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EXACT TESTS AND CONFIDENCE SETS IN LINEAR REGRESSIONS
WITH AUTOCORRELATED ERRORS

By JEAN-MARIE DUFOUR!

This paper proposes a general method to build exact tests and confidence sets in linear
regressions with first-order autoregressive Gaussian disturbances. Because of a nuisance
parameter problem, we argue that generalized bounds tests and conservative confidence
sets provide natural inference procedures in such a context. Given an exact confidence set
for the autocorrelation coefficient, we describe how to obtain a similar simultaneous
confidence set for the autocorrelation coefficient and any subvector of regression coeffi-
cients. Conservative confidence sets for the regression coefficients are then deduced by a
projection method. For any hypothesis that specifies jointly the value of the autocorrelation
coefficient and any set of linear restrictions on the regression coefficients, we get exact
similar tests. For testing linear hypotheses about the regression coefficients only, we suggest
bounds-type procedures. Exact confidence sets for the autocorrelation coefficient are built
by “inverting” autocorrelation tests. The method is illustrated with two examples.

KEYWORDS: Autocorrelation, bounds test, conservative confidence set, exact test, first-
order autoregressive process, linear regression, nuisance parameter, projection method,
union-intersection method.

1. INTRODUCTION

ONE OF THE MOST WIDELY used models in econometrics is the linear regression
model with first-order autoregressive errors. This model can be stated as follows:

(1.1)  y=x/B+uy, (t=1,...,T),
ind
u,=pu,_,+¢, & ~ N(0,0%),

where y, is the dependent variable (at time ¢), x, is a kX1 vector of fixed
regressors, B is a kX1 vector of fixed coefficients, and u, is a random distur-
bance; the coefficients 8, p, and o? are unknown. Further, one of the two
following assumptions is usually made:

ASSUMPTION A: |p| <1 and u; ~ N[0, 02/(1 — p?)].

ASSUMPTION B: |p| <1 and u, is fixed (or independent of ¢,,..., ey with an
arbitrary distribution).
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The first assumption implies that u, follows a stationary process (Koopmans
(1942)). The second one allows nonstationary processes by letting u; follow an
arbitrary distribution and/or |p| = 1.

Several authors have studied inference methods for this model; for a review,
see Judge et al. (1985, Chap. 8). In particular, considerable effort has been
devoted to comparing the efficiency of alternative estimators. Despite this impor-
tant work, tests and confidence sets remain based on asymptotic theory. More-
over, various simulation results suggest that asymptotic critical values can be very
unreliable, especially when p is close to 1; see Park and Mitchell (1980) and
Miyazaki and Griffiths (1984). Improvements may be obtained by using asymp-
totic expansion methods but the latter still do not yield exact inference proce-
dures (Rothenberg (1984a, 1984b), Tse (1980)). Asymptotic expansions may also
be very inaccurate, especially again when p is close to 1; see Rothenberg (1984a).
Indeed, an important insight provided by the finite-sample theory of standard
estimators and test statistics is the pervasiveness of the nuisance parameter
problem: the distributions of various proposed statistics depend on unknown
parameters that are irrelevant for a given inference problem (see Taylor (1983)).
For example, the null distribution of a test statistic for a given restriction on S
may depend on the unknown value of p. Consequently, the distribution of the
test statistic for the hypothesis of interest is not uniquely determined, even under
the null hypothesis. This suggests that efficient similar tests can be difficult to
obtain in such a context.’

One early approach to dealing with a problem in which the distribution of the
test statistic is difficult to obtain is the well-known Durbin-Watson (DW) bounds
test against the autocorrelation of errors in regression models (Durbin and
Watson (1950, 1951)). In this case, however, the distribution of the test statistic
does not depend on any unknown parameter (under the null hypothesis). Nowa-
days, it is easy to compute marginal significance levels for DW tests (e.g., with
the algorithms proposed by Imhof (1961) or Pan Jie Jian (1968)). The approach
taken by DW to test p = 0 was extended to test hypotheses about the regression
coefficients; see Watson (1955), Watson and Hannan (1956), Vinod (1976), Kiviet
(1979, 1980), Vinod and Ullah (1981, Ch. 4), Zinde-Walsh and Ullah (1987),
Hillier and King (1987). One then considers a standard ¢ or F statistic and finds
upper and lower bounds on its distribution (over the space of regressor matrices)
for a given covariance matrix of the errors. However, these bounds can be far
away from each other and, in important cases, the difference between them can
go to infinity: for an AR(1) process, one can see easily from the tables supplied
by Vinod (1976) and Kiviet (1980) that the upper bound becomes exceedingly
large as p increases to one. Indeed, from Watson and Hannan (1956, p. 439) and
Vinod (1976, p. 930), it is easy to see that the upper bound in this case tends to
infinity as p approaches one. Thus, unless one is ready to exclude the important

2 For example, the methods studied by Hannan (1955) and Krishnaiah and Murthy (1966) lead to
cutting by one half (approximately) the effective sample size and do not seem to be applicable when
p=1or |p| > 1. For further discussion of nuisance parameters and similar (versus nonsimilar) tests
in time-series models, see Nankervis and Savin (1985).
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case where p is equal or close to one, the method breaks down. Despite this
difficulty, we will draw an important idea from this work: bounds tests may be a
way to deal with nuisance parameter problems, even though the particular
bounds procedures previously suggested have important practical shortcomings.

In this paper, we propose a general method to obtain exact tests and confi-
dence sets in linear regressions with AR(1) errors. For any hypothesis that
specifies jointly the value of the autocorrelation coefficient p and any set of linear
restrictions on the regression coefficient 8, we get exact similar tests. For linear
hypotheses about S only, we propose bounds-type procedures. The latter how-
ever do not have the problems of previous bounds methods. In particular, the
bounds do not explode if one allows p =1.

The approach adopted is a three-stage confidence procedure: we first get an
exact confidence set for the nuisance parameter p, we use it to build a simultane-
ous confidence set for p and the regression coefficients of interest, and finally we
apply a union-intersection method to obtain confidence sets for the regression
coefficients. These confidence sets are valid irrespective of the true value of p. The
confidence set (or interval) for p is derived from an autocorrelation test by
exploiting the duality between tests and confidence sets. The simultaneous
confidence set for p and the regression coefficients is obtained by combining
the confidence set for p with the corresponding family of “conditional” optimal
confidence sets for the regression coefficients of interest. The tests are derived
from this simultaneous set. Given the latter, it is straightforward to obtain an
exact test for any null hypothesis that specifies the value of p jointly with a
number of linear restrictions on B. For hypotheses about 8 only, the tests take
the form of “generalized bounds tests.” In contrast with traditional bounds tests
based on a single test statistic, we use two test statistics with nested critical
regions: the smaller critical region yields a conservative test, the larger one gives a
liberal test, while the difference between the two regions may be viewed as an
“inconclusive” region. Critical values are based on a central F distribution. There
is no special difficulty in dealing with values of p equal or close to one. Besides,
as a special case of the approach proposed, we describe a method which does not
require computing a confidence interval for p but simply exploits the condition
lol <1

In Section 2, we define the notion of a bounds test. In Section 3, we describe
how, given a confidence set for p, one can construct exact confidence sets and
exact tests for the regression coefficients of the model. In Section 4, we discuss
the construction of exact confidence sets for p. In Section 5, we illustrate the
methods proposed. Finally, in Section 6, we make a few concluding remarks.

2. CONSERVATIVE, LIBERAL, AND GENERALIZED BOUNDS TESTS

For the purposes of our discussion, we will find it useful to recall or introduce
some terminology. Let Y be a vector of n observations with probability distribu-
tion F(y; 8), y € S,0< 2, where S is a subset of the Euclidean space R” and 6
is a vector of unknown parameters that belong to an admissible set £2. Let w be a
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subset of £2. We wish to test the null hypothesis H,: § € w. We are especially
interested by situations where w contains more than one element (composite null
hypothesis).

Typically, a (nonrandomized) test of H, is obtained by defining a partition
(R, A) of the sample space S. If Y € R, H, is rejected; if Y € 4, H,, is accepted
(or not rejected). The size of the test is supyc , Py(Y € R) = a, where Py(-) is the
probability measure corresponding to . Note that we can have Py(Y € R) <«
for some 0 € w. A test whose size does not exceed a has level a; see Lehmann
(1986, Chapter 3) and Rao (1973, p. 446).

In many problems, it is difficult to find a reasonable test whose size is known.
In such cases, one usually tries to find a test such that Py(Y € R) = a for all
0 € w, for example by using an asymptotic approximation. However, in most
cases, it is not known whether the true probability of rejection under H, (type-/
error) is greater or smaller than the stated level. To deal with situations where it
is difficult to find tests with known size, we will find it convenient to distinguish
the nominal level of a test (i.e., the stated level) from its true level and we will
define two types of tests whose critical regions have unknown size.

DEerFINITION 2.1: Let (R, A) be a test with nominal level a for the null
hypothesis H,: 8 € w. Then (R, A) is said to be conservative iff P,(Y € R) <«
for all § € w, and liberal iff Py(Y €R) > a for all § € w.

Correspondingly, we can speak of conservative and liberal confidence sets.

DEFINITION 2.2: Let C be a confidence set for § with nominal level 1 — a. The
confidence set C is conservative iff Pj[ € C]>1— a, for all § € £, and liberal
iff Pl0€Cl<1—aq, forall €

When H, is rejected by a level-a conservative test, we know that the conclu-
sion of the test would remain the same if the critical region R were enlarged to
make its size equal to «. Similarly, when H,, is accepted by a level-a liberal test,
the conclusion would remain the same if the critical region R were reduced to
make its size equal to a. In the other cases, it is better to consider that the test is
inconclusive.

Suppose now that, for a given hypothesis H,,, we can obtain both a conserva-
tive test (R, 4,) and a liberal test (R,, 4,), each with nominal level a and such
that R, C R,. The condition R, C R, makes sure that the two tests do not yield
conflicting answers. When Y € R,\ R;, both tests are inconclusive. This suggests
the following procedure: reject H, if Y € R,, accept H, if Y € A,, and consider
the test inconclusive otherwise. We call a procedure of this type a generalized
bounds test with level a.

DEFINITION 2.3: Let R, A, and W be three disjoint subsets of the sample
space S such that RUA U W= S. We say that the triplet (R, 4, W) describes a



AUTOCORRELATED ERRORS 479

generalized bounds test with level a for the null hypothesis H,: 0 € w if
P(YER)<a, P(Yed)<l—a, foralfeuw;

we reject H, when Y € R, we accept H, when Y € 4 and we consider the test
inconclusive when Y € W.

A well-known example of a bounds test is the Durbin-Watson (1950, 1951) test
against positive autocorrelation in regression. If d(Y) is the DW statistic and
[d,(a), dy(a)] are the significance bounds, where d,(a)<dy,(a), the three
decision sets of the test are R=(Y: d(Y)<d (a)}, A={Y: d(Y)>dy(a)},
and W= (Y: d,(a)<d(Y)<dy(a)}. The bounds test is obtained here by
considering the extrema of the distribution function of d(Y) over the space of
possible regressor matrices of a given dimension. Other examples of this ap-
proach include various extensions of the DW bounds test (e.g., Wallis (1972),
Vinod (1973), King (1981, 1985)) and the procedures described by Watson
(1955), Watson and Hannan (1956), Vinod (1976), Kiviet (1979, 1980), Zinde-
Walsh and Ullah (1987), and Hillier and King (1987).

This is not, however, the only way to obtain a generalized bounds test (as
defined above). In particular, the bounds tests introduced below are based on two
tests statistics, say D;(Y) and D,(Y), instead of one: the decision regions have
the form R={Y: D(Y)> F(a)},A={Y: Dy)(Y)< Fy(a)}, where D\(Y) <
D,(Y) with probability 1 and Fi(a) > F,(a).

3. INFERENCE FOR REGRESSION COEFFICIENTS

Consider the regression model with AR(1) errors as described by (1.1) and
either Assumption A or Assumption B (a more general assumption allowing
explosive processes is considered in the Appendix). In this section we study how,
given an exact confidence set for the autocorrelation coefficient p, we can make
exact inferences for the regression coefficient 8. The problem of finding an exact
confidence set for p will be discussed in Section 4.

Suppose first that the coefficient p is known. Then, it is easy to transform the
model so that the disturbances are uncorrelated. The transformed model has the
form

(3.1 y(e)=x,(p)B+up) (t=p,....T),

where

(32) y(P)=y-py-1» x(p)=x,—px,.1, u(p)=u—pu,_,
(t=2,...,T).

Under Assumption A, p =1 and

(33)  n(e)=V1-¢», x(p)=V1-0*x, w(p)=y1-pu;

under Assumption B, p = 2. Further, when the model contains an intercept, we
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have x,= (1, z/) and
(34) y,—py,_1=(1—p),81+(z,—pz,_1)’?+e, (t=2""7T)’

where 8= (B,,Y"), ¥=(B,,..., B,). We see immediately that the intercept B, is
not identified when p =1 (under Assumption B). To avoid this problem, we will
reparameterize the model by defining 8, = (1 — p)B; under Assumption B. 8, is
identified for all p. We then consider the transformed model

(35) y,*py,~1=,§1+(z,—pz,*l)’?+e, (t=2""’T)'3
Using matrix notation we can write the transformed model

(3.6)  y(p)=X(p)B+u(p),
where

G7)  ye)=[r) ()]s ulp)=[u,(p),....ur(p)]’,
X(p)=[%,(p),.... %(p)]",  B=(BBs..... B,

and
(3-8) f,(p)= [1’(Zt_pzl—l),], and :E1=(1_P)Bla
if the model contains an intercept and Assumption B holds,
%,(p)=x,(p) and B, =8, otherwise.
In the sequel, we shall also assume that
(3.9) rank [X(p)]=k<T,=T-p+1

for all admissible values of p. T, is the effective number of observations.
Furthermore, let

(3.10)  Blp)=[X(p)X(p)] 'X(p)¥(p),  #(p)=y(p) - X(p)B(p),
s(p)*=a(p)a(p)/(T,~ k) =|1a(p)I?/(T, ~ k).

Let y=CB be an mx1 vector of linear transformations of g, where
rank (C) = m < k. We will consider in turn the following problems: (P1) con-
struct a joint confidence set for (p, y); (P2) test Hy: p=py, v =17, (P3) construct
a confidence set for y; (P4) test HJ: y = Yo-

Given the true autocorrelation coefficient p, the standard statistic to test H,:

Y =7, is the corresponding Fisher statistic F(v,, p) based on the transformed
model (3.6):

(311)  F(x,0) = [3(p) ~ vl { C[ X(p) X(p)] "'’}
X [9(p) =10l /[ ms(p)Y],

*If we assumed that u, is random with mean zero, 8; would be identified even if p=1, and B,
could be estimated by £, = y1— z{7, where § is the least-squares estimate of ¥ obtained from (3.5)
with p = 1. However, the latter estimate depends very heavily on a single observation ( y;) and, unless
an extra assumption is imposed on the variance of u,, the variance of f, cannot be estimated when
p =1. When Var(u,) is a free parameter and p = 1, it is not possible to build confidence intervals for
B,- A possible assumption that would allow one to do this is Var(u;) =0 (Berenblut and Webb
(1973)).
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where ¥(p) = Cﬁ(p) 4 Clearly, F(y,p) follows a Fisher distribution with
(m, T, — k) degrees of freedom, for y and p are the true parameter values. The
test rejects H, at level a when F(y,, p) > F(a), where F(a)= F(a;m, T, — k),
P[F(m,T,—k)>F(a;m, T,—k)]=a and 0 <a<1; we set F(0) = + o0 and
F(1) = 0. Correspondingly, we get a conﬁdence set for y with level 1 —a by
considering the set of values y, that are not rejected by the test:

(3.12)  J(a,p) = {¥: F(0,p) <F(a)}.

By construction, P[y €J(a, p)]=1—a.
Suppose now that p is unknown but we can find an exact confidence set for p
with level 1 — a;: for all admissible values of p,

Plpel(e)]=1-a
or, more generally,
(313) Plpel(e)] 21—«

where 0 < @; <1 and I(a;) = I(Y; @) is a random set determined by Y. As we
will see below, a set that satisfies (3.13), i.e. a conservative confidence set, is
sufficient for our purposes. Further, we will make the following assumption:

ASSUMPTION C: The event {p € I(a,)} and the random variable F(y, p) are
independent.

In Section 4, we will see that most reasonable methods of building confidence
sets for p satisfy this assumption. Further, it is easy to relax it (see the end of this
section).

Let 0 < a; <1,0<a,<1, and consider the set

(3.14)  K(eay, @) ={(po,Y): poEI(a;) and v, € J(a,, py)}
= {(po%0): Po € I(;) and F(vq, p) < F(ay)}.

In general, we have

(3.15) P(ay,a,)=P[(p,7) EK(ey, )] =P[p€I(e;) and y €EJ(ay, p)]
=P[pel(a)and F(y,p) < F(a,)].

If Assumption C holds and P[p € I(e;)]=1 — a,, then

(3.16)  P(ay, ;) =P[pel(e)]P[F(v,p) < F(ay)] = (1~ oy)(1 —y).

Thus K(a,,a,) is a similar confidence set for (p,y) with level (1 -a)=

4 Since there is no uniformly most powerful test of y =y, against y # v, the Fisher test is optimal
only in limited classes of tests, e.g. tests that obey certain invariance properties. For a general
discussion, see Scheffé (1959, Chapter 2). If further restrictions are imposed on the alternative (e.g.,
y > 0), more powerful tests could be obtained; for an example, see King and Smith (1986). Note,
however, that the approach developed in this paper could also be applied to such problems.
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(1 = a;)1 — a,). By selecting a; and a, appropriately, we can get any desired
confidence level; for example, we may take a; = @, =1— (1 — a)!/?. Moreover,
the confidence set K(a;, a,) is conservative (liberal) when I(e;) is conservative
(liberal):
(317) P(apa)>(1-a)(1~ay), if Plpel(a)]>(1-a),
<(1-a)(1-ay), if Plpel(e)]<(1-«).
Given the joint confidence set K(aj, a,), it is straightforward to test H:
p = Py, Y = Y, one simply rejects H, when (p,, v;) € K(a,, a,). Clearly
(3.18)  P[(p,y) € K(ap, a))]=1-P(ey,@,) =0, if P(ey,a,)=1-a,
<a, if Ploy,a,)>1-a.
We now consider the problem of making inferences about y only. As above, it

will be convenient to deal first with the construction of a confidence set for y.
For this purpose, we define the sets

(3.19)  U(ey, @) = {¥: (o> ¥o) € K (e, @) for some py € I(a;)},
(320)  L(ey, ;) ={v: (po» o) €K (ey, ;) forall py € I(e)},

and show the following proposition.

PROPOSITION 1: Suppose that the model described by (1.1), (3.9), and either
Assumption A or Assumption B holds. Let I(a,) be a confidence set for p such that
Plp € I(a;)] > 1 — a,, where 0 < a; <1, and suppose that Assumption C holds. If
0<a<1and a, a, and o are chosen so that

321) (1-e)(1l-0a)=1-a, (I1-a)aj=a, O<y<a<l-a,
then a, < a < oy, L(ay, a4) € U(ay, ), and
(3.22) PlyeL(a,a5)] <l-a<P[yeU(a,a,)]

for all admissible values of p and .

The proof of this proposition is given in Appendix A.1. When (3.21) holds,
Proposition 1 implies that U(a,, a,) is a conservative confidence set for y with
level 1 — a, while L(a,, a}) is a liberal set with the same level. It is easy to derive
conservative and liberal tests from these confidence sets. For 0 < a <1, choose
a;, a,, and a} so that (3.21) holds and define

(3.23)  Q,(y)=Inf{F(y,p0): po€I(e)},
Qy(v) =Sup { F(v,py): poE1(ay)}.

5 The confidence sets U(a,, a,) and L (e, ;) also have a “Bayesian interpretation” that can be of
interest: If, in model (3.1), the prior distribution of (8, ¢2) is diffuse of the form p(B,02) x1/0?
(see Zellner (1971, p. 66)) and p is independent of (B,0?), then U(ey, @,) and L(ay,a,) are
respectively the union and the intersection of posterior confidence sets (with level 1 — a,) conditional
on each value of p in /(). This holds irrespective of the prior distribution on p.
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By Proposition 1, P[y € U(a;, @,)]>1—a and P[y € L(y, a5)] <1 —a. Fur-
ther, the event y & U(ay, a,) is equivalent (with probability 1) to Q,(y) > F(a,)
while the event y € L(ay, a}) is equivalent to Q,(v) < F(a}). Thus

(324)  P[0.(v) > F(ey)] <. P[Qy(v) < F(e3)] <1-a.

0,(vy) > Fi (a,) is a conservative critical region while Q,(v,) > F(a}) is a liberal
critical region for testing y=1v, at level a. Further, Q,(y,) < Qy(Y,) and
F(a,) > F(a%) so that the conservative critical region is contained in the liberal
one. This suggests the following bounds test for Hj: y = v,

reject H] when Q;(v,) > F(a,),

(3.25) accept Hj when Q,(v,) < F(a3),
consider the test inconclusive, otherwise.

Proposition 1 relies on the apparently restrictive independence Assumption C.
The following proposition (also proved in the Appendix) relaxes this assumption.

PROPOSITION 2: Suppose that the model described by (1.1), (3.9), and either
Assumption A or Assumption B holds, and let I(a,) be a confidence set for p such
that P[p€l(a))]>1—a;. If 0<a <1 and a;, a,, and o are chosen so that

(326) a+a,=a, aj—ay=a, O0<oy<a<sl-a,

then the inequality (3.22) holds for all admissible values of p and v.

Here, no assumption is made on the stochastic relationship between the event
{p€I(e;)} and the random variable F(y, p). Clearly, the bounds test (3.25)
remains exact when (3.26) holds. When «; and a, are small, as is the case in
practice (e.g., when a =0.05 and «, = a,), there is little difference between the
critical bounds and confidence sets based on (3.26) and those based on (3.21); to
see this, compare the inequalities (A.1)—(A.2) with (A.3)-(A.4) in the Appendix.

An especially simple case of the test in (3.25) is obtained by taking the set of
all admissible values of p as the confidence set for p. Then a; =0, a, =a)=a
and, under Assumption B, we have I(a;) =1(0)={p,: |py] <1} yielding the
bounds test:

reject Hy when Inf { F(y,, py): |po| <1} > F(a),
(3:27) accept Hg when Sup { F(vy, o) |pol <1} < F(a),
consider the test inconclusive, otherwise.

Note that the conditions (3.21) and (3.26) both hold in this case. An analogous
test is also available under Assumption A (|p| <1). This procedure does not
require computing a confidence interval for p from the available sample. On the
other hand, it does not exploit the information contained in the data about p.
This can lead to unduly large inconclusive regions. For this reason, we now study
how to construct an exact confidence set for p.
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4. CONFIDENCE SETS FOR THE AUTOCORRELATION COEFFICIENT

Suppose first that we wish to test the hypothesis H(p,): p = p,. Under H(p,),
it is appropriate to consider the transformed model

(4-1) )’(Po)'—'X(Po)E‘*'u(Po),

as given by (3.6) to (3.9). When H(p,) is true, the disturbances u,(p,) of the
transformed model are independent N(0, 6?). If p # p,, they remain autocorre-
lated and follow an ARMA(1,1) process:

(4.2) u;(Po) ”Pu:—1(Po) =& — Po€—1-

Thus, in particular, the sequence u,(p,), t=p,..., T, is autocorrelated at lag 1.
We can test H(p,) by testing the equivalent hypothesis that the residuals of the
transformed model are independent. Any test having reasonable power against
the alternative (4.2) is a possible choice here though, of course, powers may differ
between alternative tests. Note also that for the special case p, = 1, more specific
procedures have been developed; see Evans and Savin (1981, 1984), Sargan and
Bhargava (1983), and Bhargava (1986). However, to obtain a confidence set for p,
we need a general procedure to allow testing any admissible value p,,.
Consider any statistic of the form

(4.3)  d(py) =1(py)'Ait(py)/(po) a(py)

where A is a fixed matrix (possibly a function of p,). For example, we may
consider the Durbin-Watson (DW) statistic

T-1 , | ,
(4.4)  DW(po)= X [#:1(po) = ,(po)]" | X i,(po)",

t=p t=p
which is employed usually to test independence against autocorrelation at lag 1.
In this case, the matrix 4 does not depend on p,. Most variants of the
Durbin-Watson statistic have the form (4.3); see Kadiyala (1970) and King
(1987). Typically one rejects the null hypothesis of independence when the test
statistic is too small or too large:

(4.5) d(po) <di(py, X) or d(py)>d,(pg, X).
di(pg, X) and d,(py, X) are selected so that, under H(p,),

(4.6) P[d(Po) <d,(po, X)] =9, P[d(Po) > d,(po, X)] =9,

where 8, + 0, =a,0<a<1,0<9§;<1, i=1,2. In general, d;, and d, depend on
X and p,, though not always. For example, the DW statistic has a null
distribution that depends upon the matrix X(p,) while tests based on LUS
(linear uncorrelated scalar) residuals, like BLUS or recursive residuals, do not.
In view of the possible dependence of critical values upon X and p,, it is often
convenient to use the cumulative distribution function of d(p,) under H(p,):

(47)  F(x;p0, X) =P[d(po) <x|H(po)].
If we set 6(py) = F[cf(po); Po> X ], where tf(po) is the observed value of d(p,), the
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test given in (4.5) is equivalent to rejecting H(p,) when
(4.8) 8(py) <8, or 1-138(py) <89,

We accept H(p,) when d,(py, X) < d(py) < d,(pg, X) or, equivalently, when
8, < 8(py) <1-—8,. We can thus obtain an exact confidence set for p with level
1 — a by finding the set of admissible values of p that are not rejected by the test:

(4.9) I(a)={py€S: di(py, X) <d(py) <dy(py, X)}
={p,€S:8,<8(py) <1-8,)

where S= {p: |p| <1} or S={p: |p| <1} (depending on the assumption
adopted: A or B). It is straightforward to see that P[p € I(a)] =1 — a. Moreover
if, instead of (4.6), we have the inequalities

(410)  P[d(p,) <d,] <8, P[d(py) > d,] <38,,

the set I(a) = {p,: d,<d(py) <d,} is a conservative confidence set with level
1—a,ie Plp€I(a)l>1— a. Note also that the restrictions |p| <1 and |p| <1
make sure that the confidence set I(a) is bounded.

When the null distribution of d(p,) does not depend on the matrix X(p,), d;
and d, only depend on the level of the test. For example, if we apply the
von Neumann ratio (or the modified von Neumann ratio) to a set of LUS
residuals, we can use tables for the von Neumann ratio to obtain the critical
values d; and d, (provided, of course, the desired level is available). When
|lp] <1 or |p| <1, the interval may easily be identified by performing a grid
search over the admissible interval and by retaining all values p, such that
dy <d(py) < d,.

When no table is available, several algorithms may be used to compute 8(p,)
and search for those values that satisfy &, < 8(py) <1—9,; see Imhof (1961),
Koerts and Abrahamse (1969), Pan Jie-Jian (1964), Davies (1980), Palm and
Sneek (1984), Farebrother (1984, 1985). We may also determine approximately
the limits of the confidence set by using an approximate but inexpensive method
of computing the distribution of a ratio of two quadratic forms in normal
variables (see Durbin and Watson (1971), Evans and King (1985)); afterwards,
we can use a more expensive algorithm to determine precisely these limits.
Furthermore, in some important cases, it is possible to combine the use of a table
with Imhof’s algorithm or with an equivalent method.

Let us consider in detail the case where the DW statistic is used. Take
8, =8, =a/2. From DW tables, we can typically find points d,;, dy,. d,,, and
d,,, which do not depend on the regressor matrix and such that

24
P[DW(po) <dy;] < 5 <P[DW(py) <dy],
and

P[DW(p,) <d,. ] <1- = <P[DW(p,) <dyy],

a
2
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provided the model contains an intercept (see Durbin and Watson (1950)). Then
for all values of X and p,, we have

dip <di(X, po) <dyy, dyp <dy(X,p) <dyy.
Let

L= {po: di. <DW(po) <dyy }, L={po: dyy<DW(p,) <d;_}

and

I(a) = {po: d1(X, p) < DW(py) <dy(X, po)}-
Then I, C I(a) C I;; hence
PloeLl<Plpel(a)] =1-a<Plpe ]

I, is a conservative confidence set (with level 1 —a) while I, is a liberal
confidence set. Since it is simple to compute DW(p,), we can find easily the two
sets I; and I,. To determine J(a) more tightly, it is then sufficient to search in
the smaller set J = I;\ I, by a more precise method.

We will now use the following proposition.

PROPOSITION 3: Let y = XB + u and u~ N[0, 0%I;), where X is a T X k fixed
matrix with rank (X) =k < T and B is a vector of coefficients, and let

B=(XX)"'Xy, a=y-XB, |a|>=un.
Then B, |2, and ii/\|fi|| are mutually independent.

This proposition can be proved easily by using Basu’s (1966) theorem or by
transforming # to polar coordinates; for a detailed proof based on the latter
approach, see Dufour (1986).6 Since the transformed model described by (3.6) to
(3.9) satisfies the assumptions of the classical linear model, we can conclude
from Proposition 3 that B(p), ||i(p)|, and @(p)/||(p)|| are independent. Fur-
ther, the test statistic d(p), as given by (4.3), is a function of @(p)/||@(p)|| while
the Fisher statistic F(y, p) defined by (3.11) depends on B(p) and ||&(p)|| only,
so that d(p) and F(v, p) are independent. Thus the event p € I(«), where I(«) is
defined by (4.9), is independent of F(y, p). To obtain an exact test of y =y,, we
can use Proposition 1 with (1 —a;)(1 —a,;)=1—a and (1 — a;)a) = a.

5. NUMERICAL EXAMPLES

To illustrate the methods described above, we now give two examples based on
artificial data. In both cases, the equation estimated has the form

(5'1) yt=Bl+Bzx2t+B3x31+ut (t=1,'-~’T)7

é Though various implications or alternative forms of this proposition were used by several authors
(see Geary (1933), Pitman (1937), von Neumann (1941), Durbin and Watson (1950), Kariya and
Eaton (1977), Kendall and Stuart (1977, p. 287), Phillips and McCabe (1985)), we did not find a
complete statement of it elsewhere.
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and the sample size is 50 (T'=150). In the first example, x,, and x; were
generated by processes of the form

(5:2) x5, =05xy 1+ My Xy0=13,/V0.75,

(5.3) X3, =t+n;,

where 1,, ~ N[0,1], 73, ~ N[0,10], and all 1,,,m3,, t=0,1,..., T, are mutually

independent. We obtained y, by using equation (5.1) with 8, =10, 8,=8,=1,
and

ind

(5.4) u,=pu,_,+e, a,P- N[0,0?] (t=2,...,T),
u, ~ N[O, 02/(1 - pz)],

where p=0.9, 0 =2, and ¢, is independent of u; and (x,,, x5,), s=1,...,T. The

second data set is identical to the first one except that the equation generating y,
had p= —0.9 and x,, was divided by 10.

When equation (5.1) is estimated by the Hildreth-Lu grid search algorithm, the
results obtained for each of the data sets are respectively:

y,= 10360 + 0.766 x,,+ 0991 x,+#, p= 087,
(2.993)  (0.268) (0.0646) (0.070)

§§=1744, SE=1947, DW=1.67, R?=0.837;

y= 9.938 + 0.884 x, + 1.069 x5+, p= —098,
(0.234)  (0.098) (0.081) (0.029)

S§=108.8, SE=1.537, DW=2.11, R*=0.865.

Standard errors are given in parentheses; p is the final estimated value of the
autoregressive coefficient, SS is the sum of squared residuals, SE is the standard
error of the regression, DW is the Durbin-Watson statistic, R? is the coefficient
of determination. Standard errors are conditional standard errors.’

The results of applying the methods described in the previous sections to these
data are reported in Table I. We consider three ways of obtaining a confidence
set for p, all valid under the assumption |p| < 1 (Assumption B). For the two first
methods, we take a; =a,=1—(1—a)/? and get a confidence set for p with
level 1 — «; (at least) by determining the set of values |p,| <1 such that the
Durbin-Watson statistic of the transformed model is not significant at level a;. In
the first method, critical levels are obtained by using the Imhof (1961) algorithm
as implemented by Koerts and Abrahamse (1969): this yields a confidence set for
p with level 1 — o (tight). In the second method, we decide which values p, are
acceptable by using a conservative bound obtained from a standard bounds
table: this yields a conservative confidence set for p with level 1 — «,;, without the
need to use Imhof’s algorithm. In the third method, we use the complete set of

"The data are available from the author upon request. We also estimated the models by the
Cochrane-Orcutt algorithm and by the Beach-MacKinnon (1978) maximum likelihood algorithm. The
results are very close to those presented here.
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admissible values |p,| <1 as a confidence set with level 1, i.e. ¢; =0 and o, = a.
In all the examples, the basic confidence level is 0.95 (a=0.05). We will
concentrate our discussion on the first data set (p = 0.90).

Let us first look at the results based on constructing a tight confidence set for p
with level 1 —a; =0.9747. In this example, T=150, T; =49, and k= 3. The
interval for p is then 0.69 < p < 1.00. We can see that the (conservative) confi-
dence intervals for ), B,, and B, are all reasonably small. As expected, the
confidence intervals for the regression coefficients B8, and B, are larger than the
asymptotic confidence intervals. The latter are 0.241 < 8, < 1.291 and 0.864 <
B; < 1.118. It is clear that B8, and B, are significantly different from zero: the
bounds tests for 8, =0 and 8; = 0 are significant at level 0.05 because

0.(B,=0) = (2.85)>> (2.31)> = F(ay; 1,46),

Q.(By=0) = (14.7)*> (2.31)* = F(a,; 1,46),

where a, = 0.0253. On the other hand, the test for £, = 0 is inconclusive because
Q. (B,=0)=0.31< F(a,;1,46) and Qu (B, =0) =439 > F(aj;1,46). Given
that p=1 (a value contained in the confidence set for p) implies that B, =
(1 = p)B; = 0, this is not surprising. Note also that a confidence interval for B, is
not reported because B, is not identified in the transformed model when p = 1.

The second set of results is based on finding the values p, that satisfy
d;, < DW(p,) <4—d,, where d; =1.25 is the lower critical bound (a uniformly
conservative critical value) of the DW test with level 0.01 against positive
autocorrelation. This critical value is available from standard tables; see Savin
and White (1977, Table II). The confidence set for p obtained in this way is
conservative at level 0.975.%2 By construction, this must lead to larger confidence
sets but no use of the Imhof algorithm is required. The p-interval obtained in this
way is [0.60,1.00], which is close to the result obtained by the first method.
Correspondingly, the confidence intervals and test statistics for the regression
coefficients are very similar to those obtained by the first method.

In contrast, the results based on using the full interval |p| <1 (a; =0,
a, = 0.05) yield much wider confidence intervals for 8, and B,. This brings
support to the presumption that finding a confidence set for p yields more
accurate results in most situations. On the other hand, the confidence interval for
B; has practically the same length as with the previous method. The bounds tests
for B, =0 and B, = 0 are significant at level 0.05. Finally, it is interesting to note
that the bounds test of Vinod (1976) and Kiviet (1980) is inconclusive for 8, = 0:
the OLS ¢ statistic is 3.243 while the upper bound with p=0.9 is 12.65; see
Kiviet (1980, Table 4). The highest p value considered by Kiviet (1980) is p = 0.9.

The main features of the results obtained from the second data set (p = —0.90)
are similar to those of the first example. Note, however, that the confidence
intervals for p and B, are considerably shorter. Furthermore, since 1 is not

8 In fact, the confidence level of the interval for p is not smaller than 1 — 2(.01) = .98. A somewhat
shorter interval could be obtained by using the lower critical bound associated to a (one-sided) test of
level 0.0253/2 = 0.01265. However, this value is not tabulated (though it could be found easily).
Clearly, the results would be very close to those presented here.
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TABLE I
NUMERICAL ExaMPLES (a = 0.05)?

Confidence intervals

3 B B B2 Bs
First data set (p = 0.90)
Ipl <1, e =a, =00253 (0.69,1.00] — [-0.590,3.734] [0.147,1.541] [0.823,1.191]
lp] < 1. a < 0.0253,
a, = 0.0253 [0.60,1.00] — [~0.590,4271] [0.147,1.643] [0.823,1.208]
lpl <1, ¢, =0,
a, =a; =0.05 [ -1.00,1.00} — [—0.501,15.20] [0.227,2.146] [0.843,1.219}

Second data set (p = —0.90)
lp| <1, & = a, =0.0253 [—1.00, — 0.81] [9.299,10.668] [16,832,20.939] [0.596,1.165] [0.813,1.288]
lp] <1, &, <0.0253,

a, = 0.0253 [~ 1.00, — 0.79] [9.275,10.702] [16.603,20.939] [0.584,1.177]  [0.801,1.295]
Ip] <1, 0, =0,
a, = aj = 0.05 [-1.00,1.00] — [~5.559,20.801] [-0.462,5.179] [~ 1.033,15.543]

Test statistics for zero regression coefficients

B B B B3 \/1‘:("2) v":(ﬂi)

First data set (p = 0.90) el Tl 1l el 1l (el 1l |tl
lpl <1, &g = a, =0.0253 — — 031 439 2.85* 295 14.70* 19,61 231 2.00
lpl <1, & <0.0253,

a, = 0.0253" — — 031 456 2.85*% 2.95 14.70* 22.26 231  2.00
lpl < lv o = 0,

a, = aj=0.05 — — 031 576 2.85* 325 14.70* 33.90 201 2.01
Second data set (p = —0.90)
lpl <1, &y = @, =0.0253 33.74* 42.73 33.74* 42.73 7.16* 9.14 10.23* 13.27 231  2.00
lpl <1, & £0.0253,

a, = 0.0253" 32.38* 42,73 32.38* 42.73 6.87* 9.14 9.80* 13.27 231 2.00
lpl <1, 0, =0, ay =aj =0.05 — — 0 4273155 914 127 1327 201 201

2 The confidence intervals for p have level 1—a;. The confidence intervals for ) =(1—p)B;, B, Ba, and B; are
conservative at level 1 — a =0.95. The test statistics for testing whether each regression coefficient is significantly different
from zero (B, = 0) are expressed in terms of the corresponding ¢ statistics (instead of F statistics): |7, | = ‘/QL and |1y]
= ‘/QU . For the two examples, 7} = 49 and k = 3. * indicates a significant statistic (at level 0.05).

Y These results are based on the acceptance region d; < DW(p) <4 —d; for p, where d; is the conservative critical value
of the Durbin-Watson test of level 0.01 against positive autocorrelation (d; =1.245 for T, =49 and k = 3). The confidence
interval for p so obtained has level not smaller than 1 — 2(0.01) = 0.98 > 1 — 0.0253.

contained in the confidence intervals for p (except when the third method is
used), we can build finite confidence intervals for 8,. The intervals for B, are all
reasonably short.

The above examples show clearly that the approach to inference suggested in
this paper can be implemented and yield definite conclusions. In most cases, it
appears advantageous to obtain first a confidence interval for p instead of using
the full set of admissible values |p| < 1 (under Assumption B). But even the latter
method can yield conclusive tests as found in the above examples. Furthermore,
when the DW statistic is used to construct a confidence interval for p, it is
possible to get reasonably short intervals by using critical bounds from standard
tables.
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6. CONCLUSION

The approach suggested in this paper defines a class of inference procedures
rather than a single procedure. For a given, one gets a different procedure for
each way of selecting «; (which in turn determines a,) and for each way of
building a confidence set for p. It is important to note that & should be selected
a priori, not on the basis of the results yielded by different choices of a; for a
given sample. Clearly, different methods of selecting a; may lead to procedures
with different power characteristics. Further research is needed to assess the
properties of different ways of “sharing” the overall significance level between a;
and a,. However, it is unlikely that any particular choice dominates uniformly
the others: in general, we can expect that the choice depends on the true (and
unknown) parameter values. In the absence of further indications, we suggest to
share equally the significance level (a; = a,). This is the rule typically employed
in the literature on simultaneous inference (e.g., in Bonferroni-type procedures)
and test combination; see Miller (1981), Savin (1984), and Phillips and McCabe
(1989). ,

A second element of choice is the test statistic which is “inverted” to build a
confidence set for p. Applying the Durbin-Watson test to the transformed model
has the advantage of being relatively simple and allows one to use widely
available tables and programs. On the other hand, it does not have any known
optimality property (except for testing p = 0). Though the results obtained in the
examples studied were reasonable, it seems likely that smaller confidence sets
could be obtained by using better tests of the hypothesis p = p, (e.g., optimal
invariant tests). This is the topic of ongoing research. Note, however, that
uniformly most powerful tests do not exist for autocorrelation hypotheses, except
in very special situations (see Anderson (1948)): this suggests that no method can
uniformly dominate all the others.

Finally, it is easy to see that the general approach used in this paper can be
adapted to other situations, e.g., linear regressions with MA(1) or heteroskedastic
disturbances. Whenever the covariance matrix of the disturbances depends on a
nuisance parameter 6, (besides the scale coefficient 2), one can use a similar
three-stage confidence approach to get exact tests and confidence sets, provided it
is possible to build an exact confidence set for #,. Of course, when 6, has
dimension greater than one, a multivariate confidence set for 8, is needed and
computational problems are more important. More generally, if the parameters
of a model can be reduced to a vector of nuisance parameters #;, and a vector of
parameters of interest #,, the method suggested can be applied when two
elements are present: first, it is possible to build an exact confidence set for 6,;
second, if the frue value of 6, is known, it is possible to obtain an exact
confidence set for 6,. Once the confidence set for 8, is available, the two elements
are combined to get a simultaneous confidence set for 6, and #,. Then, a
union-intersection method is used to obtain confidence sets as well as tests for 6,
that are valid irrespective of the true value of 6. The extension to other problems
of the approach used in this paper is also the topic of ongoing research.
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APPENDIX
A.1. PROOF OF PROPOSITION 1: By definition, (p, y) € K(ay, a,) implies that (py,y) € K(ay, a;)
for some p,y € I(;), hence
Plye U(ey, )] =P[(po,v) € K(ey, ;) for some py € I(ay)]

>P[(p,v) €K(ay,0,)]
and, by (3.17),

(A1) PlyeU(y, )] > (1 —a)(1—ay).
Let L(a,a,) be the complement of L(e, a,) in the space of admissible values for y and let
Li(a, @) ={%: F(Y,p)> F(ay) for some py € I(ey) },
Ky(ay,0,) = {(Po’70)5 F(v,p0) > ﬁ(az) and PoEI(“l)}-
Clearly, L,(a;,a,) € L(ay, @),
Ly (o, ) = {%: (po» %) € K1 (e, ;) for some p; },
and (p, v) € Ki(&, &) implies y € L, (e, a,). Then
PlyeL(a.a)]>P[yeLi(a,2)]>P[(p,7) € Ki(a, )]
Further
P[(p,¥) € Ki(a, )] = P[p €I(a) and F(y,p) > F(ay)].
If {p€1(ey)} and F(y, p) are independent (Assumption C), we have
P[(p,Y) €K\(a,2))] =P[p€I(x)] P[F(v,0) > F(ay)] > (1 — ).
Consequently,
(A2) PlyeL(w,a)]=1-P[yeL(a,a)] <1-P[(p,7) €Ki (e, )]
<1-(1-a)a,.
When0<a<1,0<o <a<l-a,1-a)l-a,)=1-a,and (1 - o)a’=a, we have
a l-a

<l-axg
- 1-o

l-aj=1- =1-a,,

so that a, < & < a}. Thus F(a,) > F(a4) and
L(a,a5)= {70: F(,po) < F(a3) for some poel(al)}
c {Yo: F(%,p0) < F(ay) for all pOEI(al)}
c {70: F(Yo,p0) < F(a,) for some poel(al)}
=U(ay, ;).

Using (A.1) and (A.2), we can conclude that P[y € U(a;, ;)] >1~a and P[y € L(a,a5)]<1—a.
Q.E.D.
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A.2. PROOF OF PROPOSITION 2: The proof of Proposition 2 is analogous to that of Proposition 1,
except that, without Assumption C, it is not clear that (A.1) and (A.2) hold. By using Bonferroni’s
inequality, however, the latter can be replaced by

(A3) PlveU(a,0)]>1- (4 +a),
and

(A4) Plvel(aq,a)]<(1-a)+a,

from which (3.22) follows whenever (3.26) holds. Q.E.D.

A.3. EXPLOSIVE PROCESSES: The methods proposed in this paper can be extended to possibly
explosive processes by considering the following more general assumption.

ASSUMPTION B': — o0 <p < +o0 and u, is fixed (or independent of «,,..., ey with an arbitrary
distribution).

Inference for the model described by (1.1) and (3.9) under Assumption B’ can proceed as under
Assumption B using the transformed model (3.1) with p = 2. The main difference comes from the fact
that the domain of admissible values for p is now unrestricted. Since the confidence set I(a) is
defined by nonlinear inequalities on p, it is then possible that I(a) be unbounded with some nonzero
probability. Further, the determination of the set I(«) is clearly more difficult, for a grid search
cannot cover the full range of possible values. One needs to study analytically the shape of the
function d(p,) in (4.3) or the corresponding p-value function. Different test statistics may have
different behaviors. This topic goes beyond the scope of the present paper.
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