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We study two Durbin-Watson type tests for serial correlation of errors in regression models when 
observations are missing. We derive them by applying standard methods used in time series and 
linear models to deal with missing observations. The first test may be viewed as a regular 
Durbin-Watson test in the context of an extended model. We discuss appropriate adjustments that 
allow one to use all available bounds tables. We show that the test is locally most powerful 
invariant against the same alternative error distribution as the Durbin-Watson test. The second 
test is based on a modified Durbin-Watson statistic suggested by Ring (1981a) and is locally most 
powerful invariant against a first-order autoregressive process. 

1. Introduction 

The most common test against the autocorrelation of errors in regression 
models is the bounds test of Durbin and Watson (1950, 1951, 1971). This test 
is easy to compute, exact in small samples (under standard assumptions) and 
possesses optimal power properties against first-order serial dependence [see 
Durbin and Watson (1950, pp. 423-425; 1971, pp. 13-15), Ring (1980, 
1981a)]. When observations are either missing or excluded from the regression 
(e.g. because they are viewed as outliers), there is obviously a difficulty in 
performing the Durbin-Watson (DW) test. The main paper on testing for 
autocorrelation when observations are missing is by Savin and White (1978). 
They discuss two Durbir-Watson type tests: the d, and d’ tests. The d, test 
is a popular solution which consists of dropping from the numerator of the 
DW statistic all the differences between residuals at the ends of each gap. 
Though this has intuitive appeal, it also modifies the structure of the test 
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statistic and usual tables are not applicable.’ The d’ test uses the DW statistic 
that one obtains by simply ignoring the presence of gaps in the data. The d’ 

statistic yields an exact test for which some of the existing tables can be 
applied [e.g., Durbin and Watson (1951), Savin and White (1977)]. It is the test 
most strongly recommended by Savin and White (1978). Further work by 
Richardson and White (1979) on the power of the d’ and d * tests indicates 
that none uniformly dominates the other and, in any case, differences are 
small. 

On the other hand, the d’ test has three less attractive characteristics. First, 
the d’ statistic contains comparisons between residuals separated by lags 
greater than one: clearly, this is not a natural feature in a test against 
first-order serial correlation. Second, closing the gaps modifies the structure of 
the regressor matrix; consequently, we cannot generally apply specialized 
tables, like those published by King (1981b, 1983) for regressions with a trend 
or seasonal dummy variables. Third, if we consider the serial dependence 
schemes against which the DW test was traditionally gauged, we can obtain 
other tests for which we can prove optimal power properties (as we will see 
below). 

In this paper, we study two alternative Durbin-Watson type tests that retain 
the advantages of the d’ test and avoid its shortcomings. The first one is 
obtained by applying standard techniques used in linear models and time 
series analysis to deal with missing observations. The test statistic is based on 
least-squares residuals and is very easy to compute from widely available 
programs. One can obtain valid significance bounds from all available DW 
bounds tables, provided appropriate adjustments are made on the numbers of 
observations and coefficients: in particular, we show that this adjustment 
depends on the number of gaps in the data, not the number of missing 
observations. We prove also that the test is locally most powerful invariant 
(LMPI) against precisely the same alternative error distribution as the one for 
which the standard DW test is locally most powerful invariant. Besides, one 
method of computing the test allows the investigator to work as if the data set 
were complete. If a bounds test is inconclusive, one can compute exact 
probability tails by directly applying computer routines developed for the 
standard DW statistic (in the complete sample case). The second test is 
obtained by applying the same techniques to the modified DW statistic 
suggested by King (1981a): while remaining computationally convenient, this 
test has the neat property of being locally most powerful invariant against a 
first-order autoregressive process on the errors. 

In section 2, we derive and define the test statistics. In section 3, we discuss 
their distribution under the null hypothesis. Finally, in section 4, we show that 
the tests suggested have optimal local power properties. 

‘See Wallis (1972), Dhrymes (1978, pp. 174-175), Savin and White (1978). For a long time, this 
solution was sugg?sted in the widely used TSP program [see Hall and Hall (1974, 1980)]. 
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2. Durbin-Watson statistics with missing observations 

We consider the following regression model: 

Y, = x:P + u,, t=l ,-.., n, (1) 

where y, is the dependent variable, X, is a k X 1 vector of non-stochastic 
explanatory variables (k < n), j3 is k X 1 vector of coefficients, and U, is a 
random disturbance. The regressor matrix has full column rank and the U,‘S 
are normally distributed with mean zero and the same variance. We wish to 
test the null hypothesis (Ha) that the errors a,, t = l,.. ., n, are independent 
against an alternative of the form 

u, = PU,-l+ Et, 

(2) 
et'rdN(O, a2), IpI < 1, t=o, _tl,..., 

with 

H:: p>O or H;:p<O. 

Let B be the ordinary least-squares estimate of B and 6, =yt - xtb, t = 
1 ,..., n. When no observation is missing, the DW statistic is given by 

(3) 

where 

n-1 

! 

n 

r-1 = c ictic,,, c n;. 

t=1 t=1 

Suppose now that a subset M of the observations is missing. Let S = 

{I,. . ., n }\A4 be the set of the available observations, m the number of 
elements in A4 (0 < m -c n - k), and n, = n - m the number of elements in S. 
We assume also that S contains the observations at the ends of the sample 
(t = 1 and n) and that the regressor matrix of the sample S has full column 
rank. If we define 

Y* = [Ytl tas, x* = M tcs’ 

where the rows are put in chronological order (from top to bottom), the 
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residuals obtained by running the regression on the incomplete sample are 
given by 

where 

jl* = (x$x*)-lx; y*. 

The d’ test of Savin and White (1978) is based on the standard DW statistic 
obtained from this regression, ignoring the fact that observations are missing. 
One sees easily that this yields an exact test. 

A ‘gap’ in the data is a run (i.e., an uninterrupted set) of missing observa- 
tions. Define the function h(t) as the length of the gap immediately following 
an observation t. Clearly, h(t) = 0 whenever the observation following t is not 
missing; the next non-missing observation after t is 1 + 1 + h(t). Let g be the 
number of gaps in the sample (1 I g I m). If we define T = S\ { n} and set 
0, = 0 when observation t is missing, we can write the d’ statistic as 

where 

From the latter expression we see clearly that the estimate of the first 
autocorrelation coefficient on which d’ is implicitly based contains compari- 
sons of residuals separated by lags greater than 1. Clearly, autocorrelations 
with opposite signs (at different lags) may tend to offset each other. 

There is a simple alternative way of treating missing observations when 
estimating serial correlation coefficients: it just consists of dropping the cross- 
products where a missing observation would normally appear. This method 
was used by several authors in the time series literature, mainly for estimation 
purposes [see Jones (1962), Parzen (1963), Marshall (1980)]. A statistic sug- 
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gested by this method is the following one: 

=~1(8,-6,,l)2/i:~:, 
t=1 t=1 

(6) 

where 

n-1 I n 

r, = c o,o,+, c i):; 
r=1 I t=1 

since 0, = 0 whenever t is missing, all cross-products involving a missing 6, in 
?i cancel. We will see below that tests based on d, may be performed in the 
same way as standard DW tests, except for the critical values. 

King (1981a) showed that a slightly modified DW statistic yields a LMPI 
test of H, against autoregressive processes of order 1 (as opposed to an 
approximately LMPI test). The procedure followed above to obtain d, can be 
applied to this statistic. We then get 

where 0, = 0, when t is missing. 

We see immediately that d, is a simple function of the least-squares 
residuals. To obtain critical values, we will use an alternative method of 
deriving the statistic d, (section 3). From it, we will see that we can get valid 
bounds for d, by using standard Durbin-Watson tables with n, + g observa- 
tions and k + g regression coefficients (where n, is the effective number of 
observations and g the number of gaps). Further, in many situations, we will 
find that this alternative form of the test is computationally convenient to 
obtain exact probability tails. The same remarks will apply to d& provided one 
uses an appropriate table. 

3. Null distribution 

Consider the regression 

(8) 
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where K= {kl,..., kg}, ki is the index of the first observation in the ith gap 
(k; # 1, n), 8(t, s) = 1 if t = s, and s(t, s) = 0 otherwise. 

Then, S U K is the set of all available observations plus the first observation 
in each gap. Assume (provisionally) that y, and X; for t E K are also available. 
If we estimate (8) by least-squares (with the observations in chronological 
order), the estimate of /3 obtained is s*, i.e., the estimate of j3 based on the 
available sample S, and the residuals are G, = y, - x$., for t E S, and 5, = 0, 
for t E K. This is due to the inclusion of a dummy variable for each observa- 
tion in K [see Salkever (1976), Dufour (1980)]. Further, one can check easily 
that the Durbin-Watson statistic from this regression is identical with d, in 
(6) and does not require knowing any value of yr or x, for t E K (so that we do 
not need the assumption that these are available). Since the model (8) has 
n, + g observations and k + g coefficients and since all the conditions for the 
DW statistic to have its standard distribution are satisfied, we can find valid 
bounds for the critical values of this statistic by using a standard DW table 
with n, + g observations and k + g coefficients. It is straightforward to see that 
these bound corrections also apply to d; provided one uses a table appropriate 
for King’s (1981a) modification of the DW statistic. 

We may note here that the technique of using observation-specific dummy 
variables has been fruitfully applied in the past to deal with various problems: 
missing observations [Bartlett (1937), Wilkinson (1960)], outlier detection 
[Gentleman and Wilk (1975), John and Draper (1978)], prediction [Salkever 
(1976), Fuller (1980)] and structural change analysis [Dufour (1980,1981)]. The 
tests derived in section 2 may be viewed as an application of this technique. 

We can obtain the same DW statistic by introducing a dummy variable for 
each missing observation (instead of only one per gap) and by estimating the 

model 

where m, is the i th missing observation. This suggests using n, + m and k + m 
(where m 2 g) for reading the table. However, the inconclusive region is then 
generally wider than the one based on (nr + g, k + g), in the sense that the 
latter will be contained in the former (as can be verified by looking at any 
table). When one of the gaps contains several observations, the corresponding 
region can actually be much wider, to the point of making the bounds test 
practically useless. Thus the bounds obtained from (nr + g, k + g) are prefer- 
able. 2 

*Durbin-Watson tests were used previously in the context of models that contain observation- 
specific dummy variables [e.g. Dufour (1981), Honohan and McCarthy (1982)]. However, none of 
these authors used the appropriate method of performing the bounds test. 
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When the test based on d, is inconclusive, it is possible to approximate the 
critical values. Several approximations are discussed by Durbin and Watson 
(1971). All these can be applied directly to d,, provided we consider the 
extended models (8) or (9). A theoretically more attractive procedure is to 
compute the tail probability associated with JO, the observed value of d,: 
q, = P[ d, 5 d, ] for a test against H: . We can do this in principle by using the 
procedures described by Imhof (1961) or Pan Jie-Jian (1968). These methods 
avoid inconclusive tests but may involve a heavy computational cost (in 
programming or computer time). 

Note here that, if we have an algorithm that computes tail probabilities of 
the standard DW statistic for an arbitrary regression model, we can obtain the 
tail areas of d, by simply considering one of the extended models (8) or (9).3 
For the practitioner, this may be especially convenient. 

Similar methods can be applied to obtain approximate critical values or 
exact tail probabilities of the statistic d,‘. But algorithms must be adjusted 
accordingly, since the statistic has a slightly different structure. 

4. Power 

We will now examine some theoretical power properties of the tests sug- 
gested above. From section 3, we know that the statistic d, can be viewed as 
the standard DW statistic computed after estimating the extended model (9). 
Using this fact, we will first see that d, has optimal power properties in the 
context of this extended model. Then, we will show that a similar result 
remains valid if we assume that the data are generated by the original model 
(1) and restrict attention to test functions which do not depend on the missing 
observations. 

Following Durbin and Watson (1971, sec. 3), consider the alternative error 
density 

f(u) = K,exp( - -&u’Bu), 

where u=(ur,u*,..., u,)‘, K, is the appropriate normalizing constant and B 
is a matrix such that 

u’Bu=(l+p’) 5 W) 
t=1 t=2 

3Such algorithms are not widely available in statistical or econometric packages. One package 
that does compute the marginal significance levels for the DW statistic is the SHAZAM package 
[White (1978)]. 
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The density (10) is a close approximation of the error density when u 
follows a stationary first-order autoregressive process [as described in (2)]. If 
we assume that the data are generated by the extended model (9)-(lo), we can 
conclude from Durbin and Watson (1971) that the test with critical region 
d, < d,,(a) is a locally most powerful invariant test for testing H,: p = 0 
against H:: p > 0; d,(a) is the critical value for a test of level CY. The group 
of transformations G under which the invariance property holds is the set of 
all transformations of the form 

yt = coyt + x;b + D(d, t=l,...,n, (12) 

where O<c,< +co, --co <b,< +CQ, j=l,..., k, --co cd,< +CO, i= 

1,. . . , m, D, = [s(t, mi): m, E Ml’, b = (b,, . . . , bk)’ and d = (d,, . . _, d,)‘; M 
is the set of the m missing observations as defined in section 2. Further, when 
the columns of the n X (k-t m) regressor matrix Z = [Z,, . . . , Z,,]‘, where 
Z, = [xi, D:]‘, are linear combinations of k + m eigenvectors of B, the same 
test is uniformly most powerful for testing H, against H: [from Anderson 
(1948)]. 

Let L be the set of possible probability distributions of y = (y,, . . . , y,)’ 
when (9) and (10) hold, and let V be the class of test functions +( y) invariant 
under all transformations in G. Distributions in L may be indexed by the 

parameter vector 8 = (8, y, u, p), where B = (fir,. . . , Pk)’ and y = (vr, . . . , 7,)‘. 

The group G induces a group G on the parameter vector 8: when the 
transformation (12) is applied to y, 8 becomes 6 = (cob + b,~,,y + d, cg, p). 
We can see easily that S(0) = p is a maximal invariant under G and, thus, any 
test +( y) invariant under G has a distribution which depends on the single 
parameter p [see Lehmann (1959, p. 220)]. The level and the power function of 
any test in V do not depend on the values of /3, y and (I. 

Since we are mainly interested in samples generated by the original model 
(1) and where the observations in M are missing, we will now assume that the 
distribution of y belongs to the class L, described by eqs. (1) and (10) and 
show that the test based on d, remains locally most powerful among invariant 
tests which do not depend on the missing observations. In this case, we 
consider the set Vi of tests of the form cp( y*) which are invariant under the 
group G, of transformations 

.F, = COY, + xp, t=l,...,Fl, (13) 

whereO<c,< +co, -wc;o<,< +w, i=l,...,k; y*=[ytltCs isthevector 
of available observations. A test of the form +( y*) can be viewed as a test 
+( y) where the missing observations are not used. 
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Since D, = 0 for t E S, any transformation in the group G can be written as 

=c,y,+x:6+di if t=m,EM, 04) 

where di is an arbitrary real number and c0 > 0. It is immediate from (14) that 
any test of the form cp( y*) which is invariant under G, is also invariant under 
G: hence Vi G V. Conversely, the fact that di, i = 1,. . . , m, can take arbitrary 
values implies that any test I#B( y) invariant under the group G must be 
invariant with respect to all possible changes of the missing observations: tests 
in V do not depend on the missing observations { yt: t E M } and thus have the 
form +( y*). Further, if we set d = 0, we see that any test invariant under G is 
also invariant under G,. Hence V/_c Vi, and since Vi c V, we have V, = V. 

Therefore, the test with critical region d, < d,,(a) is locally most powerful 
for testing H, against H[ among (level-a) tests which are invariant under G, 
and do not depend on the missing observations. This holds irrespective of the 
values of fi, y and u. Further, since L, is a subset of L (obtained by setting 
y = 0), this property still holds if we assume that the distribution of y belongs 
to L,. 

It is important to note here that the inclusion relationship L, c L may 
suggest that a more powerful test, that would exploit the information y = 0, 
could be obtained.4 As noted above, if the distribution of y belongs to L, the 
family of invariant tests to consider is V, on the other hand, if the distribution 
of y belongs to L, and observations are missing, it is natural to take Vi as the 
appropriate family of invariant tests. However, it turns out here that the sets V 
and Vi coincide. In other words, information about y only affects missing 
observations which do not enter into the test statistics under consideration. 
Then, since the distribution of any test in I/ does not depend on the parameters 
(Is, y, a) for any distribution in L (and thus in L,), the optimality of d, in V 
under L implies its optimality in I’, under L,. The proof is thus complete. 

It is easy to verify that the test based on d’ as well as all the other tests 
considered by Savin and White (1978) are invariant under the transformation 
groups described above. Therefore, the test based on d, is at least as powerful 
and thus usually more powerful than each of these tests, at least in the 
neighborhood of the null hypothesis. This holds when the alternative error 
distribution is simply the same as the one postulated by Durbin and Watson 
(1971, sec. 3). 

Consider now the statistic d& The latter is King’s modification of the DW 
statistic obtained after estimating the extended model (9). Like d,, it does not 

4For an illustration of the fact that exploiting restrictions on regressions coefficients can increase 
the power of the resulting autocorrelation test, see King (1981~). 
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depend on the missing observations and is invariant under the groups G and 
G,. In the context of the extended model and using theorem 3 of King (1981a), 
we get that a critical region of the form di < d,$(cx) is a LMPI test of Ha: p = 0 
against Hi+ : p > 0, when the alternative error distribution corresponds to a 
first-order autoregressive process as given in (2). Then, by an argument 
analogous to the one given above, we see that the test based on d; is most 
powerful, at least in the neighborhood of the null hypothesis, among all 
invariant tests based on the available observations; the transformation group is 
defined by (13). This test has the neat property of being LMPI against the 
standard model of stationary first-order autoregressive process. From this 
point of view, it has a theoretical advantage over the tests considered by Savin 
and White (1978) and the test based on d,. A similar result holds for the 
problem of testing H, against H; : p -C 0; in this case, the critical region has 
the form d; > d;(a). On the other hand, we must keep in mind that the test is 
not necessarily most powerful for all values of p. King (1981a, sec. 4) gives 
examples showing that the standard DW test can become more powerful than 
the modified test as the value of ]p] increases. 

In theory, tests based on d,’ are not more difficult to perform than those 
based on d,. However, tables applicable to dd are not as extensive as those 
applicable to d,; further, canned programs routinely compute the standard 
DW statistic (and possibly, its tail probabilities) but do not produce the 
modified statistic. Because of its convenience, we thus recommend the test 
based on d, to practitioners. 

Applications of the tests discussed in this article as well as further details on 
their implementation are discussed in a working paper [Dagenais and Dufour 
(1984)]. 
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