イロン イボン イヨン イヨン

Discussion: Reliable inference for inequality measures with heavy-tailed distributions by Jean-Marie Dufour, Emmanuel Flachaire, Lynda Khalaf

Elise Coudin (CREST)

November 2013

Elise Coudin (CREST)

Research question and approach

Issue:

- Let (X_1, \ldots, X_n) , $X \sim F_x$, (Y_1, \ldots, Y_m) , $Y \sim F_y$, X_i s iid, Y_i s iid, X and Y independent;
- and let $\theta(.)$ be an inequality index,
- Consider testing $H_0: \theta(F_x) = \theta(F_y)$.
- Both asymptotic and (classic) bootstrap inference on inequality measures perform poorly in presence of heavy-tailed distributions: income...
- Search for nonparametric methods to improve inference quality

Elise Coudin (CREST)

Research question and approach

Idea/Approach:

- Permutation/randomization tests provide exact inference (in finite samples) if under the null, the two samples follow the same distribution, (and more generally when the data are generated from a distribution, which is invariant under some group of transformations.)
- ► Exploit results of Romano (1990) who derives conditions under which permutation tests are asymptotically valid when under the null F_x ≠ F_y
- ► Expect that robustness properties of permutation tests can improve inference quality in more general setups (F_x ≠ F_y).

Elise Coudin (CREST)

∃ nar

Main results

Results

- Show that the equality of Generalized Entropy Indices and Gini Indices can be tested by permutation tests, if the data are well re-scaled
- Propose to use bootstrap under the null
- Provide a simulation comparison study of permutation tests, tests based on bootstrapping under the null, and usual asymptotic and bootstrap tests

Elise Coudin (CREST)

Theory

Let $(X_1, ..., X_n)$, $X \sim F_x$, $(Y_1, ..., Y_m)$, $Y \sim F_y$, X_i s iid, Y_i s iid, X and Y independent. Consider testing $H_0 : \theta(F_x) = \theta(F_y)$. With test statistic: $T(X_n, Y_m) = n^{1/2}(\theta(\hat{F}_x^n) - \theta(\hat{F}_y^m))$ Let $Z = (X_1, ..., X_n, Y_1, ..., Y_m) = (Z_1, ..., Z_{n+m})$, $Z^p = (Z_{p(1)}, ..., Z_{p(n)}, Z_{p(n+1)}, ..., Z_{p(n+m)})$, where p is a permutation of (1, n + m), **Permutation statistic:** $T^p(Z_{n+m}) = n^{1/2}(\theta(\hat{F}_1^n) - \theta(\hat{F}_2^m))$ *Romano:* $T(X_n, Y_m)$ and $T^p(Z_{n+m})$ follow asymptotically the same distribution under H_0 if their asymptotic variances are the

same:

$$Vas(\theta(F_x)) + \frac{\lambda}{1-\lambda} Vas(\theta(F_y)) = \frac{1}{1-\lambda} Vas(\theta(\lambda F_x + (1-\lambda)F_z))$$
(1)
where $\lambda = \frac{n}{n+m}$

Elise Coudin (CREST)

Theory

Dufour-Flachaire-Khalaf: A permutation test is asymptotically valid if

- under H_0 , $\theta(F_x) = \theta(F_y) = \theta(\lambda F_x + (1 \lambda)F_y)$
- $\theta(.)$ is linear in F
- and either $n/(n+m) \rightarrow \lambda = 1/2$, either $Vas(\theta(F_x)) = Vas(\theta(F_y))$

Discussion

- Linearity is essential. It allows to express vas of θ of the mixture distribution as a linear combination of vas of θ applied at each component.
- The method is adapted to inequality indexes derived from moments (centered or not, if the data are properly rescaled), such as GEIs, etc.. (but not a quantile ratio, and Gini?)

Elise Coudin (CREST)

Discussion: Reliable inference for inequality measures with heavy-tailed distributions by Jean-Marie Dufour, Emmanuel Flachaire, Lyn

Simulation study

Setup

 $n = m, \lambda = .5$, t-stat versions of $T_n, T^* = \frac{\theta(F_x^*) - \theta(F_y^*)}{\sqrt{V}(\theta(F_x^*)) - V(\theta(F_y^*))}$. Compare

- **boot**: F_x^*, F_y^* obtained drawing $n X^*$ in F_x^n and $m Y^*$ in F_y^m
- ▶ **permut**: F_x^*, F_y^* obtained by drawing without replacement, $n + m Z^*$ in F_Z^{n+m}
- ▶ **bootH0**: F_x^* , F_y^* obtained by drawing with replacement, $n + m Z^*$ in F_Z^{n+m}

Elise Coudin (CREST)

◆□ > ◆□ > ◆臣 > ◆臣 > □ □ ● ○ ○ ○

Simulation study

Results: both for Gini and Theil indexes

- When F_x = F_y: test sizes are better controlled by permut and bootH0 than boot (very heavy upper tail) or asymptotic (very heavy upper tail and small n)
- When F_x ≠ F_y under H₀: sizes of permut and bootH0 increase when the tails of F_x and F_y differ and n is small, but less than those of boot or asymptotic.

Questions:

▶ Gini with F_x = F_y: figure 4, boot test size is close to .05 when n small and remains constant after. Why ?

▶ What happens when
$$\lambda \neq 0.5$$
 ? (and $Vas(\theta(F_x)) = Vas(\theta(F_y))$)

Elise Coudin (CREST)

Ξ.

Figure : Figure 4

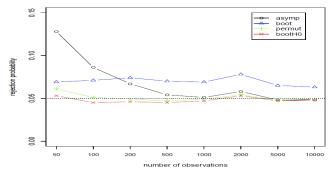


Figure 4: Rejection frequencies for the Gini index, with $F_x = F_y$ in the worst case ($\xi_x = \xi_y = 2.59$), as the sample size increases.

Elise Coudin (CREST

Discussion: Reliable inference for inequality measures with heavy-tailed distributions by Jean-Marie Dufour, Emmanuel Flachaire, Lyn

イロト イポト イヨト イヨト

Figure : Figure 5

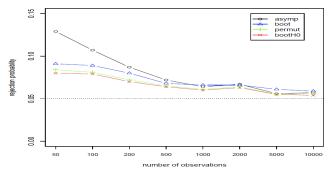


Figure 5: Rejection frequencies for the Gini index, with $F_x \neq F_y$ in the worst case ($\xi_y = 2.59$ and $\xi_x = 4.76$), as the sample size increases.

Elise Coudin (CREST

Discussion: Reliable inference for inequality measures with heavy-tailed distributions by Jean-Marie Dufour, Emmanuel Flachaire, Lyn

・ロッ ・同 ・ ・ ヨッ ・

문어 문

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Questions/Extensions

- What about power comparison?
- May different resampling schemes allow to deal with λ ≠ .5 (and Vas(θ(F_x)) ≠ Vas(θ(F_y)))?
- Extend results when X and Y are correlated ?

Elise Coudin (CREST)