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RECURSIVE STABILITY ANALYSIS OF LINEAR REGRESSION
RELATIONSHIPS

An Exploratory Methodology

Jean-Marie DUFOUR*
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1. Introduction

The problem of the instability of econometric relationships over time has
been recognized by several econometricians [e.g. Chow (1960), Duesenberry
and Klein (1965), Cooley and Prescott (1976)]. Parameter stability is
especially important when one wants to use a model for forecasting and
policy simulations. For example, the assessment of the stability of the
demand for money is of crucial importance in decisions about the role of
monetary policy. Generally, when using an econometric model to study the
effect of a policy change, it is essential that the parameters of the model be
invariant with respect to the euange contemprateu In this respect, Lucas
(1976) has shown that, since the parameters of econometric models reflect the
optimal decision rules of economic agents and these integrate knowledge
about policy decision rules, changes in policies are likely to induce changes
in the parameters of the relationships. Assessing the importance of such
possible instabilities may be particularly relevant in the context of policy
simulation studies.

A fairly general way of interpreting the instability of econometric
relationships over time is to assume the presence of some sort of
misspecification (omitted variables, incorrect functional forms, etc.). One
could also speak of ‘structural changes’ in the economy but it can always be
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these have changed. Therefore, testing for parameter stability over time may
be considered as a way of testing for the presence of specification errors.!

We will be concerned here with the problem of detecting and assessing
parameter instability in linear regression models. When one has in mind a
specific type of structural change relatively powerful tests can usually be
formulated. However, in the routine assessment of econometric models, there
is a need for exploratory procedures aimed at being sensitive to a wide
variety of instability patterns and capable of yielding information on the type
and timing of structural change. By exploratory methods, we mean
procedures akin to the ‘analysis of residuals’, as described by Anscombe
(1961), Anscombe and Tukey (1963), Zellner (1975), Relsley, Kuh and Welsch
(1980), ‘diagnostic checking’ in time series analysis [Box and Jenkins (1969,
ch. 5)] and the various procedures proposed by Ramsey (1969 1974) in order
to detect departures from the assumptions of a model. Such procedures can
be contrasted with ‘overfitting’, i.e., the approach consisting of nesting a
model into a more general one (hence adding parameters and assumptions)
and then performing a significance test on the added parameters [e.g. Box
and Cox (1964)]; examples of the latter approach in testing for parameter
stability over time can be found in Chow (1960), Quandt (1960), Farley and
Hinich (1970), Cooley and Prescott (1976), Singh et al. (1976). These tests are
likely to be more powerful against specific alternatives but depend on the
assumptions of the wider model analyzed. It appears useful to have checks

using as few extra assumptions as possible. Needless to say, the two
approaches should be considered as complementary and not as substitutes.

Inference
Entertained Conditional
model —— analysis
Criticism
Fig. 1

To put things in a wider context, if we view the statistical analysis of data
as an iterative process of model building (depicted in fig. 1), we are herein
concerned with ‘model criticism’ [see Box and Tiao (1973, pp. 8-9)]. The
aim of the analysis is to place an entertained model in jeopardy and check
for mademmmeq or ‘anomalies’. Nntahlv we would like to have hrm‘ednrec

capable of generating information concerning the types and timings of the
possible instabilities, without requiring many additional assumptions: the
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‘diagnostics’ noticed may be combined with subject matter considerations
and suggest possible modifications to the model. Our general attitude is thus,

'For some further details concerning the relationship between specification errors and
parameter instability, see section 3.
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to a large extent, that of ‘exploratory data analysis’ as exposited by Tukey
(1962, 1977) and Mosteller and Tukey (1977).

A fairly general approach aimed at investigating the stability of the
regression coefficients of a given relationship consists of estimating these
recursively, adding one observation at a time. The ‘predictive performance’ of
the model can then be simulated, each observation in the sample being
predicted with the parameter estimates based on the preceding observations.
In particular, standardized one-step ahead prediction errors may be
computed. This sequence was called the ‘recursive residuals’ by Brown,
Durbin and Evans (1968, 1975). Under the conditions of the classical linear
regression model and, in particular, if the regression coefficients are stable
over time (or no specification error is present), these constitute a set of
residuals with mean zero and scalar covariance matrix, similar in this respect
to the BLUS residuals.? They are thus especially convenient both for a
descriptive analysis and for the construction of various test statistics. They
were introduced, apparently independently, by Brown, Durbin and Evans
(1968, 1975) in the context of testing parameter stability over time (with the
CUSUM and CUSUM of square tests) and, in a somewhat different form, by
Heyadat and Robson (1969) in a test for heteroskedasticity.®> They have
multiple uses. In particular, Harvey and Phillips (1974) proposed another test
for heteroskedasticity based on them, Phillips and Harvey (1974) used them
to test for serial correlation while Harvey and Collier (1977) provided a test
for functional misspecification. The recursive residuals also have the great
intuitive appeal of being generated by simulating the operation of the model
as a prediction instrument and they are computationally simpler to obtain
than the BLUS residuals. Further, they can be considered as a cross-
validatory device in the spirit of Stone (1974) and Geisser (1975).

The recursive estimation process along with the recursive residuals thus
seem to offer a very interesting basis for a data-analytic approach to the
analysis of structural change. The purpose of this paper is to review,
systematize and extend in a number of ways the approach originating in
Brown, Durbin and Evans (1975). In particular, we want to stress the fact
that a large number of statistics useful for the analysis of structural change
can be obtained rather cheaply from this simple process of recursive
estimation. Basically, two types of outputs can be generated:

(1) a number of potentially revealing descriptive statistics (e.g. in graphical
form) which can be examined, interpreted and cross-checked in search
for indications of structural change;

2See Theil (1971, ch. 5).

3Brown et al. (1975, p. 189) also mention that the recursive residuals were known to them in
the mid-1950s as a generalization of the Helmert transformation and are probably ‘much older’.
On this issue, Farebrother (1978) has pointed out that the recursive residuals may be found
(though not in a very explicit form) in a little known work by Pizetti (1891).
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(2) a number of related significance tests allowing the investigator to assess
the ‘significance’ of the patterns or ‘anomalies’ observed.

Among the more specific items we want to stress or suggest, let us mention
the following. First, the recursive residuals are probably the basic instrument
for the analysis of structural change, as opposed to the CUSUM graphs (on
which attention has traditionally centered), especially if one is interested in
tracking possible points of discontinuity.* Second, the recursive estimation
process allows the computation of other sets of residuals with simple
statistical properties and whose observation may be instructive in the
analysis of structural change; in particular, we suggest computing
standardized first differences of recursive estimates and several-steps ahead
recursive residuals; in some cases, these may track instabilities which were
completely missed by the recursive residuals while, in other cases, they will
usefully cross-check observations made on the recursive residuals and allow a
more precise assessment of points of discontinuity. Third, in order to be in a
better position to interpret the behaviour of the recursive (and related sets of)
residuals and to construct test statistics, we examine more carefully their
properties when parameter instability is present; in particular, it is shown
that the recursive residuals remain uncorrelated even when regression
coefficients are unstable, a property which greatly facilitates the latter study.
Fourth, a number of significance tests are suggested, besides the CUSUM
tests originally proposed by Brown et al. (1975). Given the very nature of the
basic statistics generated by the recursive estimation process (prediction
errors, changes in the coefficient estimates), structural changes will be
indicated by tendencies to either overpredict or underpredict, heterogeneity
in the prediction performance of the model, trends in the coefficient
estimates, etc. The problem is to quantify the ‘statistical significance’ of
such patterns. For that purpose, a number of test statistics are described,
bearing on the locational (systematic over- or under-prediction) and
heteroskedacticity characteristics of these series. In selecting these, we tried to
stress simple and intuitive test statistics, with exactly-known distributions in
small samples; for example, several runs tests are suggested as an especially
simple and convincing way of assessing the significance of what one sees in
the graphs of the recursive residuals.

It is important to note that significance tests in this context should be
‘regarded as yardsticks for the interpretation of data rather than leading to
hard and fast decisions’ [Brown et al. (1975, p. 150)}. High power against a
very specific alternative is not the concern here; we prefer some power
against a wide range of interesting alternatives and, especially, ‘suggestions’

*For some applications of the CUSUM tests to economic relationships, see Khan (1974, 1978),
Brown et al. (1975), Cameron (1979), Heller and Khan (1979), Riddell (1979), Stern et al. (1979),
Hwang (1980).



J.-M. Dufour, Recursive stability analysis 35

from the data. One may also characterize these as being ‘general tests’ [in the
terminology of Ramsey (1974)] or ‘non-constructive tests’ [to use the

terminology of Goldfeld and Quandt (1972], in the sense that they are tests
against broad diffuse alternatives.

In section 2, we study in some detail the properties of the recursive
residuals under the null hypothesis. The standardized first differences of
recursive estimates and the various sets of k-steps ahead (k=2) recursive
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problem of computing ‘recursive restduals’ when the covariance matrix of the
disturbances is not scalar (i.e. in the generalized least squares set-up) and/or
lagged dependent variables are present is discussed succinctly.

In section 3, we examine the properties of the recursive residuals and

related series when parameter instability is present. Among other things, a
number of schemes involving xed and random coefficients are studied,
standardized first differences f the recurswe estimates are ratlonahzed as an
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In section 4, the methodology itself is described, including a number of
descriptive statistics to be considered individually and cross-checked as well
as several significance tests allowing the investigator to assess more rigorously
the importance of various observed deviations from the pattern expected

under the null hypothesm. Finally, in section 5, we make some concluding
remarks.

2.1. Recursive estimation

Let us consider the varying parameters model in its full generality as set
up by Brown, Durbin and Evans (1975),

- x;pt + Uy,

u ™ N[0, 672],

where, at time ¢, y, is the observation on the dependent variable, x, is a K x 1
column vector of non-stochastic regressors, B, is a K x 1 vector of regression
coefficients, u, is a disturbance term which follows a normal distribution with
mean zero and variance ¢2. The disturbances uy,...,u; are assumed to be
independent (%%). Further, we will consider that the ordering of the
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observations corresponds to their time ordering (or, more generally, to some
natural order). We want to test the null hypothesis

Hy:B,=B,='-=p;y=p (constancy of regression parameters),

2)

oci=03=---=0¢%2=0° (homoskedasticity).

y=Xﬁ+u, uNN[OsO-ZIT] (3)
where

y=(y1"-"yT),’ X’=[x1""’xT]’ u=(u1""’uT)" (4)

In this framework, a natural approach in order to investigate the stability
of the regression parameters consists of estimating recursively the parameter
vector. Using the K first observations in the sample to get an initial estimate
of B, we gradually enlarge the sample adding one observation at a time, and
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estimates:

bh=(X.X,) XY, r=K,K+1,...,T, (5)
where

X;=[x1a"-axr]a er(yl’“-’yr)l' (6)

1

IIJ

We will furthermore assume that r(X)=K, for all r=K, .. T It
intuitively clear that an examination of the sequence b,, r=K,...,T, i
capable of supplying information concernmg pos51ble instabilities of the
wgressmn coefficients over the sarﬁpw perwu The pi‘\’)uu";rﬁ is to get an idea
of what kind of behaviour one can expect of this sequence under H, and to
find related statistics with known distributions whose behaviour is relatively
easy to interpret.

A way to do this is to compute for each r=K+1,...,T the forecasted
value of y, using the estimate of § based on the r—1 previous observations

and, then, the corresponding forecast error,

[72]

b,=y,—xb,_y, r=K+1,.,T )

>This will not usually be a very restrictive qualification. Yet, a case where difficulties may
occur reiativeiy easiiy is the one where dummy variables are present among the regressors.
However, problems of this type can be dealt with rather simply [see Brown et al. (1975, pp. 152-
153)].
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What we do, in a sense, here is to simulate the operation of model as a
prediction instrument. One can verify easily that, under H,, v, has mean zero
and variance o>d?, where

d=[1+x(X\_ X,_) ‘x5, r=K+1,..,T (8)

If we divide v, by d,, we obtain a set of standardized prediction errors,

w,=u,/d,, r=K+1,..,T, 9
Laving the variance 52 Those waoare called tho ‘racurcive ragidizale’ huy
lavil 15 (9019 vyalialilive U . 11ILDV WULIL vallvud LIV IV ULDIYLY Twivualy v
Brown et al (1968 1975). What is more important, the same authors showed

that, under H,,
E(ww)=0 for r+#s, (10)

so that wg,,...,wr are independent N[0,¢%], a pattern which should be
relatively easy to recognize. Furthermore, convenient formulas allowing
computation of the recursive residuals in an economic way without having to
invert a matrix at each step are available,

(X/X )—1=(X/ X )-1_(“"!"’1){'"1) X x;(‘Xr‘l‘Xr—l)_l (11)
X=X TR X, ) x,

brzbrfl+(X;Xr)'ixr(yr—x;5r-l)’ (12)

S,=S, +w? (13)
where

SrZ(Yr—Xrbr),(Yr_Xrbr '6 (14)

As one can easily see from the above definition, the order of the
observations is crucial in the definition of the recursive residuals. In principle,
one can get a different set each time the observations are reordered (except
when one simply permutes the first K observations). Clearly, not all
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a natural alternatlve set of residuals, also suggested by Brown et al. (1975) is
the set of recursive residuals obtained when the order of the observations is

SFormula (11) is due to Plackett (1950), Sherman and Morrison (1950) and Bartlett (1950).
Proofs of formulas (12) and (13) are given in Brown et al. (1975). Moreover, one should note that
this algorithm can be viewed as a special case of Kalman filtering, a technique well known in
control theory [see Kalman (1950), Duncan and Horn (1972), Chow (1975, ch. 8)]. For a review
of recursive estimation algorithms, the reader may see Riddell (1975) and Phillips (1977); on the
computation of the recursive residuals, see also Farebrother (1976).
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simply reversed, ie., obtained when running the recursive estimation process
backwards. The behaviour of these may be cross-checked with that of the
forward recursive residuals and may be especially useful in assessing the
presence of structural change near the beginning of the sample period.
Another illuminating way of looking at the recursive residuals [pointed
out by Phillips and Harvey (1974)] is to regard them as a member of the
family of ‘linear unbiased with scalar covariance matrix’ residuals. We
proceed to examine this aspect with further detail in the following section.

2.2. Linear unbiased scalar residuals and recursive residuals

Let us consider the classical linear regression model (3) (where the
normality assumption can be dropped for the purposes of this section). The

t
ordinary least squares {OLSQ) residuals resulting from the regression of y on

X are given by

li=My= Mau, (13)
where

M=I,—X(X'X) X' (16)
The vector & has mean 0 like u, but whereas # has a scalar covariance
matrix,

E(wuw)=0c°1, (17)
this property is not preserved by &,
E(@i)=c>M. (18)

Any R x 1 vector of the form #= Cy, which has mean zero and scalar covariance
matrix 621, i€.,

E@=0 and E@i)=qd’l
7 \ 7

(19
X 7
is called a ‘linear unbiased with scalar covariance matrix’ (LUS) set of

residuals.

From these two properties, the matrix C must satisfy
(P.1) CX =0,
(P.2) CC' =1Iy.

Theil (1971, section 5.2) shows that the maximum dimension of the vector &
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is T—K and that a vector of LUS residuals always exists. Some other
properties that the matrix C and the vector # must satisfy are listed below,

(P.3) CM=C and MC=C,
(P.4) ii=Cy=Cu=CMu=Ci,
(P.5) C'C=M,

(P.6) #i=yCCy=yMy=ii.

Typically, one may define an infinity of vectors of LUS residuals. The
BLUS residual vector introduced by Theil (1965, 1968) is a vector of T—K
LUS residuals having the further property of minimizing E[{#—u ) {#—u,)],
where u; is a (T—K)x 1 sub-vector of u, i.e., they minimize the expected
squared length of the difference #—u,. We refer to Theil (1971, sec. 5.2-5.3)
for a detailed study of the BLUS residuals.” Note, however, that the fact that
the BLUS residuals minimize E[(#—u,)(#—u,)] does not guarantee that they
are optimal for various testing purposes, and in particular for detecting
parameter instability.

The recursive residuals constitute another set of LUS residuals (with R=
T-—K). If we define

W=Wgitr uWr)s (20)

the matrix C such that w=Cy is

— -_

Ay gy .- Qg dgsq 0 0 0
dy; Gyp ... Gyg 4 1/d 0 0
C= .21 .22 ?x 2,A'K+1 /f:+2 . @
|_a1v1 dyy -+ Gyg ONk+1 ONx+2 Ong+s --- ldp
where N=T—K and
@=(a11,82,- > gk +¢-1)
(22)

1

L ’ ! -1
=—d—‘xx+z(XK+:—1XK+:—1) Xk+i-15 t=1,..,N.
K+t

"For further details on the properties of LUS residuals, the reader may see Dent and Styan
(1978) and Godolphin and de Tullio (1978).
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One can check by direct multiplication that
CX=0 and CC'=I; g, (23)

so that propertics (P.1) to (P.6) hold. Therefore, if the disturbances u,
t=1,..., T, have mean zero, the same finite variance and are uncorrelated,
the recursive residuals also have the same property. Furthermore, if
u~N[0,6%1;], then w~N[0,6%I,_,], which means, as pointed out
previously, that the recursive residuals are iid. N[0, s?].

2.3. Standardized first differences of recursive estimates

The recursive residuals allow an analysis of parameter instability via a
consideration of its effects on a set of standardized prediction errors. It is
also intuitively attractive to look directly at the trajectory of the recursive
parameter estimates. The problem here is that the behaviour of the graphs
(versus time) of the different coefficient estimates under the null hypothesis
appears difficult to assess.

Nevertheless, from eq. (12), we have

b"—br‘l =(X:'Xr)71xr(yr——x,rbr—1)
(24)
:dr(X;Xr)#lxrwn r=K+1,...,7;

so that, under H,, the changes in the parameter estimates as we proceed with
the recursive process are independent and normal with mean

E(b,—b,_,)=0, r=K+1,..,T, (25)
and covariance matrices

E[(br_br‘ 1)(br—brf 1),] = O'de(X:.X,)‘ lxrx:-(X;Xr)—_ 19

r=K+1,..,T (26)
Now let
b.=(by,,....bg), (X.X,) " t=(ay,,...ag,). 27
The jth component of ,—b,_,, where 1 <j<K, can be written
by, —bj, -1 =d(a;x)W,. (28)

Thus, under H,, the differences b; ,—b;,_,, r=K+1,..., T, are independent
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and normal with mean zero and variances osz,, r=K+1,..., T, respectively,
where

Djr = dr a}rxr)' (29)

Let us assume that D;,#0, r=K+1,..., T Then, if we divide b;,—b;, | by
|D;,|, the resulting standardized differences

Ajrz(bj,r—bj,rfl)/‘Der r:K+1,...,7: (30)
are independent N[0,0%] under H,. The K vectors
Ad;=A; xv1,---4; 7,  j=1,..,K, (31)

constitute K sets of LUS residuals. They are closely linked to the recursive
residuals, since, by (28)—(30),

A, =D, /|D;w,, r=K+1,.., (32)

so that the elements of each vector 4; have the same absolute values as those
of w. Nevertheless, they may exhibit very different sign patterns. In section
3.2, we give an example of a case where looking at the first differences is
likely to be much more revealing concerning structural change than looking
at the recursive residuals. Finally, let us note that 4, (1<j<K) can be
defined in a somewhat more general way (avoiding the assumption D #0,
r=K+1,...,T) by using the formula

A4, =s(D;)w,, r=K+1,..,T, (33)
where

s()=1 if x>0,
=0 if x=0, (34)

=—-1 if x<O.

24. Several-steps ahead recursive residuals

The recursive residuals, as defined by Brown et al. (1975), are generated by
simulating the performance of the considered relationship as an instrument
of prediction one-step ahead (after each updating). We suggest it can be of
interest to consider also prediction two or more steps ahead. For example,
let us look more closely at the two-steps ahead prediction errors obtained
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from the recursive estimation process,

It can be verified easily that, under H,, v, , has the mean zero and variance
o%d3 ,, where

d2,r=[1+x'r(Xl—2Xr—2)~1xr]*, r=K+29'--5T; (36)

so that the standardized prediction errors

Wy,=0,y,/d;s,, r=K+2,...,T 37
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ahead recursive residuals’. Furthermore, v, , can be rewritten

r=yr_x;'br— 1 +x’r(br— 1 _br—z)
=d,.w,.+d,__1x:_(X:_41X,_,‘) xr Wr—l:
where (24) has been used, hence (taking s=r)
212 :
E(v,,,v, )=0%d3, if s=r,
2 - .
=¢2d?x, (X, X,)"1x, if s—r=]1, (38)
=0 if s—r>1,

o dland e ~L Arrmoiern mantdialea caosr sis A Lo
50 t at alny pdll (8] CULBdLIVE [UsIUUalS, day W2_r ald wy o,

ad re
are independent prov1ded |s—7|=2. Consequently, if we denote w,=
(W2, k+2:+. Wy, 1), the distribution of the vector w,, under H,, is normal
with mean zero and covariance matrix ¢%B, =g?[b{?/], where (taking s=r)

bP =1 if s=r,
=(d3/d2.rd2.r+l)xlr+1(X;Xr)—1xr if s=r+ 1’

—0 if s—r>1,

and b@=bH). It is important to note here that the matrix B, is entirely
known from the sample data.
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These results are easily generalized to the case of k-steps ahead (k=2)
prediction errors,

Ve =Y, —X,b, 4, r=K+k,...,T (39)
The corresponding ‘k-steps ahead recursive residuals’ are given by

Wi, =g, /A s r=K+k,...,T, (40)
where

de, =1 +xUX, X, - 'Y, r=K+k,..,T® 41)
Now v, , can be rewritten

k-1
Uk.r=yr’x;br—1 + Z x(b,_i—b,_;_1)

i=1

k—1
:d,.W,.-l— Z dr—ix;(X;‘-in—i)_lxv—iwr—i (42)
i=1

k=1
(3
=Y a¥w,_, r=K+k..T,
i<o

where
ab=d, if i=0,
=d,_x(X,_ X, ) 'x,_; if 1Zigk—1, (43)
=0 otherwise,

from which we can see easily that v, , and v, , are independent provided
|s—r|= k. Consequently, if we denote

W= Wi k+10-+» Wi, 1) > (44)

the distribution of the vector w,, under H,, is normal with mean zero and
covariance matrix

E(w,w))=0>B,=0’[b],

8Note that, in the sequel, we will usually keep the term ‘recursive residuals’ in order to
designate the ‘one-step ahead recursive residuals’.
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where (taking s=r)

bl =1 if s=r,
k—1
=(1/dk.rdk.s) Z ag;)ag,c§+(s—r) if 0<S—r§k_1, (45)
j=o
=0 otherwise,

and b® =p®_ Consequently, each vector w,, where k=2, does not constitute
a set of LUS residuals. Nevertheless, since any two k-steps ahead recursive
residuals are independent provided they are separated by k periods or more,
it is easy to find subvectors of w, which are sets of LUS residuals. For
example, if k=2, the sets

{wy k+et=2,4,.., Ty} and {w, g,:t=3,5...,T,},

where T, and T, are respectively the biggest even and odd integers smaller
than or equal to T—k, constitute two different sets of LUS residuals,
containing approximately (T —k)/2 elements. In general, the k sets

A=W k+j+ai=0,1,..,n},  j=1,..,K, (46)

where n; is the biggest positive integer such that K +j+kn;<T, constitute k
different sets of LUS residuals.

2.5. Some extensions

Frequently, one wishes to impose a set of linear constraints on the
parameters of a linear model of the form (3) and then proceed to a stability
analysis. Since this is equivalent to a reparametrization of the model, the
easiest way to proceed in this case is precisely to reparametrize accordingly
and then proceed as usual to obtain the recursive residuals. These and all the
associated recursive statistics (several-steps ahead recursive residuals, etc.) will
have the standard properties under the null hypothesis.

Another frequently encountered problem is the one in which the
covariance matrix of the errors is non-scalar,

u~N[0,62V], (47)

where V is a T x T positive definite matrix. If V is known, we can find a non-
singular matrix P such that P'VP=1I;. Thus, by multiplying both sides of (3)
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by P’, we obtain the transformed model
Py=(P'X)B+v, v~N[0,6%1,], (48)

which has the standard form.° The difficulty, in practice, is that ¥ may not
be entirely known. Nevertheless, having some knowledge of the form of ¥,
one can usually obtain a consistent estimate of ¥ using the full sample; the
corresponding transformation may then be performed. For example, if the
errors follow an AR(1) process,

u=pu,_,+e, |p|<1, (49)

where the ¢s are i.id. N[0,0%], we can estimate p consistently with the T
observations available (using, for example, the Hildreth-Liu or the
Cochrane-Orcutt algorithm) and then perform the standard autoregressive
transformation with the resulting estimate p,

yt-ﬁyt—l:(xl'_ﬁxt—l),ﬁ-i—ef’ t:255T

If p is sufficiently close to p, we may expect the corresponding recursive
residuals to have (under the null hypothesis) properties quite close to those
of the residuals based on the true value of p. However, there is no general
guarantee that various test statistics computed from both sets of recursive
residuals (based on p and g respectively) will have the same asymptotic
distributions [see Durbin (1970)]. Evidence obtained from such ‘approximate
residuals’ should thus be taken cautiously and it would seem important in
such a case to study the sensitivity of the conclusions to different values of p.
One possible method would be to consider a grid of values of p (possibly
inside some neighbourhood of §), do the analysis conditionally on each of
these values, and see whether the main conclusions are the same.
Presumably, if the model is correct, one of the values is the true one (or is
very close to it) and thus provides exact statistics. Consequently, if the main
conclusions of the analysis are the same independently of p (e.g. the
indication that there is indeed instability), these can be viewed as reliable.!®

°0On this issue, see also Riddell (1975), Harvey and Phillips (1979) and McGilchrist and
Sandland (1979).

'%An attractive alternative approach here would be to estimate p (as well as B) recursively
using non-linear least squares. The one-step ahead prediction errors could then be computed
and standardized. However, the recursive calculations involve some small sample sizes and thus
large sample rationalizations are not again satisfactory. The properties of non-linear estimators
are well-known for large samples only; it is not clear that the corresponding one-step ahead
prediction errors are independent, or can even be standardized appropriately, in small samples.
It would certainly be interesting to consider and study ‘non-linear recursive residuals’; however,
this does not appear to be an easy problem.
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Similar remarks apply to other types of covariance matrices (involving a
sufficiently small number of parameters to be estimated).

Finally, let us note that, in the previous developments, we always assumed
the regressor vector x, is non-stochasticc. What happens if it is more
reasonable to view it as stochastic? When the variables in the regressor
matrix X are independent of the disturbances u, there is really no problem.
Since the distribution (conditional on X) of any set of LUS residuals #=Cu
does not involve X, its unconditional distribution has the same property and,
thus, the distribution of any statistic based on # remains unaffected. The
situation becomes more difficult when X and u are not independent. In this
case, C and w are not independent and there is generally no simple way of
finding the distribution of @. In particular, this may happen if there are
lagged dependent variables among the regressors. For example, if the
postulated model is

=0y —1 +x;ﬁ+ut’ |(Xl<1,
ind (50)

u, ' NT0, 621, t=1,..,T,

we cannot state in general that the recursive residuals will have their usual
properties. Note however that, if we knew the true value of «, the model
could be reduced to the standard form by considering

Ve—ay,_ 1 =x:p+u, t=1,.... T, (51)

one could then proceed as usual and estimate recursively the vector .
Furthermore, using the full sample, one can usually obtain a consistent
estimate 4; and replacing o by & in (51), we expect (provided & is not too far
from a) that the resulting recursive residuals will have approximately the
same properties as those based on a. However, the qualifications made in the
preceding paragraph also apply in this case. Consequently, it may again be a
good idea to look at a grid of values of (p,a) around (g,d) and see whether
the conclusions are sensibly affected by such changes. Besides, it is
straightforward to see how this approach can be generalized to cases in
which several lagged values of the endogenous variable are present among
the regressors (through the relevant sensitivity analysis will become more
costly). Of course, the above suggestions are not very satisfactory, as it
appears intuitively clear that the most informative procedure is to estimate
all the coefficients recursively. They should be viewed as ways of cross-
checking observations made after computing the recursive residuals in the
usual manner. Further work has evidently to be done on these issues.
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3. The effect of parameter instability

In the previous section, we examined the properties of the recursive
residuals and some similar statistics under the null hypothesis of parameter

stability (or no misspecification). We will now look more closely at what
happens when parameters are unstable.

The intuitive basis for considering the recursive residuals in order to study
parameter instability is that each residual w, represents the discrepancy
(Staﬁuafuiz.cu} between the actual value of the depeﬁuem variable at time r
and an optimal forecast using only the sample information contained in the
r—1 previous observations. If a structural shift in the regression coefficients
takes place at time r, we expect to observe larger forecast errors starting at
time r and a tendency for a while to either over-predict or under-predict
(assuming another opposite structural shift does not take place immediately
after). If monotonic or smooth movements take place we expect to observe a
systematic tendency to over-predict (or under-predict) over the full sample

period or, at least, over subperiods.

3.1. Some general formulas

In order to see more preciscly how the behaviour of the recursive
residuals is affected by parameter instability, let us consider again the general

Brown et al. (1975) set-up,

Ve=xB,+u,
(52)

uXN[0,62], t=1,...T,

where the coefficient vectors B, t=1,..., T, are considered non-stochastic, and
let us rewrite

y=m+u, (53)
where

m=(x\By,...x7Bz). (54)
Then

w=Cy=Cm+ Cu, (55)

where C is the matrix given in (21), and
E(w)=Cm. (56)

Now, we first notice that the normality of w is guaranteed even if H, does
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not hold, for w is a linear transformation of a multinormal vector. Second,
the independence of the components of w is then assured by the
homoskedasticity assumption alone, since 67 =03 =---=0%=0" implies E(uu)
_ .2

=¢“I and

V(w)=E[Cun'C]=0>CC =021 4_y. (57)

It is easy to see that heteroskedasticity will induce dependence among the
recursive residuals. Thus, thirdly, non-constancy of the regression coefficients
affects only the central tendency of w. It is interesting to look more closely
how this central tendency is modified by the instability of g,. Since we will be
concerned here mainly with instability of the regression coefficient vector B,
rather than the variances o2, we shall, in the sequel (unless otherwise stated),
assume that

6i=03="=c2=q" (58)
Let

v,=dw,=y,—x,b,_,, r=K+1,..,T (59)
Then, using (52),

vr:x;‘ﬁr-l—ur_x:‘(x;f1Xr*1)_1X;71Yr*1 (60)

r—1
zur+x;|:ﬁr_(X;—1Xr—l)1 Z xtyt:|

t=1

r—1 r—1
=XL[Ifr—(XLer1)‘ Y xrxéﬁt}Lur—xi(XL-er-l)l Zl XUy,
=1 t=
and

r—1
E(W,)ZXLI:ﬂ,—(X;aer_l)_l Z xtx:ﬂtil/dr’ r:K+15~-'5T
t=1

(61)
Also, using (58), we have
EwY)=02+[EWw))% r=K+1,..,T (62)
We then see easily that, under H,,
r—1
E(w,)=x, I:ﬂ—(X;,IX,_ D) x,x;ﬂ]/d,zo, r=K+1,...,T,
t=1

(63)
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and

EWw})=6% r=K+1,...,T

If Hy does not hold, the expected values E(w,), r=K+1,..., T, may follow a
variety of patterns depending on the trajectories of §, and x, (t=1,...,T);
some of these may be very irregular, hence not easy to detect. Similar
conclusions relate to the expectations E(w?), r=K +1,...,T.

Nevertheless, there is a number of interesting sequences of f,,..., By which
will yield easily identifiable patterns for E(w,), r=K+1,..., T For the sake of
simplicity, let us consider the case of one regressor (K=1). Eq. (61) then
takes the form
r—1 r—1
E(w,):(x,/d,)[ﬁ,—( Y x,zﬂ[/ Y xf)], r=K+1,...T (64)
t=1 1

It is easy to see that (31 x7B,/d:_{x?) is a weighted average of the
parameters f,, t=1,...,r—1; let B, increase (decrease) in a monotonic way;
then if x, is positive for every ¢, the expectations E(w,), r=K+1,..., T, will all
be positive (negative); similarly, if x, is negative for every t, the expectations
E(w,) will be negative (positive). In particular, when f, suddenly jumps at
time t,, i.€.,

ﬁlz”':ﬁto—1<ﬁtoz'”:ﬁ%
we have

Ew)=0, r=K+1,...tq—1,
>O, r:to,...,’I:

if x,>0, for all ; the same thing happens if x,<0 and f, ., >f, . Now, if the
variable x, switches sign, E(w,) will also switch sign even when f, moves in a
monotonic way; we will examine this case further in section 3.2. When
several regressors (K =2) are present, the situation is of course more
complex; nevertheless, considering eq. (61), we can see that the expression

r—1 r—1 —1lr-1
(X;— erf 1),1 21 xtx;Bt:( z xtx;> 21 xtx;ﬂt (65)
t= ' =

is a ‘matrix weighted average’ of the vectors B, t=1,...,r—1. In a wide class
of cases, particularly when the elements of f, move in a monotonic way, we
can conjecture that the expectations E(w,), r=K+1,..., T will have the same
sign or, at least, will exhibit a regular pattern [in the sense that the
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neighbouring E(w,) will tend to be close]; also, we can expect that jumps in
the coefficient vector will induce jumps in the expected values E(w,).!!

Thus, the formula (61) shows very clearly that a wide variety of instability
patterns will affect the central tendency (means or medians) of the recursive
residuals. But not all patterns of instability will do so and one can eaéily find
trajectories of B, t=1,...,T, such that E(w)=0, r=K+1,...,T, in (61).
Nevertheless, these are very special cases and it is interesting to note that we
then have

E(v)=0, var(v)=02d2, r=K+1,..,T,
so that operating as if coefficients were stable will neither affect the
unbiasedness of the predictions nor the variances of the prediction errors

(over the sample period). In this particular sense, this type of instability may
be viewed as a less ‘troublesome’ problem.

3.2. Standardized first differences and several-steps ahead recursive residuals

Let us now look at the behaviour of the first differences of recursive
estimates and the several-steps ahead recursive residuals. In the first case, we
have

r—1
E(br—brv1)=(X£Xr)_IX,XL[ﬂﬁ(XL-er—l)_I Zl xtxiﬂt} (66)
=

r=K+1,..,T;
for each j=1,...,K,
E(Ajr)z(Djr/iDjrl)E(wr)
r—1 (67)
=(Dj,/|D,-,|)x;[ﬂ,—(X;_ X0y, x,x:ﬂ,] / d,
=

r=K+1,..,T,

and var(4;)=var(w,), so that the standardized first differences of recursive
estimates will react to parameter instability in a way similar to the recursive
residuals, except for a set of sign transformations. (Note that we set D,/|D,]|
=0, whenever D;,=0.)

Let us consider again the case of one regressor (K =1). We have

=1

br—_br*1=<xrdr/z xt2>wr9 r=K+1’~~~’T; (68)
t

"'Conditions under which a matrix weighted average has properties similar to those of a
scalar weighted average are studied in Leamer and Chamberlain (1976).
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hence
(& LY
aefl 1 N_ b1 \" 2 N2 2 N N | T 40N
val\u,.—u,_u—\x,a,/ x,} =D,0", Fr=K+1,..,1, {69)
t=1
where
r
D,=x4d.| Y xI, r=K+1,...,T (70)
t=1

r = al

4 /1 3 VIR oS s /t In ot N
A =0, = O - ()| D] =X | X )Wy F=K+1,.., I, )

(where x,/|x,|=0, when x,=0) are independent normal with variance ¢ and
mean

sy = 5 (5 s 5]
Tkl T\ & AT
(72)
ixril— ‘r—1 fr—1 2\_‘
=7 ﬂr—_ thzﬁt th) B r=K+1,...,T
dr =1 t=1

Notice that, if f§, increases (decreases) in a monotonic way the expected
values E(4,), r=K+1,...,T, will all have the same sign [in contrast with
what can happen for E{w,j], a pattern which should be relatively easy to
detect. Therefore, in such a case, looking at the sequence {4,:r=K+1,...,, T}
may be much more revealing than looking at the recursive residuals.

As for the k-steps ahead recursive residuals, we can see easily that

r SHN
s Y_/1/1 yol o IS "2 v V-1 o 7770
LWy r)—'U/“k,r}erPr"(Ar—k r—k) 2, xrszzJ- (/3]

t=1

In the one regressor case, this formula takes the form
PEGETE
— 2 2

E(wk,r)_'(xr/dk,r) ﬁr'— Z X; :Bt ya X; - (74)

L \= &

As in (61) and (65), the expression in brackets in (73) and (74) is the difference
between the current value of f, and a weighted average (or ‘matrix weighted
average’) of the past values of B,; the only difference is that the weighted
average runs only up to k periods before the current period r. In a large
number of situations, we can expect these expected values E(w,,), r=
K+k,..., T, to exhibit wider (and more easily observable) movements than
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Ew,), r=K+1,...,T, because preciscly of the greater distance in time
between B, and the weighted average of past values of f,. Nevertheless, a
major difference here is that the k-steps ahead recursive residuals are not
independent under the null hypothesis (and, a fortiori, under the alternative)
and subsets must be considered if one wishes to use independent residuals.

3.3. The case of random coefficients

It is interesting to look at the way the recursive residuals react to non-
systematic or haphazard movements in the regression coefficients. Let us
consider again the case of one regressor,

ye=xpotu, u~N[0,6%], t=1,..,T (75)

Assume, for example, the parameters f,..., fr were generated by a random
walk process independent of the u,’s,

Bo=Bir+e, t=1..T (76)

where é;,..., & are iid. random variables with mean zero and variance o2
and B, is given.'? From (61) we have, given f,..., 87,

r—1 r-1
E(Wr)=(xr/dr)|:ﬂr~< Z xtzﬁt/t 1xtz>]’ (77)

t=1

hence
[~ r r—1 t r—1
E(w,)=(x,/d,)| Bo+ Zles-{ 1X?<Bo+ Zles)/ 1X?H
L 5= t= s= =
B r—1 r—1 r—1
—( /) 5+ Y {1—( <2 / xf)}es] 79)
| s=1 t=s t=1
u r—1
=(x,/d,)| &+ a,ssSJ, r=K+1,...T,
| s=1
where

a,,=1 —<ri1 xf/ril xf) (79)

t=s

'2This scheme has been considered by several authors, e.g, Cooley and Prescott (1976),
Garbade (1977), LaMotte and McWhorter (1978).
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Then, if we take the expected value of E(w,) over fi,..., B, conditional on
Bo, 1e., over e=(gy,...,er), We get

Ew)=0, r=K+1,..,T (80)

Therefore, if the sequence f,,..., B exhibits a trajectory similar to that of a
random walk, we cannot expect the recursive residuals to tend to exhibit a
uniform pattern of signs (i.e, to indicate a tendency to systematically
overpredict or underpredict). The problem is not corrected if, instead, we
look at 4,, r=K+1,..., T, for, using (71),

E(4)=(x/|x)Ew)=0, r=K+1,..,T 81)

Now let us consider the products w,w,.,, r=K+1,...,T—1. Under the
homoskedasticity condition, the variables wg, ,,...,w; are independent (for
Bo, ..., By fixed) whether the regression coefficient is stable over time or not.
Hence, given B,,..., fr, we have

E(W,W,+1)=E(W,.)E(W,.+1), r=K+17--*9 T—-1. (82)

Then, taking the expected value over ¢ on both sides of (82), we have
(conditional on )

Xy Xp 11 ' 4
E(W,.W,+1)=E 'd_d &+ Z Al N &1t Z Ay +1)ss
I3 & rUr4+1 s=1 s=1

(83)

-1

Xp Xp+ 1 " 2

=z i1yt Y, Grslg sy |02, r=K+1,..,T—1
dd.,, =1

Clearly, if x, is a positive (or negative) variable,

E(ww,,)>0, r=K+1,..,T—1,

ie, we can expect the recursive residuals to appear positively serially
correlated. The same thing can also be expected if x, can change sign but is
strongly serially positively correlated. Similarly, if we consider the sequence
4, r=K+1,...,T, we have, using (72),

r—1
E(ArAr+ 1)=(lx,||x,.+1'/d,.d,.+ 1)[a(r+ l)r+ larsa(r+1)s:l0'3‘ (84)
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Thus one can expect changes in the parameter estimates will appear
positively serially correlated when the parameter f, has followed a random
walk-like path.

Another interesting instability pattern to consider is the one where f,
fluctuates randomly around a fixed mean,

Bt=B+8n t=1:--'7’1—; (85)

where ¢,,...,e; are iid. random variables with mean zero and variance o2,
independent of the u,’s. Then, given §,,..., 8,

t=1 t=1

E(w) =(x,/d,)[e,—('f <2, / b x?)], rmK+1,..T 6

Hence, if we take the expected value of E(w,) with respect to e=(g,,..., &),

Ew)=0, r=K+1,..,T, 87

so that we cannot expect the recursive residuals will tend to exhibit a
uniform pattern of signs. Similarly,

E(4,)=0. (88)

Instead, let us consider the products w,w, ., r=K-+1,...,T—1,

r—1 r—1 r r
E(Wrwr+1)=xrxr+l[8r_( Zl XtZSt/ Zl xtz)][gr+l~( 21 xtzsv/ 21 x?):l
t= t= = =

39

r

(15501 [z x?(s,—a,)][ Y X364 —e,)] ,

=1

where s5,=Y'_1x?, r=K+1,..,T Hence, taking the expected value of
E(w,w,, ;) over e=(gy,...,&r),

r—1 r-1
E(wrwr+ 1)=(xrxr+ l/srsr+1) I: z X;‘\G:—x,? Z xtzaaz:l
8 t=1 t=1

r—1
=(x,x,+1/s,s,+1)[ 5 xf(x?—xf)] o2.
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Therefore, if x, is a positive (negative) variable which grows monotonically
over time (or is close to it),

E(ww,,)<0, r=K+1,..,T. (91)

Similarly,

r—1
E(ArAr+ 1)=(|xr| 'xr+1l/drdr+ lsrsr+1)l: z xtz(xtz—xrz):laez <0a (92)
& r=1
r=K+1,...,T,

if x, grows monotonically. Under such circumstances, we can expect the
recursive residuals w, or the differences 4, to appear negatively serially
correlated. Finally, it is also easy to see that, if §, changes in a monotonic
way, the recursive residuals w, (if x, does not change sign) and the changes 4,
in the parameter estimate can be expected to appear positively serially
correlated.

Therefore, under a wide variety of instability schemes, the recursive
residuals can be expected to appear serially correlated, a result in accordance
with intuition.

3.4. Parameter instability and specification errors

We mentioned in section 1 that the appearance of parameter instability
may be interpreted quite generally as an indication of misspecification. Let us
look a bit more closely at the relationship between the two problems
[following an approach similar to that of Theil (1957)].

Assume the true relationship is

ye=uy+v, v "~N[0,67], t=1..T (93)

where, at time ¢, z, is a G x 1 column vector of nonstochastic regressors, y is
a vector of regression coefficients, and v, is a disturbance term. Now suppose
an investigator tries to estimate the relationship

n=xp+u,. 94)
Then the expected values of the recursive estimates of § defined in (5)-(6) are
Eb,)=(X,X,)"'X,Z, r=K,..,T, 95)
where Z,=[z,,...,2,]- Since the matrices X, and Z, depend on r, the

expected values E(b,) will in general vary with r, hence the appearance of
parameter instability. For example, if the misspecification is an omitted
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variable, i.e., if the true relationship is

v o—+'R 1~ A . 1 T QLY

Ne=XPot+ Xypy T U, t=1,..,1, (70)
the expected values of the recursive estimates in (95) take the form

E(b,)=Bo+p.B:, r=K,..,T, ©7
where

p=(XX)'X.X,,, r=K,...,T, (98)

and X,,=(x,4,Xy2,.-.,X;,). Each vector p, may be viewed as the regression
coefficient vector obtained by regressing the missing variable X;, on X,. The
observable pattern of instability depends of course on the time path of j,,
r=K,..., T, and thus on the nature of the relationship between x,, and x,.

4 [ L R
4. lvieuoas

4.1. The basic descriptive statistics

The recursive estimation process described in section 2 enables one to
generate several possibly revealing sequences of statistics which may be listed
and graphed by the investigator for exploratory purposes. The main ones
are:

(1) the recursive estimates for each regression coefficient in the model;

(2) the prediction errors (one- and several-steps ahead);

(3) the standardized prediction errors, or recursive residuals (one- and
several-steps ahead);

(4) the standardized first differences of recursive estimates for each coefficient
in the model.

The listing and graphing of the recursive estimates for each regression
coefficient give an idea of the direct impact of each observation on the
estimated value of each coefficient and of the importance of the fluctuations.
The empirical distribution of each set may be examined; the corresponding

variances, standard errors and coefficients of variation may be computed as
indicators of the |mnnrmnr‘9 of the fluctuations, In particular, important

jumps and trends 1ns1de the sequences should be noted, since they point to
possible instabilities.!?

3In many instances, it may be practical to draw the graphs of the recursive estimates after
dropping those based on very few observations at the beginning, since ‘weird’ values are easily
met at this stage. Also, each recursive estimate may be accompanied by a confidence interval in
UIUCK to assess Detter iIlC blglllll&aﬁw Ul lllC ﬂuctuatloﬂs Fllldll)’, one suuunu UC COIISCIUUB lIld.l
as the sample becomes larger, the impact of each additional observation is likely to appear

smaller and smaller.
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The various sequences of prediction errors (one- and several-steps ahead)
have a great intuitive appeal, since they provide direct evidence on the
performance of the entertained model as a prediction instrument. Some
workers will also find useful to express these as a percentage of the
observation predicted. On the basis of these sets, mean absolute or square
prediction errors, root mean square errors, etc. may be computed as
indicators of this performance. These may be particularly interesting when
two or several models for the same dependent variable are to be compared.
In every problem, of course, we don’t have to compute all possible sets (in

terms of steps ahead) but it may certainly be of interest to look at a few of
thPm for PYﬂmnIP if two models are comnared, thev mav rank differentlv

.................. ANOCECs LROINNPRICE, MLy gy Ialllk LLICICIYY

depending on the number of steps considered, a fact potentially relevant with
respect to possible uses of the two models in prediction.

The main difficuliy with the uniransformed sequences of recursive
estimates and prediction errors is that their behaviour under the null
hypothesis is difficult to appreciate. In particular, we know that the
prediction errors have the same zero mean but, in general, different variances.
By standardizing them as described in section 2, we obtain the various sets of
recursive residuals. Of those, the (one-step ahead) recursive residuals are
clearly the easiest to interpret and to use for testing purposes, since we

expect them to be normal white noise with mean zero. Given this fact, a
Q|mnlp ornnhmﬂ] sma]vcic may be nlntP ereﬂhno AQﬂP(‘fQ like a cvefpmnh(‘

tendency to over- predict (or under -predict), breakmg points (1.e., sudden
jumps), runs of over- predictions (or under- predictions) etc. should be noted.
ll can dlbU UC lﬂStrULllVC to IUUK at on¢ or a ICW sets ()l K Steps dl’lCdU (K>2)
recursive residuals. These are more difficult to interpret because the
independence property breaks down (between residuals distant by less than k
periods). Nevertheless, they tend frequently to exhibit wider and more
recognizable movements than the (one-step ahead) recursive residuals. The
behaviours of these various series can also be cross-checked; breaking points,
turning points, runs of over-predictions (under-predictions) can be compared
in order to ascertain the types and timing of the structural shifts. When
working with quarterly data, an examination of the four-steps ahead
recursive residuals may be particularly relevant in relation to instabilities
linked to seasonal phenomena Similarly, the behaviour of the backward
recursive residuals (one- and severar-steps aucau; can be examined and
compared with that of the forward recursive residuals. As indicated
previously, these may be especially useful in detecting structural change at
the beginning of the sample period (the first K forward recursive residuals
don’t even exist) and in identifying points of discontinuity.

Finally, like the recursive residuals, the standardized first differences of
recursive estimates are independent N[0, 6] under the null hypothesis, which

makes them also very convenient for examination and testing. They have the
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same absolute values as the recursive residuals but, as shown in section 2.3,
they may exhibit different sign patterns, revealing instabilities in cases where
the recursive residuals are not instructive.

Although a mere graphical observation of the statistics described above
can be very informative as an exploratory device, it appears useful to develop
a number of formal significance tests.

4.2. The Brown-Durbin—Evans (BDE) tests

In their pioneering paper, Brown et al. (1975) proposed two tests based on
the recursive residuals. The first one, the CUSUM test, involves considering
the plot of the quantity,

r

W=(1/6) 3 w. r=K+1..T, (99)

t=K+1

where 6% is the unbiased estimate of 62 (based on T observations). Under
H,, probabilistic bounds for the path of W, can be determined and H, is
rejected if W, crosses the boundary (associated with the level of the test) for
some r. This test is aimed mainly at detecting ‘systematic’ movements of B,.
Against ‘haphazard rather than systematic’ types of movements, Brown et al.
(1975) proposed a second test, the CUSUM of Squares test, which uses the
squared recursive residuals w? and is based on a plot of the quantities,

r T
S‘,=(Z W,2>/S2 where S*= Y w7, r=K+1,..,T  (100)
t t=

=1 K+1

Again the null hypothesis is rejected if the path of S, crosses a boundary
determined by the level of the test.

These tests are of the goodness-of-fit type in the sense that they seem
applicable against a wide variety of alternatives. In fact, Brown et al
mention no specific alternative. We can expect the sequence of the
cumulative sums W, r=K+1,..,T, will cross the boundary when the
recursive residuals show over some sub-period a sufficiently strong tendency
to be positive (or negative), e.g., when a particularly long run of under-
predictions (or over-predictions) takes place, or a few relatively big prediction
errors occur. It relies heavily on the sign behaviour of the recursive residuals.
As to the CUSUM of Squares test, it does not use information concerning
the signs of the recursive residuals. The plot of §, r=K +1,...,T) may be
expected to cross the boundary in the sub-periods in which the recursive
residuals are unduly large with whatever signs. Thus the BDE tests merge,
although in a way difficult to specify, information concerning such properties



J.-M. Dufour, Recursive stability analysis 59

of the recursive residuals as: deviation from the zero mean, autocorrelation,
heteroskedasticity.

It may be noted here that these tests can be applied in principle to any set
of LUS residuals. In particular, we can apply them to each set of
standardized first differences of recursive estimates (as a way of assessing
whether the path of the estimates of each coefficient deviates significantly
from the one expected under the null hypothesis) and to any subset of the k-
steps ahead recursive residuals (k=2) selected in such a way that it contains
only independent residuals.

Finally, a number of drawbacks of the BDE tests may be mentioned. First,
it is important to note that the points where the CUSUM graphs cross the
significance boundaries do not generally coincide with points of discontinuity
in the coefficients, so that the examination of these graphs is no substitute to
a direct consideration of the recursive residuals (and related series). Second,
the null distributions supplied are only approximate. Third, the tables
provided contain only a very small number of significance levels, which
makes the computation of p-values (marginal significance levels) potentially
burdensome. Fourth, it is not clear what kind of alternative is considered.
Consequently, there appears to be room to consider other test statistics.!*

In the sequel of this section, we describe a number of hopefully simple and
complementary significance tests; they are exact (except for one) and can be
performed using already existing quite extensive tables; most of them are
based on fairly intuitive characteristics of the recursive residuals (and other
similar sequences) and correspond to explicitly defined (although still very
wide) alternatives; furthermore, these usually have a direct interpretation
in terms of the predictive performance of the model considered.

4.3. Location tests

As pointed out in section 2, certain types of instabilities, particularly of a
monotonic type, may lead to systematic under-prediction (over-prediction) in
the recursive simulation process. This suggests testing the null hypothesis
Ew)=0, t=K+1,...,T, versus E(w)>0, t=K+1,..,T, or Ew)<0, t=
K+1,...,T The standard test for doing this is the ¢-test based on the
statistic'®

t=./T—Kw/s,, (101)

“For further discussion of the CUSUM tests (their power especially), see Farley et al. (1975),
Schweder (1977), Garbade (1977), Deshayes and Picard (1979, 1980). The relationship between
the CUSUM of Squares test and the Chow (1960) tests is also discussed by Harvey (1976) and
Fisher (1980).

5This test (after appropriate reordering of the observations) was suggested by Harvey and
Collier (1977), in the context of testing for functional misspecification (the “¥-test”). Harvey and
Phillips (1977) also proposed to use it against random coefficients alternatives.
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where
T
w= Z w /AT —K), (102)
t=K+1
and
2 d 2
s5= Z (w,—Wy*/(T—K-1). (103)
t=K+1

Under H,, f follows a Student-t distribution with 7—K—1 degrees of
freedom. The null hypothesis is rejected if |t]=c, where ¢ depends on the level
of the test. This test can be viewed as a check against systematic under-
prediction or over-prediction. More generally, it can be viewed as a test
bearing on the average of the expected (standardized) prediction errors,

T
o A TR YL e PPN
Ew)= 2, EWw)I —K), (1u4)
t=K+1

+

we test E(w)=0 versus E(w)+#0.

If all the expected values E(w,) are equal, ie.,
E(wg+1)=E(wgiz)=""=EWwp)=4, (105)

a t-test based on (101) is either uniformly most powerful (in the one-sided
case) or uniformly most powerful unbiased (in the two-sided case) among the
tests based on the recursive residuals. This is a consequence of the fact that,
in this case, the random variables wy, ,...,wy are iid. N(4, ¢?) and our
problem reduces to testing Hy:4=0 [see Lehmann 1959, pp. 163-168].
Clearly under the condition (105), the t-test will dominate the CUSUM tests.
But, of course, there may hypothetically exist situations where the CUSUM
test will be more powerful.

Also, in cases where (105) does not hold, it is of interest to note that s2 is

(T-K—-1s:=wAw=tr Aww’, (106)
where A is the idempotent matrix defined by

A=I;_y—(T—K) i, (107)
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and 7 is the (T— K) x 1 unit vector i=(1,1,...,1). Hence

E[(T—K—1)s2]=tr A[cov (w)+ E(w)E(w')]
—tr (62T, )+ tr AE(w)E(W) (108)

=03 T~ K —~1)+[AEW][AE(w)].
Therefore,

E(s2)=0+([AEW)][AEmW)DAT — K ~ 1)>a?, (109)

unless E(w)=0 or E(w) has all its components equal. We conclude that,
unless very special conditions hold, s2 will tend to over-estimate o2 under the
alternative hypothesis. Clearly this will tend to reduce the power of the t-test
and, as things stand, nothing can be said concerning the optimality of the -
test [unless (105) holds].

Now we can note that, under the normality assumption, the mean and the
median of each recursive residual is the same. Under the null hypothesis of

narameter ctahility the recureive recidnalg are indenendent and
paraimcoor Stad Oy, il ICCUISsIVO IC5iGuais alC MGUpPCnGenu altG

symmetrically distributed with median zero. This suggests testing H, by
applying to the recursive residuals any test in the family of linear rank tests
for symmetry about a given median [as described, for exampie, in Hajek
(1969, ch. 5)]. While the r-test given above is based on considering the mean
value of the recursive residuals, the linear rank tests stress the symmetry of
the distributions with respect to zero. Furthermore, the rank tests do not
require the estimation of the variance ¢?, thus avoiding a potentially
troublesome problem as pointed out above.

More specifically, if Z,,...,Z, is a random sample, a linear rank test for
symmetry about zero uses a statistic of the form

S= 3 uZ)a(R)), (110)

where u(*) is an indicator function such that

and
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is the rank of |Z| when |Z,],..

wl|Z | are ranked in increasing order, and a,(’)

is a score function transformmg he ranks R/
Tf ane adonte tha conctant ceare functinn 2 (M —1 wa hava
A1 Vilw uu\JPLD ULllWw WULI0LAULIL DVUL G TUlivLivis u"\’}— 1, YU liave
n
5= uz), (111)

i.e., S is just the number of non-negative Z,’s (the test statistic associated with
the sign test). If a,(r)=r,

A7 D+ (11N
ULy, (112}

[\1=

<
S =
t

i
-

ie, S is the sum of the ranks attached to the non-negative Z’s (the Wilcoxon
statlstlc). If

where |V|"’ is the rth order statistic from the absolute values of a N(O,1)
random sample of size n, S is the statistic of the Fraser test for symmetry
[see Hajek and Sidak (1967, pp. 108-109)]. Other tests can be generated by
choosing other score functions.

The various score functions yield tests with differing powers depending on
the type of density underlying Z,,...,Z,. Assume Z,,...,Z, are independent
and have a common density f(7—/ﬂ where f(-) is a functlon symmetric
about zero, and consider the problem of testing Hy:4=0 versus
H,:4<0 (H}:4<0). In this case, optimal scores can be shown to exist, in the
sense that the corresponding test with critical region of the form {S=¢} (or
{S=¢'}) is the locally most powerful rank test and is asymptotically optimal.
For example, the Fraser test is optimal if the underlying density f(-) is of
normal type, while the sign test is optimal when (') is of double-exponential
type and the Wilcoxon test is so for f(-) of logistic type. For further details,
the reader is referred to Hajek and Sidak (1967, pp. 108-109, and chs. 11,
VII).

Under the assumption that Z,,...,Z, are independent random variables,
having symmetric probability density functions (pdf’s) with median 4=0, the
distribution of the test statistic S is completely determined.!® Let us
furthermore assume that the score function is non-negative: a,(r)=0 for any r

{which 1c the cace for the three narticular tecte mentioned q]'\r\vp\ Then. to
{wnicn 1s the case Ior the three partcuiar (ests mentioned above). 1hen, o

test the null hypothesis 4=0 against 4>0, we use a one-sided crmcal region

1Note that it is not necessary to assume that they have a specific distribution nor even the
same distribution.
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of the form {S2>c}; similarly, against 4 <0, we use {S<c'}. And, to test A=0
against A=#0, we use a two-sided region {S2=c¢ or S<c'}. The critical points ¢
and ¢’ depend on the level adopted for the test.

In the case we are considering, we have n=T—K and Z,=wg,,,...,
Z,=wy. Under the null and the alternative hypothesis, Wg .|, Wg42,....,Wp
are independent and normally distributed; hence they are independent with
symmetric pdf’s. Under H, they have a common median equal to zero.
Therefore the non-parametric tests mentioned above are applicable to test
H, against systematic shifts in the parameters inducing the recursive
residuals to have positive (or negative) medians. The problem is now to

chaongse ane tegt from the familv nronogced The gion tagt ic verv easy to
CACO5C ONC G660 ITOM Ul ialllliy PIropoOsCu. 1400 GIgh sl 15 VOIY asy

perform but is likely to have relatively low power, given in particular that we
assumed the disturbances are normally distributed. The Wilcoxon test
combines ease of application with a relatively high power when the
underlying distribution is normal; in situations where the ¢-test is optimal
(normal random sample) the efficiency of the Wilcoxon test relative to the ¢-
test is around 0.96 [see Lehmann (1975, p. 174)]. We mentioned previously
that, for the problems we consider, we can know for sure that the t-test is
optimal only if (105) holds. Since a2 is over-estimated in other cases, it is not
impossible that the Wilcoxon test has greater power against certain
alternatives even when the recursive residuals are normally distributed since

it does not reguire an estimate of the variance. For the case in which

i GUCS LU (Uit all Woulliaww U1 ulb Yalianis. [ 81 o g 13119281

Z.,...Z, are iid. normal with mean 4 [in our situation, this occurs if (105)
holds], the Fraser test {S=c} can be shown to be the locally most powerful
rank test for Hy:4=0 versus 4>0 and to be asymptotically optimal [see
Hajek and Sidak (1967, p. 109)]; therefore, it is superior to the Wilcoxon test
in cases where the t-test is optimal. Nevertheless the Fraser test is
computationally somewhat less convenient than the Wilcoxon test, although
the normal scores in (113) have been tabulated, and the difference in power is
generally small [see Klotz (1963)].

We conjectured above that a rank test having relatively good power in the
normal case, when the t-test is optimal, could be superior to it for certain

pnatterns of instability hpr‘ancp nf fhp over- egtimation of the variance Nnnl a

Porilliils O 1stavlinny vllause (8319} voiTUouiiauUzl Un b Valiqiivi, i

standard property of rank tests is their robustness to non-normality and the
presence of outliers. Under H,, the recursive residuals constitute a set of
mutually orthogonal iransformations of the disturbances, i.e.,

w=Cu where CC'=I;_ .

Under the normality assumption, this implies that the elements of w are
independent. The normality assumption is crucial for independence to hold,
although the recursive residuals will generally be uncorrelated [assuming
simply that the disturbances have finite second moments and E(uu')
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=0?1;].'7 The t-test and the rank tests proposed above are all exact under
the normality assumptlon What happens if this assumptlon does not hold,
e.g, if we assume the disturbances u, t=1,..,T are iid. with a pdf
symmetric about zero? In particular, one can st111 reasonably conjecture that
the rank tests will be more robust to non-normality than the ¢-test.!®

Finally, we can note that the tests above (t-test and rank tests) can be
applied to any set of LUS residuals, in particular the standardized first
differences of recursive estimates and appropriate sets of k-steps ahead (k= 2)
recursive residuals. This remark also applies to the tests described in sections

44 to 4.7. Furthermore, it is interesting to notice that the t-test holds for

normality and other spherical symmetric distributions. We know that

u~ N[0, ¢%I;] and w~ N[O, 6?I;_] for given o. Then, if ¢ has pdf p(o'lﬂ),
where 0 is a vector of parameters, we have

plu|6)= plu] o)p(c | 0) do, (113)

and, similarly, p(w|6)={p(w|o)p(c|0)ds. Since the statistic t=/ T—KW/s,,
conditional on ¢, follows a Student-r distribution not involving o, it will
follow the same distribution whenever the pdf of & has the form (113).}* This
extends considerably the range of applicability of this test. A similar remark
applies to the rank statistics considered in this section as well as to all the
test statistics described in sections 4.4 to 4.6.

4.4. Regression tests

The t-statistic described in section 4.3 can be viewed as an outcome of the
regression of the recursive residuals on a column of 1’s; i.e.,, using the modeli

('G
l"_i
=2
q
I—y
-
)
—_
-
[,
D
=

w=1iv+g
I -]

where v=T—K and i=(1, 1,..., 1), we test the null hypothesis y=0. One
can see easily that the standard likelihood ratio test for this null hypothesis
turns out to be based on precisely the same ¢-statistic as in (101).

"Indeed, under the assumption that u,,...,u; are independent, the independence of the
recursive residuals will imply the normality of u,,...,u;. This follows from the fact that the
recursive residuals are linear transformations of uy,..,u; and from the Darmois-Skitovic
theorem [see Kagan, Linnik and Rao (1973, pp. 84-91)].

8These points would clearly need further investigation, e.g. via Monte-Carlo experiments. It
may be noted also that, although independence (or norma]ity) is here a sufficient condition for
the rank statistics to follow the standard distributions under the null hypothesis, it is not a
necessary condition.

19For further details, see Zellner (1976).
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This suggests the following generalization. Consider the regression
relationship

w=Zy+e, &~N[0,6°1], (115)

where Z is a vxg non-stochastic matrix of rank g<v.?° Under the null
hypothesis we have y=0. We can test y=0 via a standard F-test: the null

rpothesis is rejected if F>c, where

F=§(Z'Z)j/gs* (116)
follows a F(g,v—g) distribution under the hull hypothesis,

F=(2'Z2)"'Z'w, (117)

s?=(w—ZH)(w—Z)/(v—g), (118)

¢ depends on the level of the test. We can also test various linear

rpcf ictions on Y via the r‘nrrpqnnndlno F-tests

This rocedure provides, of course, a very wide class of tests and the
problem in practice is to select a meaningful set of regressors Z. For
example, If one expects instability (or an adjustment) to take place over a
given subperiod I=[ty,t,], where K+1=Zt,<t; <7, we may consider a
dummy regressor Z,, of the form

Z,=1 1if tel,

(119)
=0 otherwise;
then, using the regression
We=Z, e &~ N[0,6%], t=K+1,...T, (120)

we test y; =0. Clearly, by introducing several dummies, we can allow for two
or more ‘regimes’. It can be noted also that we are not constrained to
consider continuous (or uninterrupted) sub-periods. An interesting example is
the one where we have quarterly data and we think the instability is linked
to seasonal phenomena; then we could consider four dummy variables Z,,,

20A similar approach was suggested by Zellner (1978) in order to obtain the sampling distribution
of studentized regression residuals.
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Z,y, Z5,, Z,, such that

Z,=1 if time ¢t is the jth quarter of a year,

. (121)
=0 otherwise,
and the corresponding regression relationship
we=Z\y1+Z2y2+ Zaivs+ Zayate, t=K+1,..,T (122)

The signs of the coefficients may also be of interest and their significance can
be assessed via standard t-tests.?!

Let us consider once more the case where the model analyzed has only
one regressor. Then, rewriting (64), we have

Ew)=Z,y, r=K+1,...,T (123)

where

yr:ﬁ7_<ril xfﬁt/ril xt2>, Zr:xr/dr' (124)

t=1 t=1

From this expression, we can see that the mean of w, is proportional to x,/d,.
This suggests considering the regression relationship

w,=(x/dy+e, r=K+1..,T (125)

and testing whether y=0. The least squares estimate of vy is

T T
v”=< ) err>/< > Z?>, (126)
r=K+1 r=K+1

hence, using (123),

T T
e=( 3 )/ £.2) 027

2!'For a somewhat similar approach, in the context of Bayesian analysis of regression error
terms, see Zellner (1973, 1975). Another way of testing for seasonality would be, of course, to
introduce Z,, Z,, Z, as regressors in the basic regression model and test their significance (using
T observations). Such a test would be uniformly most powerful unbiased if the seasonal
instability is accurately depicted by such dummies (bearing on the constant term) and thus at
least as good as the procedure based on the recursive residuals. Nevertheless il the seasonal
instability involves other regression coefficients or is of a more complex type, nothing can be
said concerning the relative merits of the two methods.
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Thus 7 is, in general, an estimate of a weighted average of the coefficients v,,
r=K+1,...,T, and a test of y=0 provides evidence concerning more or less
systematic shifts in the value of f,. Alternatively, we could consider the
regression

w,=x,9,+¢&, r=K+1,..,T (128)

and test y, =0.
The test based on (125) extends straightforwardly to several regressors;
consider simply the regression

w,=Zy+&, r=K+1,..,T, (129)

where Z,=(1/d,)x, and the test y=40. Using (61), we can see that

T -1 T
Z,Z:> ( ) Z,Z,y,), (130)
K+1 r

E(i):(r_Z

where 7 is the least-squares estimate of y and

T

?r=ﬂr*(X£~1X,~1)1( > lxtxiﬁt) (131)

t=K+

so that 7 is an estimate of a ‘matrix weighted average’ of the vectors y,, r=K
+1,..., T Alternatively, we could also consider the regression

W,=X.9; + &, r=K+1,...,T, (132)

and test y, =0.

Finally, it is interesting to note that an analogue of the ‘Regression
Specification Error Test’ (RESET) proposed by Ramsey (1969, 1974) against
various specification errors can be performed using the recursive residuals
instead of the BLUS residuals. Let us assume, in a way similar to Ramsey,
that the mean of w= Cy can be approximated by

E(w ' X)=Clogi+opto1 + 02+ ]

(133)
=0£0Ci+ OCIC[lm +a2Cﬂ02 +-,

where po;=E[H?| X1, pP =3, $i,....5}) and p=XP is the vector of the
fitted values (based on the full sample). Under the null hypothesis, ay=a,
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=u,="--=0. This suggests to run a regression of the type

w=opi+oq+oq,+ " +e,
(134)
e~N[0,6%1;_4],

where ¢;=CyY" "), and to test whether oy =2, =a,=-"-=0. The standard F-
test will be valid here, for w=Cy and y are independent. Nevertheless, this
test appears to be somewhat difficult to interpret in the context of parameter
instability.

4.5. Runs tests

We mentioned in section 3 that parameter shifts will tend to be associated
with runs of either under-predictions or over-predictions in the recursive
simulation process. This suggests considering the sequence of the signs
SWk 1), ... S(Wy), where

s(x)y=+ if x=0,
=— if x<0,

as a basis of analysis.

A first approach then consists in counting the number R of runs in this
sequence. If there are too few of them, this may be viewed as evidence that
one or a few parameter shifts took place over the period considered; this
suggests a critical region of the form {R<c}. It can be shown that R—1~
Bi(N —1,%), where N =T —K, so that we can compute easily P[R=c] for any ¢
[see Dufour (1979, 1981a)].

Now, quite often, an especially long run of under-predictions (or over-
predictions) points to the presence of a shift after a given point (although,
except for the run in question, the rest of the sequence may seem ‘clean’).
This suggests a second approach consisting of considering the length of the
longest run (of any sign) in the sequence. One then computes the probability
of getting at least one run of this length or greater. If it is thought too low
(smaller than some critical number corresponding to a significance level «),
the null hypothesis may be rejected.

Tests based on the length of the longest run were studied by Mosteller
(1941), Bateman (1948) and Burr and Cane (1961). Assume there are, in our
sequence, r;+’s and r,—’s (where r,+r,=N). Then, from Bateman’s
results, the probability that the length g of the longest run of any sign be
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greater than or equal to g, is (assuming r, 2r,)

P[gggo|r1,r2]=P[g§g0]r2,r]]
) (rl‘lg*'l
=(1/C5vl)i Y [Rott,gzgo)+oplt+1.1,2280)
t=1
+¢([,f+17g§gon I gosrsN-1, (13
=1 if r,=Nz2Zg,,

=0 otherwise,

where Cy = N!/r (N —r)!, with C;=0 whenever x>n or n<0, and

21

t1—1
d)(tl’[Z’gng):Crll71C,2-,1

2 M u 1 1
e
*IDI|J:O(_WC{.»Cr.-fj(gofl)flJ
(136)

for |t,—t,|<1, t,Sry, 5,=r,,

=0 otherwise.

This probability is conditional on r; and r,. Now, it is easy to see that the
probability of (ry,r,) is

P(rl,r2)=P(r1,N—rl)szv‘(%)N, (137)

so that the unconditional probability that g=>g, is

N
P[gigo]:“an[gggofrbN_rl] P(ri,N—r;)

N (138)
z(%)N z C;\}P[gggoirlaN_rll

r,=0

In our opinion, runs tests provide an especially simple and intuitive way of
assessing the ‘significant’ character of what one sees in the graph of the
recursive residuals.
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4.6. Serial correlation tests

In section 3, we saw that a number of instability patterns are likely to
produce ‘serial correlation’ among the recursive residuals. This, of course,
suggests testing for this property. More precisely, we wish to test

E(ww, 4+ ,)=0, t=K+1,..,T—1, (139)

versus
Eww,,)>0 (or<0), t=K+1,..,T—1, (140)

or, more generally,

E(w,w,,,)=0, t=K+1,...,T—k, (141)

VErsus
Eww, >0 (or<0), t=K+1,..,T—k (142)

where 1<k<T—K-—12% Alternatively, we could also consider medians
(Med) instead of expected values (E) in (139)(142).
A first way of doing this involves examining the correlogram

T—k T
o=y, w,wHk/ Y owho k=12,... (143)
=

t=K+1 K+1

Under the null hypothesis, the first m autocorrelations r=(ry,r,,...,r,), for
T—K large and m small relative to T—K, follow approximately a multi-
variate normal distribution [see Bartlett (1946)]. Also the autocorrelations
r., k=1,...,m, are uncorrelated with variances

(T-K)—k 1

V=T K32 T-K

(144)

Consequently, each correlation r, {such that k is small relative to T—K) can
be used to assess the dependence between the recursive residuals at lag k.

Furthermore, if one wants an overall check for the hypothesis of
independence, one may use the Ljung—-Box statistic

O=N(N+2) Y (N—k)"'r} where N=T-K, (145)
k=1

2?Under the assumption of homoskedasticity of the disturbances u,,...uy, we have here
E(ww, . )=EW)E(w, ), t=K+1,..., T—k; thus, rigorously, what we are checking is whether
the cross-products of the means so defined tend to have consistent sign patterns. See section 3.5
for some examples of instability patterns producing such ‘serial dependence’.



J.-M. Dufour, Recursive stability analysis 71

which follows approximately a y2 distribution under the null hypothesis [see
Ljung and Box (1978)].

The above tests have the inconvenience of being asymptotic. An exact test
is obtained by considering the modified von Neumann ratio

VRz[(N—l)“ 5 (w,ﬂ-wt)Z]/[N—l ‘i ws].” (146)

t=K+1 K+1

When VR is too small (large), this points toward positive (negative) serial
correlation between residuals distant by only one period. Significance limits
for N<60 may be found in Theil (1971, pp. 728-729). Nevertheless, this test
also has an inconvenient aspect, for it centers strictly on dependence at lag 1.
A generalization applying to longer lags is not apparently available.

It would seem desirable to have a set of checks which are both exact (like
the modified von Neumann ratio) and applicable to assess the dependence
between observations spaced by an arbitrary lag k=1 (like those based on
the sample correlation coefficients). Such tests are obtained by applying
linear rank tests for symmetry to the sequences {Z,=ww, ., t=K+1...,
T—k}, k=1,2,.... These are based on statistics of the form

T—-k

Se= Y, u(Z)a R), (147)

t=K+1

where n=N—k, u(-) and qg,(-) are defined in (110). A large (small) S, then
points toward positive (negative) serial dependence. For certain score
functions, like a,(r)=1 (the sign score) or a,(r)=r (Wilcoxon score), the null
distribution of the test statistic S is well tabulated. For further details, the
reader is referred to Dufour (1979, 1981a). In view of the good performance
of the Wilcoxon test (as a symmetry test) with normal data and its extensive
tabulation, we recommend particularly its use in the present context.>* Note
also that the two runs tests described in section 4.5 may be viewed as tests
against positive serial correlation, the first one being in fact identical (except
for one-sidedness) to the test based on the sign score in (147).

238ee Theil (1971, p. 219). This test was proposed, against random coefficient alternatives, by
Harvey and Phillips (1977).

24Although they have a non-parametric origin, these tests are here ‘parametric’ since, as
mentioned at the end of section 4.3, normality is necessary in order for the independence of the
recursive residuals to hold. Of course, this does not preclude the possibility that these tests be
applicable under wider assumptions. Furthermore, it does not seem unreasonable to conjecture
rank tests will be more robust to non-normality of the disturbances than, for example, the
modified von Neuman ratio. This point is also illustrated in Dufour (1981a).
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4.7. Heteroskedasticity

We mentioned earlier that the CUSUM of Squares test can be viewed to a
large extent as a test for heteroskedasticity over the period considered. Also,
Harvey and Phillips (1974) explicitly proposed using recursive residuals in
order to test for heteroskedasticity of the disturbances.?’

Although we centered our attention upon instability of the regression
coefficients, heteroskedasticity is another form of instability (among the
variances of the disturbances) in which one may be interested. Not allowing
for this particular type of misspecification will not induce biased predictions,
but it can vitally affect the validity of confidence regions and significance
tests based on the ordinary least squares estimates. Furthermore, an
appearance of heteroskedasticity among the recursive residuals may be an
indication of instability of the regression coefficients.?®

Harvey and Phillips (1974, 1977) proposed testing heteroskedasticity by
considering the statistic

R=wiw,/wiw,, (148)

where w, is the vector formed by the first m recursive residuals, w, the vector
formed by the last m recursive residuals and m<(T —k)/2.2” Under the null
hypothesis, R follows an F-distribution with (m,m) degrees of freedom.

However, there is no a priori reason why we should stick to the particular
partition scheme suggested above. Since the recursive residuals are i.i.d.
N[0,52] under the null hypothesis, variances relating to different intervals
may be compared easily. If I, and I, are two (disjoint) subsets of
{K+1,...,,T} containing respectively m, and m, elements (where m, +m, <
T —K), then the statistic

R=(nymy)( 3 i [ 3 w2) (149)

follows an F distribution with (m,,m,) degrees of freedom. Critical regions
are then easily designed, depending on the alternative.

5. Concluding remarks

In the previous sections, we described a general methodology based on the
seminal paper by Brown, Durbin and Evans (1975) and aimed at helping an

25Heyadat and Robson (1970) proposed to use an analogous set of residuals, the ‘stepwise
residuals’ in order to test for heteroskedasticity.

2%Harvey and Phillips (1977) give an illustration of this phenomenon with a random
coefficients model.

27Using a procedure similar to that suggested by Goldfeld and Quandt (1972), a set of
residuals in the middle are dropped.
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investigator to discover the existence, type and timing of possible instabilities
in the coefficients of a linear regression model. Broadly speaking, this
methodology can be viewed as a way of discovering various specification
errors in a linear regression model; it is of an exploratory nature because
alternatives are purposely left vague and the overall philosophy is to let the
data reveal as many ‘unexpected’ things as possible. It consists basically of
examining a number of series generated by a process of recursive estimation
(prediction errors, coefficient estimates) and whose behaviour is easily
interpretable in terms of structural change. Further, because of the simple
statistical properties of these series, one can casily construct general tests to

agsess the statistical cigniﬁr‘annp of various deviations of these series from

what one would expect under the null hypothesis of stability.

Due to space limitations, we are not presenting here an empirical
tlustration of the exiended meihodology described above. For some
applications to econometric problems, the reader may consult Dufour (1979,
1981c¢, d).

In conclusion, we want to stress again that tests against broad diffuse
alternatives should be viewed as ‘yardsticks for the interpretation’ of the
basic statistics rather than as ‘leading to hard and fast decision’. As our aim
is model search and model criticism, and this is why it is useful to look at a
large number of possible clues.?® Of course, one must remain conscious that
performing several individual significance tests on the same set of data has
an impact on the overall significance level of the analysis. On the other hand,
when one has in mind a specific alternative, more powerful tests can usually
be applied [Chow (1960), Quandt (1960), Farley and Hinich {1970}, Cooley
and Prescott (1976), Dufour (1980, 1981b), etc.]. In our view, exploratory and
specialized tests should be viewed as complementary and not as substitutes.
Finally, when performing any test, we strongly recommend computing p-
values (marginal significance levels) which allows an assessment of the degree
of ‘statistical extremeness’ of a value. The distributions of most of the test
statistics suggested above are sufficiently well-known for this task not to be
unduly hard.

28Dempster (1971) argues that ‘significance tests’ are especially useful in such a context. On
the other hand, in more structured problems (like model comparisons) the use of a Bayesian
approach may be more appropriate.
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