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Motivation

In the presence of heavy-tails:

Asymptotic and bootstrap inference perform poorly in finite sample

Alternative methods: improvements, but inference is still unreliable

asym boot varstab1 semip2 mixture3

Singh-Maddala
q = 1.7 0.915 0.931 0.933 0.926 0.928
q = 1.2 0.856 0.905 0.899 0.905 0.912
q = 0.7 0.647 0.802 0.796 0.871 0.789

Table : Coverage of asymptotic and bootstrap confidence intervals at the
95% level for the Theil index, for several bootstrap approaches, n = 500.

Note that it is a large sample problem.

1Schluter and van Garderen (2009, JoE)
2Davidson and Flachaire (2007, JoE), Cowell and Flachaire (2007 JoE)
3Cowell and Flachaire (2013, Handbook)



Our approach

We are interested in testing

H0 : θ(Fx) = θ(Fy ) (1)

Monte Carlo permutation tests:

If Fx = Fy , a permutation test provides exact inference.4

For a nominal level α, critical value or p-value obtained from
the permutation distribution would then be similar than those
obtained from the true distribution.

There is no need to obtain the permutation distribution from
all the possible permutations

Problem: (1) does not guarantee that Fx = Fy . Two different
distributions can share the same inequality index.

4Fisher (1935), Dwass (1957), Dufour (2006)



Our approach

The following Figure depicts Singh-Maddala distributions (Burr
XII).5 One distribution is much more heavy-tailed than the other,
yet both distributions share the same value of the Theil index.
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5with density f (u) = aqua−1/(ba[1 + (u/b)a]1+q), for two choices of a, b
and q: 2.8, 0.1930698, 1.7 [depicted as Fx ] and 4.8, 0.1930698, 0.6366578
[depicted as Fy ].



Our approach

We are interested in testing

H0 : θ(Fx) = θ(Fy ) (1)

The use of permutation tests is not justified from an exact
perspective. We thus analyze the asymptotic validity of
permutation tests of (1) when Fx 6= Fy .

We show that permutation tests can be used reliably with the
most popular inequality measures provided considered samples
are recentered or rescaled adequately.

A bootstrap method that respects the null hypothesis is also
proposed.

Simulation experiments are provided to study the finite sample
properties
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Permutation test

X = {X1,X2, . . . ,Xn} ∼ Fx and Y = {Y1,Y2, . . . ,Ym} ∼ Fy .
We test the null H0 : θ(Fx) = θ(Fy ), with the statistic

T (X ,Y ) =
√
n
[
θ(F̂x)− θ(F̂y )

]
.

The permutation distribution is obtained by permuting in all
possible ways the n + m observations of the combined sample

Z = {X1,X2, . . . ,Xn,Y1,Y2, . . . ,Ym}.

It is the distribution of the permutation statistic, defined as6

T∗ =
√
n
[
θ(F̂x∗)− θ(F̂y∗)

]
,

6F̂x∗ and F̂y∗ are the EDF of, respectively, the first n and the remaining m
observations of a permuted sample.



Asymptotic validity

Romano (1990) shows that the permutation test is asymp. valid if
the asymptotic variances of the original and permutation statistics
are similar, that is,

V [θ(F̂w )] = (1− λ)V [θ(F̂x)] + λV [θ(F̂y )]

where F̂w = λF̂x + (1− λ)F̂y . Let w ∼
∑K

k=1 λkFk(w) and let
w1, . . . ,wK denote random variables from the K component dist.

V [θ(F̂w )] = E

[(
θ(F̂w )− E [θ(F̂w )]

)2]
=

K∑
k=1

λkE

[(
θ(F̂wk

)− E [θ(F̂wk
)] + E [θ(F̂wk

)]− E [θ̂(Fw )]
)2]

.

=
K∑

k=1

λkV [θ(F̂wk
)] if E [θ(F̂wk

)] = E [θ(F̂w )], ∀k .



Asymptotic validity

Result

A permutation test is asymptotically valid if, under the null
hypothesis, the two distributions Fx , Fy and the mixture
distribution Fw share the same value of the statistic

θ(Fw ) = θ(Fx) = θ(Fy ) where Fw = λFx + (1− λ)Fy

and, either n/(n + m)→ λ = 1/2 or V [θ(F̂x)] = V [θ(F̂y )]

Permutation test is as. valid if the index is the same in Fx , Fy , Fw



The generalised entropy class of inequality measures

I ζGE(F ) =
1

ζ2 − ζ

[∫ [
y

µ(F )

]ζ
dF (y)− 1

]
, ζ ∈ R, ζ 6= 0, 1

I 0GE(F ) = −
∫

log

(
y

µ(F )

)
dF (y)

I 1GE(F ) =

∫
y

µ(F )
log

(
y

µ(F )

)
dF (y)

I 0GE(F ) is the Mean Logarithmic Deviation index (ζ = 0)

I 1GE(F ) is the Theil index (ζ = 1).

The more positive ζ is, the more sensitive is the inequality
measure to income differences at the top of the distribution.



A decomposable class of measures

The GE inequality measure is decomposable by groups:

I ζGE (F̂w ) =
K∑

k=1

I ζGE (F̂wk
) + I ζbetween

where I ζbetween = 0 when the groups share a common mean

Then, permutation test is asymptotically valid if

µ(Fx) = µ(Fy )

This condition does not hold in general.



Rescaled samples

The GE inequality measures are scale invariant: calculating
indices from the original samples or from the rescaled samples{

X1

µ(Fx)
, . . . ,

Xn

µ(Fx)

}
and

{
Y1

µ(Fy )
, . . . ,

Ym

µ(Fy )

}
,

gives similar results

The rescaled samples have a common mean, equals to one.

Permutation test is asymptotically valid, when based on{
X1

µ(Fx)
, . . . ,

Xn

µ(Fx)
,

Y1

µ(Fy )
, . . . ,

Ym

µ(Fy )

}
.

In practice, population means are replaced by sample means



Bootstrapping under the null

Zs =

{
X1

X̄
, . . . ,

Xn

X̄
,
Y1

Ȳ
, . . . ,

Ym

Ȳ

}
Permutation approach:

resample without replacement n observations in Zs to form X∗

the m remaining observations in Zs are then used to form Y∗

compute the statistic from X∗ and Y∗

Bootstrap approach:

resample with replacement n observations in Zs to form X[

resample with replacement m observations in Zs to form Y[

compute the statistic from X[ and Y[

The bootstrap respects the null (resample from same set of obs.)



Simulation: model design

We test the null H0 : θ(Fx) = θ(Fy ) with a two-tailed t-statistic

T =
θ(F̂x)− θ(F̂y )√
V [θ(F̂x)− θ(F̂y )]

We consider the following methods:

asymptotic test

(standard) bootstrap test

permutation test based on the combined sample Z s

bootstrap under the null based on the combined sample Z s

We compare Theil indices based on Singh-Maddala distributions



Simulation results in very small sample
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Figure : Rejection frequencies for the Theil index as the upper tail is
heavier (as ξy decreases). Left panel: Fx = Fy . Right panel: Fx 6= Fy .
n = 20, B = 999, R = 10000, α = 0.05.



Simulation results as the sample size increases
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Figure : Rejection frequencies for the Theil inequality index, in the worst
case, as the sample size increases. Left panel: Fx = Fy . Right panel:
Fx 6= Fy . B = 999, R = 10000, α = 0.05.



Conclusion

Simulation results show that when the samples are drawn
from two (strongly) heavy-tailed distributions which are not
too different, the permutation approach and the proposed
bootstrap that respects the null hypothesis perform very well
in finite samples.

When distributions differ dramatically particularly in their
tails, while size distortions are not completely eradicated, our
proposed methods outperform the standard asymptotic and
bootstrap tests.


