Monte Carlo (MC) test methods (Pitman, 1937; Dwass, 1957; Dufour, 2006) provide substantial

improvement. We ask what finite and large-sample assumptions are needed to support reliable

permutations, focusing on the specificities of commonly used inequality measures. Our analysis

applies and extends the theoretical setups of Romano (1990), Dufour (2006) and Chung and

Romano (2013).

We first consider a baseline problem which restricts (1) to the case where available samples

are drawn from the same distribution, i.e. when Fx = Fy. We show that MC permutation tests

provide exact inference in finite samples, even if the common distribution is heavy-tailed. Our

result allows for continuous and discrete distributions, and does not require any regularity con-

dition on the form of the functional θ(·). We also allow for exchangeable (as opposed to i.i.d.)

observations, hence covering the case of random draws without replacement from a finite pop-

ulation. To the best of our knowledge, although restrictive, this special case provides the only

available exact solution for the problem at hand.

The fact remains that (1) does not guarantee that Fx = Fy. In this case, the use of permuta-

tion tests is not justified from an exact perspective. Romano (1990) shows that, when Fx 6= Fy,

permutation tests of the hypothesis in (1) are asymptotically valid in specific cases – in the sense

that the probability of Type I error tends to the nominal level asymptotically – but they are not

generally valid. For instance, permutations work using differences of sample means if the sam-

ples are of the same size, but are invalid with differences of medians. We suggest a convenient

rescaling that validates permutations for several inequality measures. A bootstrap method for

this null hypothesis is also proposed.

More recently, Chung and Romano (2013) showed that permutation tests are asymptotically

valid in a more general setting if the underlying statistic is studentized. The importance of stu-

dentization is well-known for bootstrapping to achieve asymptotic refinements (Hall, 1992). In

2



contrast, with permutation tests, studentization may be required for validity. In particular, when

comparing medians, studentized statistics will work while non-studentized counterparts are in-

valid. Although Chung and Romano (2013) do not analyze inequality measures, their general

statistical setup validates comparing these measures using studentized criteria. The rescaling we

introduce may not be necessary for size control with studentized criteria, at least asymptotically.

Yet we show that it matters from the power perspective.

Simulation experiments are provided to study the finite-sample properties of the proposed

tests when the samples are drawn from similar and different distributions. Some very heavy-

tailed distributions are considered in order to include a worst-case scenario in our design. In

terms of Type 1 error or size distortion, our results show that when the samples are drawn from

two (strongly) heavy-tailed distributions which are not too different, permutation tests perform

very well in finite samples. When distributions differ dramatically particularly in their tails,

while size distortions are not completely eradicated, permutation tests outperform the standard

asymptotic and bootstrap tests. In terms of power, our results show that permutation tests based

on rescaled samples perform better in small samples than permutation tests based on original

samples. We also analyze dependent samples and permutation algorithms with matched (paired)

data. Results are broadly similar to the i.i.d. case which confirms the finite-sample superiority

of MC permutation methods.

The paper is organized as follows. Section 2 describes a general framework and presents

the proposed inference methods. In section 3, we show how exact simulation-based permutation

tests for the hypothesis of equal distributions can be obtained using statistics comparing general

functionals of empirical distribution functions. In section 4, we consider the problem of testing

the equality of general functionals when the distributions of the two populations can differ. In

section 5, we study specific cases based on moments and commonly used inequality measures.

Simulation experiments are reported in section 6. We conclude in section 7.
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2 Framework

In this section, we set notation, define the test statistics, and present alternative permutational and

simulation-based p-values for comparing a general functional θ(.) on two different populations.

The specific treatment of inequality measures is deferred to section 5.

We consider two samples X = {X1, X2, . . . , Xn} and Y = {Y1, Y2, . . . , Ym} each of which com-

prises independent and identically distributed observations with cumulative distribution func-

tions Fx and Fy respectively. We wish to test general hypotheses of type H0 as in (1). A natural

statistic for such a problem is given by

T = θ(F̂x)−θ(F̂y) (2)

where F̂x and F̂y are the empirical distribution functions (EDFs) of the samples X and Y , and N

is the total number of observations, N = n+m. On studentizing T , we get the studentized test

statistic

S=
θ(F̂x)−θ(F̂y)√

V̂ [θ(F̂x)]+V̂ [θ(F̂y)]
(3)

where V̂ [.] denotes an estimate of the variance of the indices in question.

Suppose the asymptotic distribution of S under H0 is N[0, 1] (as m, n→ ∞), and consider a

critical region of the form |S|> c where c is a critical value. Then an asymptotic p-value for this

test can be obtained as follows:

pa = GΦ(|S0|) = 2 min
(

Φ(S0) ; 1−Φ(S0)
)

(4)

where S0 is the observed value of S,

GΦ(x) := P[|Z|> |x|] =Φ(−|x|)+1−Φ(|x|) = 2min
(

Φ(x), 1−Φ(x)
)
, (5)
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Z ∼N[0, 1], and Φ(·) = P[Z ≤ x] is the standard Normal distribution function. Note the identities

in (5) depend on the continuity and symmetry of the normal distribution.

We introduce three p-values, described in the following subsections. For clarity, in what

follows, p∗ refers to the MC-permutation p-value, p[ to the bootstrap p-value, and p• denotes

its counterpart that imposes the null hypothesis.

2.1 Monte-Carlo permutational p-values

The permutational distribution based on the test statistic T in (2), also known as the randomiza-

tion distribution, is the distribution obtained by permuting in all possible ways the N = n+m

observations of the combined sample

Z = (X1, X2, . . . , Xn,Y1, Y2, . . . , Ym)
′. (6)

We denote P(Z) the set of all vectors obtained by permuting the components of Z. Two permu-

tations are viewed as distinct as soon as they correspond to different orderings of the components

of Z (even if some of the observations are numerically equal), so the total number of different

permutations in P(Z) is (m+ n)!. Under the assumption that the m+ n observations in Z are

i.i.d., the (m+ n)! permutations in P(Z) are equally probable, which in turn determines the

permutational distribution of T (or S). However, the total number of permutations (m+ n)! to

consider rapidly becomes prohibitively large as the sample sizes m and n increase.

Following the suggestion of Dwass (1957), we draw at random B permutations of Z from

the set P(Z). These may be drawn with or without replacement [in P(Z)]. When draws are

taken with replacement, the random permutations are i.i.d.; when taken without replacement,

they are exchangeable. In this paper, we focus on the case where the permutations are generated

without replacement. Along with the actual data, this yields B+ 1 random permutations of Z:

Z∗1, . . . , Z∗B. From each permuted sample, the corresponding EDFs F̂x∗ j and F̂y∗ j are computed,
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and the value of the test statistic as defined in (2):

T∗ j = θ(F̂x∗ j)−θ(F̂y∗ j) , j = 1, . . . , B . (7)

Using the above simulated permutational test statistics, we can then compute the following p-

value functions:

p̂−∗B(x) =
∑

B
j=1 1[T∗ j ≤ x]+1

B+1
, p̂+∗B(x) =

∑
B
j=1 1[T∗ j ≥ x]+1

B+1
, (8)

where the indicator function 1(A) is equal to one if A is true, and zero otherwise. We can then

obtain one-sided tests of H0 against H−1 : θ(Fx)< θ(Fy) and H+
1 : θ(Fx)> θ(Fy), by taking the

following critical regions respectively:

p̂−∗B(T )≤ α , (9)

p̂+∗B(T )≤ α , (10)

where α is the level of the test and T is the observed value of the test statistic. To get a two-

sided test, we can reject H0 against H1 : θ(Fx) 6= θ(Fy) when either one of the one-sided tests is

significant at level α/2:

p̂−∗B(T )≤ α/2 or p̂+∗B(T )≤ α/2 (11)

or equivalently

p̂c
∗B := 2min{p̂−B (T ) , p̂+∗B(T )} ≤ α . (12)

Another way of building a two-sided test consists in working with the absolute value of the test

statistic: setting

p̂a
∗B(x) =

∑
B
j=1 1(|T∗ j| ≥ x)+1

B+1
, (13)
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H0 is rejected against H1 when

p̂a
∗B(|T |)≤ α . (14)

The two critical regions in (12) and (14) are not generally equivalent. In this paper, we focus

on two-sided tests of type (12). In (8) - (14), the statistic T can be replaced by its studentized

version S, in which case

S∗ j =
θ(F̂x∗ j)−θ(F̂y∗ j)√

V̂ [θ(F̂x∗ j)]+V̂ [θ(F̂y∗ j)]
, j = 1, . . . , B . (15)

Of course, tests based on T or S are not generally equivalent.

2.2 Conventional bootstrap p-values

A bootstrap test is computed by resampling the original data with replacement. A bootstrap

sample, of the same size as the observed sample, is obtained by making n draws with replace-

ment from the n observed realizations {X1, . . . , Xn}, where each Xi has probability 1/n of being

selected on each draw, and then making, independently, m draws with replacement from the

m observed realizations {Y1, . . . , Ym}, where each Yi has probability 1/m of being selected on

each draw. Let (X[,Y[) refer to the bootstrap sample so obtained, and denote by F̂x[
and F̂y[

the

associated EDFs. The bootstrap statistic is computed as was S in (3), except that the null hypoth-

esis tested is that the difference between the two indices is equal to θ(F̂x)−θ(F̂y) rather than to

0. Formally, the adjusted bootstrap statistic takes the form

S[ =

(
θ(F̂x[

)−θ(F̂y[
)
)
−
(
θ(F̂x)−θ(F̂y)

)√
V̂ [θ(F̂x[

)]+V̂ [θ(F̂y[
)]

. (16)

This modification ensures that the hypothesis pertaining to the bootstrap statistics holds true

for the population the bootstrap samples are drawn from, that is, the original sample. Let S[ j
,

j = 1, . . . , B, refer to the series of bootstrap statistics. The bootstrap p-value is the proportion of

7



the bootstrap samples for which the absolute value of the bootstrap statistic is more extreme than

the statistic computed from the original data. Thus, for a two-tailed test, the bootstrap p-value is

p[ = 2 min

(
1

B

B

∑
j=1

1(S[ j ≤ S0);
1

B

B

∑
j=1

1(S[ j > S0)

)
. (17)

2.3 Bootstrap p-values under the null hypothesis

The permutation approach does not differ radically from the bootstrap approach. For example,

a sample obtained by permuting elements of the combined sample Z defined in (6) is equivalent

to resampling without replacement N observations from Z. It thus makes sense to resample with

replacement from Z to form an alternative bootstrap sample that respects the null hypothesis.

One can proceed as follows. Draw with replacement n observations in Z to form a sample

denoted X• and then draw with replacement m other observations in Z to form a sample denoted

Y•. Again, let F̂x• and F̂y• refer to the associated EDFs respectively. The bootstrap statistic can

be computed as

S• =
θ(F̂x•)−θ(F̂y•)√

V̂ [θ(F̂x•)]+V̂ [θ(F̂y•)]
(18)

with no further adjustments since the sampling scheme imposes the null hypothesis. Let S• j,

j = 1, . . . , B, refer to the series of bootstrap statistics so obtained, leading to the two-tailed

bootstrap p-value:

p• = 2 min

(
1

B

B

∑
j=1

1(S• j ≤ S0);
1

B

B

∑
j=1

1(S• j > S0)

)
. (19)

3 Exact Monte-Carlo permutation tests

Before we consider the general problem of testing H0, it will be of interest to study the problem

of testing H0 when the populations considered have the same distributions, against H−1 , H+
1 or

H1. This is equivalent to testing Fx=Fy against alternatives where θ(Fx) 6= θ(Fy). This relatively
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restrictive null hypothesis appears naturally when subsets of a wider population are considered.

We will show here that both the level and the size of permutation tests based on general statistics

of the form T or S can be controlled, irrespective whether the distribution Fx (or Fy) is discrete

or continuous, without any restriction on the form of the functional θ(·). We also allow for

exchangeable (as opposed to i.i.d.) observations, hence covering the case of random draws

without replacement from a finite population (in addition to i.i.d. observations). Thus, the result

given here can be viewed as an extension of the basic finding of Dwass (1957) who considered

tests that compare arithmetic means of i.i.d. random variables with continuous distribution.

Since most estimated inequality measures rely on statistics based on EDFs, which are not

continuous, a tie-breaking procedure may be needed to control test size. For this purpose, we

propose to use the randomized ordering described in Dufour (2006), which leads to the following

procedure. We first draw by simulation B+1 i.i.d. random variables U0,U1, ... , UB, according

to a uniform distribution on (0,1), independently of (T, T∗1 , ... , T∗B). Then we compute p-value

functions similar to those described in Section 2.1, with the difference that the pairs (T∗ j,U j),

j = 0, ...,B, are ordered according to the lexicographic order:

(T∗i,Ui)≤ (T∗ j,U j)⇔
[
T∗i < T∗ j or (T∗i = T∗ j and Ui ≤U j)

]
(20)

where T∗0 = T is the statistic obtained from the actual data. More precisely, this yields the

following modified (tie-adjusted) p-value functions:

p̃−∗B(x) =
∑

B
i=1 1[(T∗i,Ui)≤ (x,U0)]+1

B+1
, (21)

p̃+∗B(x) =
∑

B
i=1 1[(x,U0)≤ (T∗i,Ui)]+1

B+1
, (22)

p̃a
∗B(x) =

∑
B
i=1 1[(x,U0)≤ (|T∗i|,Ui)]+1

B+1
. (23)

The tests are performed as before on replacing p̂ by p̃. We can then establish the following
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theorem.

Theorem 1 Suppose the n+m random variables X1, X2, . . . , Xn,Y1, Y2, . . . , Ym are exchange-

able. Then, for 0< α < 1,

P[p̂−∗B(T )≤ α]≤ P[p̃−∗B(T )≤ α] = α, (24)

P[p̂+∗B(T )≤ α]≤ P[p̃+∗B(T )≤ α] = α, (25)

P[p̂a
∗B(|T |)≤ α]≤ P[p̃a

∗B(|T |)≤ α] = α , (26)

where the p-value functions are defined in (8) and (21) - (23).

Proof: By the exchangeability assumption, different permutations of the components of Z are

equally probable, so randomly selected permutations (either with or without replacement) are

themselves exchangeable. Consequently, the random variables T, T∗1 , ... , T∗B are exchangeable.

On applying Proposition 2.4 of Dufour (2006), we then get

P[p̃−∗B(T )≤ α] = P[p̃+∗B(T )≤ α] = P[p̃a
∗B(|T |)≤ α] = α . (27)

Finally, the inequalities in (24) - (26) follow on observing that

p̃−∗B(x)≤ p̂−∗B(x) , p̃+∗B(x)≤ p̂+∗B(x) , p̃a
∗B(x)≤ p̂a

∗B(x) . (28)

�

Theorem 1 means that the critical regions p̃−∗B(T )≤ α , p̃+∗B(T )≤ α and p̃a
∗B(|T |)≤ α have

size α for testing H0 when the populations considered have the same distributions, while the

critical regions p̂−∗B(T ) ≤ α , p̂+∗B(T ) ≤ α and p̂a
∗B(|T |) ≤ α are typically conservative, so they

still have level α for testing H0. Clearly, the same result holds if the test statistic T is replaced

by its studentized version S.
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Note also the events p̃−∗B(T )≤ α/2 and p̃+∗B(T )≤ α/2 are mutually exclusive [and similarly

for p̂−∗B(T )≤ α/2 and p̂+∗B(T )≤ α/2] for 0< α < 1, so that

P[p̂−∗B(T )≤ α/2 or p̂+∗B(T )≤ α/2]≤ P[p̃−∗B(T )≤ α/2 or p̃+∗B(T )≤ α/2] = α (29)

under H0 when the populations considered have the same distributions, for 0< α < 1. Thus, on

setting

p̂c
∗B(x) := 2min{p̂−∗B(x), p̂+∗B(x)} , p̃c

∗B(x) := 2min{ p̃−∗B(x), p̃+∗B(x)} , (30)

we have

P[p̂c
∗B(T )≤ α]≤ P[p̃c

∗B(T )≤ α] = α (31)

under H0, so p̂c
∗B(T )≤ α and p̃c

∗B(T )≤ α constitute two-sided critical regions with level α for

H0 (0< α < 1). The latter are not in general equivalent to p̂a
∗B(|T |)≤ α or p̃a

∗B(|T |)≤ α .

4 Permutation tests for comparing linear functionals: differ-

ent distributions

In this section, we identify specific finite-sample permutation test problems and extend the re-

sults in Romano (1990) on the asymptotic validity of permutation tests based on T [in (2)] to the

case where θ(.) is a linear functional. This result will be used in the next section to show that

permutation tests are asymptotically valid for inequality measures if the samples are previously

rescaled adequately. Permutations based on studentized statistics [such as (3) here] have been

shown to be valid under rather general regularity conditions by Chung and Romano (2013). The

following analysis which focuses on (2) is nevertheless informative, as the properties we derive

are new to this literature. The transformation we introduce for simple contrasts [like (2)] also

ends up enhancing power when combined with studentization.

In general, when the assumption Fx = Fy does not hold, permutation tests of H0 [in (1)] are
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no longer exact (at level α). However, as pointed out by Romano (1990), such tests can be

asymptotically valid in specific cases, in the sense that under the null hypothesis, the rejection

frequency of H0 tends to the nominal level α as the sample size increases.

For the general two-sample problem of testing θ(Fx)= θ(Fy), when the statistics n1/2[θ(F̂x)−

θ(Fx)] and m1/2[θ(F̂y)−θ(Fy)] converge weakly to Gaussian distributions with mean 0, the cor-

responding permutation test is asymptotically valid when the asymptotic variances of the statis-

tics θ(F̂x) and θ(F̂y) are equal; see Romano (1990). This result requires that θ(.) be appropri-

ately differentiable in the sense of Gill (1988). However, asymptotic validity of the permutation

test does not generally hold in such two-sample problems, while it does for one-sample prob-

lems.

With two independent samples, {X1, . . . , Xn} and {Y1, . . . , Ym}, drawn from the probability

distributions Fx and Fy, the test statistic n1/2[θ(F̂x)− θ(F̂y)] is asymptotically Gaussian with

mean 0 and variance

Vas

[
θ(F̂x)

]
+

1−λ

λ
Vas

[
θ(F̂y)

]
(32)

under H0, where Vas[θ(F̂x)] and Vas[θ(F̂y)] are the asymptotic variances of n1/2[θ(F̂x)−θ(Fx)]

and m1/2[θ(F̂y)− θ(Fy)], as n→ ∞ and m/(m+ n)→ λ > 0 (Romano, 1990, Theorem 3.3).

Further, the permutational distribution of the test statistic is asymptotically Gaussian with mean

0 and variance

Vas

[
θ
(
(1−λ )F̂x+λ F̂y

)]
+

1−λ

λ
Vas

[
θ
(
(1−λ )F̂x+λ F̂y

)]
. (33)

This result is useful to consider asymptotic validity of a permutation test when the variances in

(32) and (33) are the same, i.e. when the following condition holds:

Vas

[
θ
(
(1−λ )F̂x+λ F̂y

)]
= λ Vas

[
θ(F̂x)

]
+(1−λ )Vas

[
θ(F̂y)

]
. (34)

In this case, the permutation test is asymptotically valid, in the sense that the permutational dis-
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tribution of the test statistic is asymptotically identical to the unconditional sampling distribution

of n1/2[θ(F̂x)− θ(F̂y)]. This permutational distribution can then be used to compute a critical

value or a p-value. Condition (34) holds in particular when the sample sizes are “equal” (in large

samples) or when the distributions have the same asymptotic variances. But it does not hold in

general.

In view of applying these general results to compare inequality measures, it will be useful to

consider the case where the functionals involved are mixture-linear and the available estimators

are asymptotically linear. These concepts are defined in what follows.

Definition 1 Let D be a set of distribution functions on the real numbers, and θ : D → R a

mapping from D to the real numbers. We say that θ is a mixture-linear functional of order K,

where K is a positive integer, if D is closed under linear mixtures, i.e. F1, . . . , FK ∈ D entails

∑
K
k=1 λkFk ∈D , and θ(·) satisfies the condition

θ

(
K

∑
k=1

λkFk

)
=

K

∑
k=1

λkθ(Fk) , (35)

for all F1, . . . , FK ∈ D and nonnegative scalars λ1, . . . , λK ∈ R such that ∑
K
k=1 λk = 1.

Definition 2 Given a sample Z = {Z1, . . . , Zn} of independent observations drawn from distri-

bution Fz, an estimator θ(F̂z) of the functional θ(Fz) is asymptotically linear Gaussian if

n1/2[θ(F̂z)−θ(Fz)] =
1√
n

n

∑
i=1

gz(Zi)+oFz
(1)

d−→
n→∞

N[0, σθ (Fz)] (36)

where σθ (Fz) depends on the underlying distribution.

Theorem 2 Consider the problem of testing H0 : θ(Fx) = θ(Fy) from two independent samples

X = {X1, . . . ,Xn} and Y = {Y1, . . . ,Ym} of independent observations with distributions Fx and Fy

respectively, where Fx and Fy have finite second moments, and let D = {Fz : Fz= λFx+(1−λ )Fy,

0< λ < 1}. Suppose θ : D→R is a mixture-linear functional of order 2, and the estimator θ(F̂z)

13



is asymptotically linear Gaussian for any i.i.d. sample Z1, . . . , Zn with distribution Fz ∈D . If

Vas[θ(F̂x)] =Vas[θ(F̂y)] (37)

where Vas[θ(F̂x)] and Vas[θ(F̂y)] are the asymptotic variances of n1/2[θ(F̂x)−θ(Fx)] and m1/2[θ(F̂y)−

θ(Fy)] , or if

m/(m+n) −→
n→∞

λ = 1/2 , (38)

then the permutation test based on T defined in (2) and the MC replications (7) is asymptotically

valid.

Proof: The fact that the permutational distribution (under H0) of the test statistic n1/2[θ(F̂x)−

θ(F̂y)] is asymptotically Gaussian follows from condition (36); see Chung and Romano (2013).1

Let λ1,n and λ2,n be fixed positive constants (which may depend on n) such that λ1,n+λ2,n = 1.

Since θ(.) is a linear functional and the two samples are independent, we have:

V

[
θ

(
2

∑
k=1

λk,n F̂k

)]
=V

[
2

∑
k=1

λk,n θ(F̂k)

]
=

2

∑
k=1

λk,nV
[
θ(F̂k)

]
.

For F1 = Fx and F2 = Fy, we have:

V
[
θ
(
λ1,nF̂x+λ2,nF̂y

)]
= λ1,nV [θ(F̂x)]+λ2,nV [θ(F̂y)] . (39)

Take λ2,n := m/(m+n) and λ1,n := n/(m+n) = 1−λ2,n. Then, λ2,n→ λ and λ1,n→ 1−λ as

n→ ∞, hence

V
[
θ
(
λ1,nF̂x+λ2,nF̂y

)]
−→
n→∞

(1−λ )Vas[θ(F̂x)]+λ Vas[θ(F̂y)] . (40)

The condition (34) is then satisfied if λ = 1/2 or Vas[θ(F̂x)] =Vas[θ(F̂y)]. �
1Alternatively, Romano (1990) relies on differentiablity conditions.
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Note that the (arithmetic) mean is a linear functional, but the quantile is not a linear func-

tional. Comparing means from samples of similar size with a permutation test is then asymptoti-

cally valid, even if the underlying distributions are not identical, while comparing quantiles with

a permutation test is no longer valid, in general, if the underlying distributions are not identical.

5 Comparing inequality measures

This section focuses on identifying functionals θ(.) of interest for which permutation tests (7)

are valid in the sense of Theorem 2. We study moments and inequality measures for which

condition (34) would hold.

5.1 Centered and uncentered moments

Consider the functional

θ(Fz) =
∫

φ(z)dFz(z), (41)

where φ(.) is any function in R for which E[φ(.)] exists. For any random variable w that follows

a mixture of K distributions, w ∼ ∑
K
k=1 λkFk(w), if we consider K random variables w1, . . . , wK

from the K component distributions then

θ(Fw) = E[φ(w)] =
K

∑
k=1

λkE[φ(wk)] =
K

∑
k=1

λkθ(Fwk
). (42)

The functional (41) is linear and Theorem 2 applies: permutation tests are asymptotically valid

if either (37) or (38) holds.

Then, comparing uncentered moments between two samples with permutation tests is asymp-

totically valid, it corresponds to the special case of (41) with φ(z) = zr, where r is a positive
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integer. The mean corresponds to the case φ(z) = z. Turning to centered moments, consider

θ(Fz) =
∫
[z−E(z)]r dFz(z), (43)

where r is an integer greater than 1. With w and w1, . . . , wK as in (42), we have

θ(Fw) = E

(
[w−E(w)]r

)
=

K

∑
k=1

λkE

([
wk−E(wk)+E(wk)−E(w)

]r)
. (44)

The two last terms in parenthesis vanish if they are equal leading to:

θ(Fw) =
K

∑
i=1

λkE

(
[wk−E(wk)]

r
)
=

K

∑
i=1

λkθ(Fwk
) if E(wk) = E(w),∀k.

This result suggest that (43) is not a linear functional, unless the component distributions share

a common mean. From Theorem 2, comparing centered moments from two samples with a

permutation test (7) is then invalid, unless the samples come from distributions with the same

mean, µ(Fx) = µ(Fy), and either (37) or (38) holds.

However, centered moments are translation invariant: calculating centered moments from

the original samples or from the centered samples,

{
X1−µ(Fx), . . . , Xn−µ(Fx)

}
and

{
Y1−µ(Fy), . . . , Ym−µ(Fy)

}
, (45)

gives the same result. The main issue here is that the centered samples have a common mean,

which is equal to zero, and the statistic (43) is a linear functional in this particular case. Com-

paring centered moments from the two centered samples rather than from the original samples

makes no difference, while it validates (asymptotically) the use of permutation test.

In practice, µ(Fx) and µ(Fy) are often unknown. Permutation tests can nevertheless be ap-
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plied on the combined sample

Zc = {X1− X̄ , . . . , Xn− X̄ ,Y1− Ȳ , . . . , Yn− Ȳ )} (46)

where X̄ = n−1
∑

n
i=1 Xi and Ȳ =m−1

∑
m
i=1Yi are the sample means of each sample. This procedure

is known to perform well in finite samples when testing the equality of variances from two

samples, see Lim and Loh (1996) and Boos and Brownie (2004).

5.2 The generalized entropy class

We consider the important GE class of inequality measures, defined by:

θ
ζ

GE(F) =



1
ζ 2−ζ

[∫ [
y

µ(F)

]ζ

dF(y)−1

]
, if ζ 6= 0,1,

−
∫

log
[

y

µ(F)

]
dF(y) , if ζ = 0,∫

y

µ(F) log
[

y

µ(F)

]
dF(y) , if ζ = 1 .

(47)

The parameter ζ of the GE class characterizes the sensitivity to differences over different seg-

ments of the distribution. The more positive (negative) ζ is, the more sensitive is the inequality

measure to differences at the top (bottom) of the distribution. The Mean Logarithmic Deviation

(MLD) index, θ 0
GE(F), is the limiting case when ζ = 0. The Theil index, θ 1

GE(F), is the limiting

case of the GE when ζ = 1.

The GE class of inequality measures is decomposable, that is, it can be expressed as a simple

additive function of within-group and between-group inequality. Let there be K groups and let

the proportion of the population falling in group k be λk; then the class of GE indices is equal to

θ
ζ

GE(F̂w) =
K

∑
k=1

λk

[
w̄k

w̄

]ζ

θ
ζ

GE(F̂wk
)− 1

ζ 2−ζ

(
K

∑
k=1

λk

[
w̄k

w̄

]ζ

−1

)
(48)

where w̄k is the mean income in group k, w̄= K−1
∑

K
k=1 λkw̄k is the mean income of the popula-
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tion and θ
ζ

GE(F̂wk
) is the GE index in group k, see Cowell (2011). It is clear that

θ
ζ

GE(F̂w) =
K

∑
k=1

λkθ
ζ

GE,k(F̂wk
) if w̄k = w̄, ∀k. (49)

It follows that θ
ζ

GE(F̂w) is not a linear functional, unless the mean in each group is the same.

From Theorem 2, comparing GE inequality measures from two samples with permutation tests

(7) is then valid only if the samples come from distributions with the same mean, µ(Fx) = µ(Fy),

and either (37) or (38) holds.

As is clear from equation (47), the GE class of inequality measures is scale invariant, which

suggests to base a permutation test on the rescaled samples, where the observations are divided

by their distributional mean,

{
X1

µ(Fx)
, . . . ,

Xn

µ(Fx)

}
and

{
Y1

µ(Fy)
, . . . ,

Ym

µ(Fy)

}
. (50)

Comparing Generalized Inequality indices from these rescaled samples rather than from the

original samples makes no differences, while it validates (asymptotically) the use of permutation

test. In practice, distributional means are often unknown; we thus use sample means X̄ and Ȳ

instead, so the permutation test is based on the following combined sample

Zs =

{
X1

X̄
, . . . ,

Xn

X̄
,
Y1

Ȳ
, . . . ,

Ym

Ȳ

}
, X̄ =

1

n

n

∑
i=1

Xi, Ȳ =
1

m

m

∑
i=1

Yi. (51)

It is worth noting that when we consider the rescaled samples (50), the GE inequality

measures can be rewritten as a moment θ
ζ

GE(Fz) =
∫

φ(z)dFz(z), as defined in (41), where

φ(z) = (zζ − 1)/(ζ 2− ζ ) for ζ 6= 0,1, φ(z) = − logz for ζ = 0 and, φ(z) = z logz for ζ = 1,

which leads us back to the results of section 5.1.

Clearly the same approach can be applied to the Atkinson class of inequality indices (Atkin-

son, 1970), θ
ζ

Atk(F) = 1−
[∫ [ y

µ(F)

]ζ

dF(y)

]1/ζ

,ζ < 1 which can be rewritten as a function of
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the GE class of inequality measures

θ
ζ

Atk(F) =


1− [(ζ 2−ζ )θ

ζ

GE(F)+1]1/ζ , ζ 6= 0,

1− exp(−θ 0
GE(F)), ζ = 0.

(52)

5.3 The Gini coefficient

The Gini index can be expressed in a number of different forms. Let us consider the following

expressions,

θGini(F) =
1

2µ(F)

∫∫
|y1− y2|dF(y1)dF(y2) =

E(|y1− y2|)
2µ(F)

, (53)

θGini(F) = 1−2

∫ 1

0
L(F ;q)dq , (54)

where y1 and y2 are two random variables independently drawn from F , and L(F ;q) is the qth

ordinate of the Lorenz curve. Equation (53) presents the Gini as the normalized average absolute

difference between all the possible pairs of incomes in the population, while equation (54) shows

that the Gini index is twice the area between the Lorenz curve and the 450 line.

The Gini index is also closely related to a measure of dispersion of a distribution. The most

popular measure of dispersion is the standard deviation, which is the square root of the variance

that can be rewritten as follows:

V (y) = E[(y−µ(F))2] = E

[
1

2
(y1− y2)

2

]
. (55)

Another well-known measure of dispersion is the Gini’s mean difference,

∆(F) = E(|y1− y2|). (56)

Both measures of dispersion are translation invariant. In section 5.1, we prove that testing the
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equality of variances from two samples with different means can be done with permutation

tests based on the combined sample of the recentered individual samples. Boos et al. (1989)

proved that this procedure is asymptotically correct for a large class of U-statistics, from which

the Gini’s mean difference is a special case. We can then use the relationship between the Gini

(inequality) index and the Gini’s mean difference to justify asymptotically the use of permutation

test with the Gini index. Indeed, we have

∆(F) = 2µ(F)θGini(F). (57)

With µ(F) = 1, the Gini’s mean difference is twice the Gini index. Comparing the Gini’s mean

difference or the Gini index from two samples is then equivalent if the underlying distributions

share a common mean equal to one.

The last condition does not hold in general. However, the Gini index is scale invariant.

Then, calculating Gini index from the original samples or from the rescaled samples, where the

observations are divided by their distributional mean,

{
X1

µ(Fx)
, . . . ,

Xn

µ(Fx)

}
and

{
Y1

µ(Fy)
, . . . ,

Ym

µ(Fy)

}
, (58)

gives the same results. The main issue here is that these rescaled samples share a common mean,

equals to one. Comparing Gini inequality measures from the two rescaled samples in (58) rather

than from the original samples makes no difference for scale invariant statistic, while it validates

asymptotically the use of permutation test. In practice, distributional means are replaced by

sample means and permutation tests are based on the combined sample of empirically rescaled

individual data Zs as defined in (51).
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6 Simulation study

Overall, we focus our simulation study to extreme cases of (very) heavy-tailed distributions in

small samples to stress-test the methods employed in testing. The heavy-tailed distribution used

as a benchmark in previous studies is a more favorable case here, and we use much more heavy-

tailed distributions with a very small number observations in each samples. In our experiments,

we test the equality of Gini and Theil inequality measures between two samples.

6.1 Model design

We make use of simulated data sets drawn from the Singh-Maddala distribution, which can

quite successfully mimic observed income distributions in various countries (McDonald, 1984;

Kleiber and Kotz, 2003). The CDF of the Singh-Maddala distribution, SM(x;a,b,q), can be

written as F(x) = 1−
[
1+
(

x
b

)a]−q
, where a,b,q are positive, b is a scale parameter and a,q

are shape parameters; q only affects the right tail, whereas a affects both tails. The kth moment

exists for −a < k < aq. The upper-tail of the Singh-Maddala distribution behaves like a Pareto

distribution with a tail index equal to ξ = aq (Schluter and Trede, 2002). Smaller is ξ , heavier

is the upper tail of the distribution.

As a benchmark, we use the parameter values a = 2.8, b = 100−
1

2.8 , q = 1.7. This dis-

tribution is used in Davidson and Flachaire (2007) and Cowell and Flachaire (2007) to show

poor finite-sample performance of asymptotic and bootstrap inference. Its tail index is equal to

ξ = aq = 4.76. We will depart from this distribution using heaviest-tailed distributions (Singh-

Maddala distributions with smaller tail parameters ξ ) for which we know that bootstrap inference

is poorest.

We compute the Theil and the Gini indices as follows:

θ
1
GE(F̂y) =

1

n

n

∑
i=1

yi

µ̂
log

(
yi

µ̂

)
and θGini(F̂y) =

2∑
n
i=1 iy(i)

µ̂n(n−1)
− n+1

n−1
(59)
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where µ̂ = 1
n ∑

n
i=1 yi and, the y(i), i= 1, . . . , n are the order statistics (y(1) ≤ ·· · ≤ y(n)).

2

Our results are presented with figures, with the following legend:

• asymptotic: asymptotic test.

• bootstrap: standard bootstrap test S[ (defined in (16))

• Perm T, rescaled: permutation test T∗ based on Zs (defined in (7) and (51))

• Perm S, rescaled: permutation test S∗ based on Zs (defined in (15) and (51))

• Perm S, standard: permutation test S∗ based on Z (defined in (15) and (6))

• Boot S, rescaled: bootstrap test S• based on Zs (defined in (18) and (51))

• Boot S, standard: bootstrap test S• based on Z (defined (18) and (6))

The number of replications is equal to 10,000. The number of bootstrap and permutation

samples are similar, B= 999. The permutation and bootstrap p-values are obtained as described

above. We compute the rejection probability, or rejection frequency, as the proportion of p-value

less than a nominal level equals to 0.05.

6.2 Size

In the experiments, we consider several Singh-Maddala distributions for which the Theil in-

equality measure index is the same and the tail index varies, ξ ∈ [2.9,6.26].3 The Singh-Maddala

2The variance of the Theil index is computed as v̂ar(θ 1
GE(F̂y)) =

1
n2 ∑

n
i=1(Zi − Z̄)2, where Zi =

yi

µ̂

[
log
(

yi

µ̂

)
−θ 1

GE(F̂y)−1
]
, and Z̄ = 1

n ∑
n
i=1 Zi. The variance of the Gini index is computed as v̂ar(θGini(F̂y)) =

1
(nµ̂)2 ∑

n
i=1(Zi− Z̄)2,where Zi=−

(
θGini(F̂y)+1

)
y(i)+

2i−1
n

y(i)− 2
n ∑

i
j=1 y( j) and Z̄= 1

n ∑
n
i=1 Zi, see Davidson (2009)

and Cowell and Flachaire (2015).
3Singh-Maddala distributions with parameters (a,q) equal to (2.5,2.502199), (2.6,2.149747), (2.7,1.894309),

(2.8,1.7), (3.0,1.4223847), (3.2,1.2320215), (3.4,1.0922125), (3.8,0.8984488), (4.8,0.6366578) and

(5.8,0.4996163), share the same (scale-invariant) Theil index, equal to 0.1401151. The tail parameters are, re-

spectively, equal to ξ = 6.26,5.59,5.11,4.76,4.27,3.94,3.71,3.41,3.06,2.9.
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distribution with ξ = 2.9 is then the heaviest-tailed distribution considered here. Similar exper-

iments are conducted for the Gini index, with slightly different tail parameters, ξ ∈ [2.59,6.6].4

Inference is exact if the rejection probability is equal to 0.05.

6.2.1 Identical distributions

Figure 1 shows empirical rejection frequencies for asymptotic, bootstrap and permutation tests

for the Theil index, when Fx = Fy, as the upper tail becomes heavier. The sample size is very

small n= m= 50. Figure 2 shows similar results for the Gini index. When the upper-tail of the

distribution becomes heavier (as ξy decreases), asymptotic and standard bootstrap tests perform

very poorly, while permutation and bootstrap under the null tests based on the studentized statis-

tic (perm S rescaled, perm S standard, boot S rescaled and boot S standard) provide empirical

frequencies almost equal to 0.05. Note that studentized permutation tests based on the combined

original samples (perm S standard) provides exact inference - as shown by (Chung and Romano,

2013), not permutation tests based on the combined rescaled samples (perm S rescaled): it is

because samples are previously divided by sample means rather than by distributional means.

6.2.2 Different distributions

We then generate samples from different distributions, Fx 6= Fy, with the same value of the in-

equality index. Figure 3 shows rejection frequencies for asymptotic, bootstrap and permutation

tests for the Theil index, as the distribution Fy moves away from Fx. The distribution Fx is

fixed, with a tail index ξx = 4.76, while Fy has varying tail indices. When the tail index of Fy

is smaller (higher) than that of Fx, that is, when ξy < ξx, Fy is more (less) heavy-tailed than

Fx. Figure 4 shows similar results for the Gini index. From these Figures, we can see that the

results deteriorate when Fy tends to be much more heavy-tailed than Fx, that is, when ξy < 3.5.

4Singh-Maddala distributions with parameters (a,q) equal to (2.5,2.640350), (2.6,2.218091), (2.7,1.920967),
(2.8,1.7), (3.0,1.3921126), (3.2,1.1866026), (3.4,1.0388049), (3.8,0.8387663), (4.8,0.5784599) and

(5.8,0.4473111), share the same (scale-invariant) Gini index, equals to 0.2887138. The tail parameters are, re-

spectively, equal to ξ = 6.6,5.77,5.19,4.76,4.18,3.80,3.53,3.19,2.78,2.59.
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Overall, permutation and bootstrap under the null tests based on the studentized statistic (perm

S rescaled, perm S standard, boot S rescaled and boot S standard) perform similarly and they

outperform other methods. They perform very well when ξy > 3.5, that is, when Fy is not much

more heavy-tailed than Fx.

6.2.3 Sample size

Figure 5 shows rejection frequencies for the Theil measure, as the sample size increases (n =

m = 50, . . . , 10000), with identical distributions (Fx = Fy), in the worst case previously studied

(ξx = ξy = 2.9). We can see that the rejection frequencies decrease slowly as the sample size

increases with asymptotic tests, and, even more slowly with standard bootstrap tests. In contrast,

permutation tests and bootstrap under the null perform very well in all cases when they are

based on studentized statistic: rejection frequencies are always almost equal to 0.05 for perm S

rescaled, perm S standard, boot S rescaled and boot S standard.5

Figure 6 shows rejection frequencies for the Theil measure, as the sample size increases (n=

m = 50, . . . , 10000) with different distributions (Fx 6= Fy), in the worst cases previously studied

(ξx = 4.76, ξy = 2.9). We can see that, for each method, the rejection frequencies decrease very

slowly as the sample size increases. Moreover, permutation and bootstrap under the null tests

based on a studentized statistic outperform other methods.5

Figure 7 shows rejection frequencies for the Theil measure, with unequal sample sizes (n=

100,110, . . . ,190 and m = 200− n), in the worst case previously studied (ξx = ξy = 2.9). The

x-axis goes from equal sizes (n= m= 100) to extremely unequal sizes (n= 190, m= 10). With

identical distributions (left panel: Fx = Fy), we can see that over-rejections increase quickly with

asymptotic and bootstrap tests, as the sample sizes are more unequal. By contrast, permutation

tests perform very well in all cases when they are based on studentized statistic. With different

distributions (right panel: Fx 6= Fy), over-rejections increase quickly with asymptotic and boot-

strap tests, as the sample sizes are more unequal. They increase slowly with permutation tests.

5We obtain similar results for the Gini index (results not reported).

24



Overall, we can see that permutation tests outperform asymptotic and standard bootstrap tests,

with unequal sample sizes. They perform very well when the two distributions are similar.

6.3 Power

To study the power, we test the equality of an inequality measure between two samples, when the

samples come from two distributions with different values of the inequality measure. From the

study on the size, studentized permutation and bootstrap under the null tests outperform other

methods. They also perform similarly when the null hypothesis is true, we can thus compare

power between these methods.

In our experiments, the distribution Fx is fixed and the distribution Fy varies:

Fx = SM(x;2.8,100−
1

2.8 ,1.7) and Fy = SM(y;2.8,100−
1

2.8 ,q) , q ∈ [0.7;31.7] . (60)

As q increases, the tail index and the inequality measure increase.6 Figure 8 shows rejection

frequencies for testing the equality of the Theil measure between two samples, when the true

null hypothesis, θ(Fy)−θ(Fx), goes away from 0. We consider a small sample (n= m= 50, on

the left) and a moderate sample (n= m= 200, on the right). We consider different cases:

• θ(Fy)−θ(Fx) = 0: the two distributions are identical and H0 is true (size);

• θ(Fy)−θ(Fx) 6= 0: the two distributions are different and H0 is not true (power);

• θ(Fy)−θ(Fx)< 0: Fy is less heavy-tailed than Fx (ξy > ξx);

• θ(Fy)−θ(Fx)> 0: Fy is more heavy-tailed than Fx (ξy < ξx).

6We take q = 0.7,0.8,0.9,1,1.1,1.2,1.3,1.4,1.5,1.7,1.9,2.2,2.7,3.7,5.7,31.7 from which we have the

tail indices ξ = 2.8q ∈ [1.96;88.76]. The true null hypothesis is, respectively, equal to H0 : θ(Fy)− θ(Fx) =
0.328,0.21,0.143,0.1,0.071,0.051,0.035,0.023,0.014,0,−0.01,−0.02,−0.03,−0.041,−0.049,−0.06 for the

Theil index.
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Power comparison of the considered permutation and bootstrap methods are valid since re-

jection probabilities under the null hypothesis θ(Fy)−θ(Fx) = 0 are close to the nominal level

(here 0.05) which in Figure 8 is represented via the dashed horizontal line.

From Figure 8, we can see that the curves are asymmetric around 0. When Fy is less heavy-

tailed than Fx (θ(Fy)−θ(Fx)< 0), the null is quickly rejected as the true null hypothesis moves

away from 0. On the other side, when Fy is more heavy-tailed than Fx (θ(Fy)−θ(Fx) > 0), the

null is slowly rejected as the true null hypothesis moves away from 0. Overall, we can see that the

permutation approach (perm S rescaled and standard) is more powerful than the bootstrap under

the null approach (boot S rescaled and standard), the difference between the two approaches

being resampling without replacement rather than with replacement. In addition, the studentized

permutation tests based on the combined rescaled samples (perm S rescaled) outperforms other

methods. It rejects the null much more faster than other methods, especially when Fy is heavier-

tailed than Fx (θ(Fy)−θ(Fx)> 0).5

6.4 Dependent samples

It is often of great interest to compare inequality levels between pre-tax and post-tax income dis-

tributions, for instance to measure the impact of a specific taxation scheme on inequality. In that

case, the two samples are correlated and of equal size, with the same individuals in both samples.

Bootstrapping and permuting should be modified to take into account such dependencies:

• A bootstrap sample is obtained by making n draws by pairs with replacement from the

n observed incomes, where each pairs (Xi,Yi) has probability 1/n of being selected on

each draw.

• A permuted sample is obtained by permuting elements within pairs, that is, by permuting

Xi and Yi (or Xi/X̄ and Yi/Ȳ for the case of rescaling), with probability 1/2, for i= 1 . . . ,n.

The denominator of the studentized statistic, in (3), (15) and (18), needs also to be modified

26



to take into account the dependence (matched-pair) between the samples.7

Figure 9 shows size results, that is, empirical rejection frequencies for asymptotic, standard

bootstrap and permutation tests for the Theil index in small samples (n = 50), when the two

distributions are identical (left panel: Fx = Fy) and different (right panel: Fx 6= Fy). The cor-

relation between the two samples is generated using a Gumbel copula, and is very strong: the

Kendall correlation coefficient is high, ρ = 0.8. We can see from this Figure that the permutation

t-tests outperform other methods and that they perform very well when Fx is not too far from

Fy. Overall, the simulation results are quite similar to those obtained previously in case of inde-

pendent samples, in left panels of Figures 1 and 3, with less distortions in the case of identical

distributions and more distortions in the case of different distributions.

Figure 10 shows power results, that is, rejection frequencies for testing the equality of the

Theil index between two dependent samples, when the true null hypothesis, θ(Fy)−θ(Fx), goes

away from 0. We consider a small sample (left panel: n = 50) and a moderate sample (right

panel: n = 200). Overall, the simulation results are quite similar to those obtained previously

in case of independent samples, in Figure 8. The studentized permutation tests based on the

combined rescaled samples (perm S rescaled) outperforms other methods in small samples. It

rejects the null much more faster than other methods, especially when Fy is heavier-tailed than

Fx (θ(Fy)−θ(Fx)> 0).

It is interesting to note that, if a taxation scheme is proportionate (the amount of the tax is

a fixed proportion of incomes), the pre-tax and post-tax distributions are identical for the Theil

and MLD indices (because of the scale independence property). In such cases, inference should

then be (nearly) exact with studentized permutation tests, even if the income distributions are

heavy-tailed.

The above results suggest that further extensions relaxing the i.i.d. assumption hold credible

7The denominator in (3) becomes {V̂ [θ(F̂x)] + V̂ [θ(F̂y)]− 2εxy/n}1/2. For the Theil index, we have: εxy =
1

µ̂x µ̂y
{( ν̂x

µ̂x
+ 1)(

ν̂y

µ̂y
+ 1)µ̂xµ̂y− ( ν̂x

µ̂x
+ 1)µ̂xν̂y− ( ν̂y

µ̂y
+ 1)ν̂xµ̂y+ ν̂xν̂y} and, µ̂x =

1
n ∑

n
i=1 xi, ν̂x =

1
n ∑

n
i=1 xi logxi, µ̂y =

1
n ∑

n
i=1 yi, ν̂y =

1
n ∑

n
i=1 yi logyi, see Zheng and Cushing (2001).
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promise. One may consider, in particular, non-i.i.d. observations within each sample as occurs

with stratified or clustered survey-based data; see Deaton (1997) and Bhattacharya (2005, 2007).

Although beyond the scope of our paper, permutation and bootstrap schemes that account for

such dependencies are a useful research direction.

7 Conclusion

We study Monte-Carlo permutation and bootstrap methods for the problem of testing the equal-

ity of inequality measures between two samples. For scale-independent measures, as the Gini,

Theil, Generalized Entropy and Atkinson indices, we introduce a convenient rescaling to vali-

date and enhance performance. Our simulation results show that permutation tests control size

regardless of tail thickness, when underlying distributions are not too distant (with respect to

scale). When underlying distributions differ substantially in their upper tails, proposed permuta-

tion methods still provide significant improvement over standard asymptotic and bootstrap tests.

In addition, results suggest that rescaling observations by sample means before permutation im-

proves power in finite samples.
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Figure 1: SIZE: Rejection frequencies of asymptotic, permutation and bootstrap tests for the

problem of testing the equality of Theil inequality measures between two samples. The two

distributions are identical, Fx = Fy. The upper tail is heavier as ξy decreases, with ξy = ξx ∈
[2.9;6.26] and n= m= 50.
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Figure 2: SIZE: Rejection frequencies of asymptotic, permutation and bootstrap tests for the

problem of testing the equality of Gini inequality measures between two samples. The two

distributions are identical, Fx = Fy. The upper tail is heavier as ξy decreases, with ξy = ξx ∈
[2.59;6.6] and n= m= 50.
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Figure 3: SIZE: Rejection frequencies of asymptotic, permutation and bootstrap tests for the

problem of testing the equality of Theil inequality measures between two samples. The distri-

bution Fx is fixed (ξx = 4.76) and Fx 6= Fy. The distribution Fy goes away from Fx, being heavier

tailed as ξy decreases, with ξy ∈ [2.9;6.26] and n= m= 50.
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Figure 4: SIZE: Rejection frequencies of asymptotic, permutation and bootstrap tests for the

problem of testing the equality of Gini inequality measures between two samples. The distribu-

tion Fx is fixed (ξx = 4.76) and Fx 6= Fy. The distribution Fy goes away from Fx, being heavier

tailed as ξy decreases, with ξy ∈ [2.59;6.6] and n= m= 50.
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Figure 5: SIZE: Rejection frequencies of asymptotic, permutation and bootstrap tests for the

problem of testing the equality of Theil inequality measures between two samples, as the sample

size increases. The two distributions are identical, Fx = Fy, and very heavy-tailed, ξy= ξx= 2.9.
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Figure 6: SIZE: Rejection frequencies of asymptotic, permutation and bootstrap tests for the

problem of testing the equality of Theil inequality measures between two samples, as the sample

size increases. The two distributions are very different in their upper tails, Fx 6= Fy, with tail

parameters equal to ξx = 4.76 and ξy = 2.9.
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Figure 7: SIZE: Rejection frequencies of asymptotic, permutation and bootstrap tests for the

problem of testing the equality of Theil inequality measures between two samples of unequal

sizes, m= 200−n.

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

−0.1 0.0 0.1 0.2 0.3

0.0
0.2

0.4
0.6

0.8
1.0

Theil: n=50

θ(Fy) − θ(Fx)

reje
ctio

n p
rob

abl
ity

●

●

●

●

●

●
●

●●●●
●

●

●

●

●

●

●

perm S rescaled
perm S standard
boot S rescaled
boot S standard

ξy=ξxξy>ξx ξy<ξx

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

−0.1 0.0 0.1 0.2 0.3

0.0
0.2

0.4
0.6

0.8
1.0

Theil: n=200

θ(Fy) − θ(Fx)

reje
ctio

n p
rob

abl
ity

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

perm S rescaled
perm S standard
boot S rescaled
boot S standard

ξy=ξxξy>ξx ξy<ξx

Figure 8: POWER: Rejection frequencies of permutation and bootstrap tests for the problem

of testing the equality of Theil inequality measures between two samples, when the true null

hypothesis is equal to θ(Fy)− θ(Fx). The distribution Fx is fixed and the distribution Fy is

heavier tailed as θ(Fy)−θ(Fx) increases.
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Figure 9: SIZE: Rejection frequencies of asymptotic, permutation and bootstrap tests for the

problem of testing the equality of Theil inequality measures between two dependent samples,

n= 50.
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Figure 10: POWER: Rejection frequencies of permutation and bootstrap tests for the problem

of testing the equality of Theil inequality measures between two dependent samples, when the

true null hypothesis is equal to θ(Fx)−θ(Fy). The distribution Fx is fixed and the distribution Fy

is heavier tailed as θ(Fy)−θ(Fx) increases.

35


