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ABSTRACT

We construct finite-sample distribution-free tests andidence sets for the parameters of
a linear median regression where no parametric assumpgtiorposed on the noise distri-
bution. The setup studied allows for nonnormality, botlcdite and continuous distribu-
tions, heteroskedasticity and nonlinear serial deperalehanknown forms. We consider
amediangalestructure — the median-based analogue of a martingaleetife — and show
that the signs of mediangale sequences follow a nuisanesengter-free distribution de-
spite the presence of nonlinear dependence and heterpgehenknown form. We point
out that a simultaneous inference approach in conjunctitimsign transformations yield
statistics with the required pivotality features — in adufitto usual robustness properties.
Monte Carlo tests and projection techniques are then egplao produce finite-sample
tests and confidence sets. Further, under even weaker assasnghich allow for weakly
exogenous regressors and a wide class of linear dependdraaes in the errors, we show
that the procedures proposed remain asymptotically vahe.regularity assumptions used
are notably less restrictive than those required by praesdoased on least absolute devi-
ations (LAD), for example by allowing the absence of finitememts as well as discrete
distributions to which usual density estimation methodsidbapply. Simulation results
illustrate the performance of the procedures. Finally, gh@posed methods are applied
to two empirical examples: a test of the drift in the Standand Poor’'s composite price
index series (allowing for conditional heteroskedastiot unknown form), and a test of
(-convergence between levels of per capita output acrossStages.

Key words: sign-based methods; median regression; simultanecereimde; Monte Carlo
tests; bootstrap; projection methods; quantile regrassioon-normality; heteroskedastic-
ity; serial dependence; GARCH; stochastic volatility;rstgst.

Journal of Economic Literature classification: C12, C14, C15.



RESUME

Dans cet article, nous construisons des tests et des rédmm®nfiance pour les
parameétres d’'une régression linéaire sur la médiane, quivedides a distance finie sans
imposer d’hypothése paramétrique sur la distribution desies. Les erreurs peuvent étre
non gaussiennes, hétéroscédastique ou bien, présentdépeedance sérielle de forme
arbitraire. Habituellement, I'analyse de ces modeéles gmEmamétriques s’appuie sur des
approximations asymptotiques normales, lequelles pa@temtrompeuses en échantillon
fini. Nous introduisons une propriété analogue a la difféeette martingale pour la mé-
diane, la «médiangale» et remarquons que les signes d'uteedsu«meédiangale» sont
indépendants entre eux et suivent une distribution contiseilable. Nous utilisons
la transformation par les signes et proposons des staestigivotales qui, en plus d’étre
robustes, permettent de construire une approche d’inférsimultanée valide quelle que
soit la taille de I'échantillon. Nous utilisons la méthodesdests de Monte Carlo, puis
déduisons par projection des tests et des régions de confi@uc n'importe quelle trans-
formation du parametre. Nous fournissons aussi une thésyimptotique sous des hy-
pothéses plus faibles. Les études par simulation illusteeperformance de la méthode
proposée lorsque les données sont trés hétérogenes. Enfinprésentons deux exemples
d’application.

Mots clés: méthodes de signes ; régression sur la médiane ; échaatfllds; non nor-
malité ; hétéroscédasticité ; dépendance sérielle ; GARG@atilité stochastique ; tests
de signes ; inférence simultanée ; tests de Monte Carlo strapt; méthodes de projection
; régressions quantiles.

Classification JEL : C12, C14, C15.
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1. Introduction

The Laplace-Boscovich median regression has attracteslveshinterest in recent years,
especially because it is considerably more robust to nomality and outliers than least
squares [see Dodge (1997)]. It has been adapted to modelsiimy heteroskedasticity
and autocorrelation [Zhao (2001), Weiss (1990)], endogepememiya (1982), Powell
(1983), Hong and Tamer (2003)], nonlinear functional foflvgiss (1991)] and has been
extended to quantile regressions [Koenker and Basset8fJL9heoretical advances on the
behavior of the associated estimators have completed theegs [Powell (1994), Chen,
Linton and Van Keilegom (2003)]. In empirical studies, patihanks to the generalization
to quantile regressions, new fields of potential applicetioave emergedThe recent and
fast development of computer technology clearly stimslatéerest for these robust, but
formerly cumbersome, methods.

Linear median regression assumes a linear relation bettiheedependent variablg
and the explanatory variables Only a null median assumption is imposed on the dis-
turbance process. Such a condition of identification “by riedian” can be motivated
by fundamental results on nonparametric inference. SiradeaBur and Savage (1956), it
is known that without strong distributional assumptionsc{sas normality), it is impos-
sible to obtain reasonable tests on the mean of independiemtically distributedi(i.d.)
observations, for any sample size. In general, moments @rempirically meaningful
without further distributional assumptions. This form afmdentification can be elimi-
nated by choosing alternative measures of central tendsoch as the median, because
nonparametric hypotheses on the median can be tested thsoys tests. This suggests
that median identification is more appropriate in nonpatamsetups than its mean coun-
terpart.

Median regression (and related quantile regressions)gee\an attractive bridge be-
tween parametric and nonparametric models. Distributiaeaumptions on the distur-
bance process are relaxed but the functional form remairesvgric. Associated esti-
mators, such as the least absolute deviations (LAD) estimnate more robust to outliers
than usual least squares (LS) methods and may be more dffidiemever the median is a
better measure of location than the mean. This holds fonhtzhed distributions or distri-
butions with a probability mass at zero. They are especagpropriate when unobserved
heterogeneity is suspected in the data. The current exgans$isuch “semiparametric”
techniques reflects an intention to depart from restriggsm@ametric frameworks [see Pow-
ell (1994)]. However, related tests remain based on asyimptormality approximations.

In this paper, we show that tests based on residual sigrsamegntire system of finite-
sample exact inference for a linear median regression matel family of statistics con-

1The reader is referred to Buchinsky (1994) for an intergii@tan terms of inequality and mobility topics
in the U.S. labor market, Engle and Manganelli (2000) for ppliaation in Value at Risk issues in finance.
For reviews of this literature, see Buchinsky (1998), Kaardnd Hallock (2001) and Koenker (2005).



sidered include optimal sign tests. We provide both fingeysle and asymptotic distrib-
utional theories. In the first set of results, we show thatl¢hwel of the tests is provably
equal to the nominal level, for any sample size. Exact texlcanfidence regions are valid
under general assumptions and allow for heteroskedassiod nonlinear dependence of
unknown forms, as well as fatiscretedistributions. This is done in particular by com-
bining Monte Carlo tests adapted to discrete distribut{oisgng a tie-breaking procedure)
with projection techniques (to allow inference on geneebmeter transformations). We
also show that the tests proposed include locally optinsi$teSecond, under even weaker
assumptions which allow for weakly exogenous regressataavide class of linear depen-
dence schemes in the errors, we show that the proceduressapemain asymptotically
valid. The regularity assumptions used are notably ledsictge than those required by
procedures based on least absolute deviations (LAD). Fample, moment non-existence
is allowed as well as discrete distributions (to which dgnestimators required by LAD
tests do not apply).

A basic motivation for the sign-based methods considerdtii;jmpaper comes from
an impossibility result due to Lehmann and Stein (1949), wiaved that inference pro-
cedures that are valid under conditions of heteroskedgstit unknown form when the
number of observations is finite, must control the level @f tdsts conditional on the ab-
solute values [see also Pratt and Gibbons (1981)]. Thidtdeas two main consequences.
First, sign-based methods constitute the only general wayoalucing valid inference for
any sample size. Second, all other methods, including thel seteroskedasticity and
autocorrelation corrected (HAC) methods developed by @/(iB80), Newey and West
(1987), Andrews (1991) and others, which are not based ars saye not proved to be
valid for any sample size. Although this provides a compgllargument for using sign-
based procedures, the latter have barely been exploitecbimoenetrics. Our point is to
stress their robustness and to generalize their use to mestjeessions.

To our knowledge, sign-based methods have not received atterfition in economet-
rics; for a few exceptions which focus on simple time serieglets, see Dufour (1981),
Campbell and Dufour (1991, 1995, 1997) and Wright (2000).a Iregression context,
the vast majority of the statistical literature is reviewsdBoldin, Simonova and Tyurin
(1997). These authors also develop sign-based infererccestmation for linear mod-
els, both exact and asymptotic withd. errors. We consider sign-based statistics related
to locally optimal sign tests, which are simple quadraticrfe and can easily be used for
estimation as well. However, we demonstrate this distidloutree property to allow for a
wide array of nonlinear dependence schemes. An importabire of these results con-
sists in allowing for a dynamic structure in the error disition, providing a considerable
extension of earlier results on the distribution of signthie presence of dependent obser-
vations [Dufour (1981), Campbell and Dufour (1991, 1993 1)9. We combine them with
projection techniques and Monte Carlo tests to derive es@didence sets.

The pivotality of the sign-based statistics validates the of Monte Carlo tests, a tech-



nique proposed by Dwass (1957) and Barnard (1963). Thisadetince adapted to dis-
crete distributions by a tie-breaking procedure [Dufol@Q@)], yields exact simultaneous
confidence regions fgi. Then, conservative confidence intervals (Cls) for eachpmorant
of the parameter (or any real function of the parameter) eamhtained by projection [Du-
four (1990), Dufour and Kiviet (1998), Dufour and Jasiak@2}) Dufour and Taamouti
(2005)]. In particular, confidence interval (or set) bouiel may be calculated using
global optimization methods such as simulated annealieg {3offe, Ferrier and Rogers
(2994)].

Sign-based inference methods constitute an alternativefeéoence derived from the
asymptotic distribution of LAD estimators. The LAD estiraa{such as related quantile
estimators) is consistent and asymptotically normal ire gafsheteroskedasticity [Powell
(1984) and Zhao (2001) for efficient weighted LAD estimatan] temporal dependence
[Weiss (1991)]. Fitzenberger (198)7extended the scheme of potential temporal depen-
dence including stationary ARMA disturbance processesrowitz (1998) proposed a
smoothed version of the LAD estimator. At the same time, apoirtant problem in the
LAD literature consists in providing good estimates of tlsgraptotic covariance matrix,
on which inference relies. Powell (1984) suggested kerst@ination, but the most wide-
spread method of estimation is the bootstrap. Buchinsk§g)l&dvocated the use of design
matrix bootstrap for independent observations. In depeincises, Fitzenberger (1997
proposed a moving block bootstrap. Finally, Hahn (1997ssted a Bayesian bootstrap.
Other notable areas of investigation in theliterature concern the study of nonlinear func-
tional forms and structural models with endogeneity [ceadguantile regressions: Powell
(1984, 1986) Fitzenberger (198)7and Buchinsky and Hahn (1998); simultaneous equa-
tions: Amemiya (1982) and Hong and Tamer (2003)]. More régeauthors have allowed
for misspecification [Kim and White (2002), Komunjer (2003)ng (1996)].

In the context of LAD-based inference, kernel techniquessamsitive to the choice
of kernel function and bandwidth parameter, and the esiimaif the LAD asymptotic
covariance matrix needs a reliable estimator of the erran tiensity at zero. This may be
tricky especially when disturbances are heteroskedassonply do not possess a density
with respect to the Lebesgue measure (discrete distrilgjtiddesides, whenever the nor-
mal distribution is not a good finite-sample approximatimference based on covariance
matrix estimation may be problematic. From a finite-sampli@fof view, asymptotically
justified methods can be arbitrarily unreliable. Test sigas be far from their nominal
levels. One can find examples of such distortions for timees@ontext in Dufour (1981),
Campbell and Dufour (1995, 1997) and fbr-estimation in Dielman and Pfaffenberger
(1988&, 198&)), De Angelis, Hall and Young (1993), Buchinsky (1995). hefece based
on signs constitutes an alternative that does not suffer fheese shortcomings.

°The reader is referred to Buchinsky (1995, 1998), for a m\dad to Fitzenberger (198yfor a com-
parison between these methods.



We study here a linear median regression model where thsifjipslependent) distur-
bance process is assumed to have a null median conditiosahoa exogenous explanatory
variables and its own past. This setup covers non stochasteroskedasticity, standard
conditional heteroskedasticity (like ARCH, GARCH, stosti@volatility models, ...) as
well as other forms of nonlinear dependence. However, tinatocorrelation in the resid-
uals is not allowed. We first treat the problem of inference stmow that pivotal statistics
based on the signs of the residuals are available for anyleaizp. Hence, exact inference
and exact simultaneous confidence regiong @an be derived using Monte Carlo tests.

For more general processes which may involve stationary ARlsturbances, these
statistics are no longer pivotal. The serial dependencanpatiers constitute nuisance pa-
rameters. However, transforming sign-based statistitis standard HAC methods allows
to asymptotically get rid of these nuisance parameters. hive ¢xtend the validity of the
Monte Carlo test method. In such cases, we loose the exaduekeep an asymptotic
validity. This asymptotic validity requires less assurap on moments or the shape of
the distribution (such as the existence of a density) thaalussymptotic-based inference
(such as results for LAD-based estimators). Besides, oes dot need to evaluate the
disturbance density at zero, which constitutes one of themaficulties of asymptotic
kernel-based methods associated with LAD and other qeaggtimators.

The paper is organized as follows. In section 2, we presentitbdel and the notations.
Section 3 contains general results on exact inference. aregpplied to median regres-
sions in section 4. In section 5, we derive confidence inteaigany given confidence level
and illustrate the method on a numerical example. Sectigrdédicated to the asymptotic
validity of the finite-sample inference method. In sectignrwé give simulation results
from comparisons to usual techniques. Section 8 presémgrdtive applications: testing
the presence of a drift in the Standard and Poor’s composte mdex series, and testing
for 5-convergence between levels of per capita output acros¥.tise States. Section 9
concludes. The Appendix contains the proofs.

2. Framework

2.1. Model

We consider a stochastic proceSg;,z}) : 2 — RPF! : ¢ = 1,2,...} defined on a
probability spac€ (2, F, P), such thaty, andz; satisfy a linear model of the form

y=z0+u, t=1,...,n, (2.1)

wherey; is a dependent variable;, = (x4,...,2,)" IS ap-vector of explanatory vari-
ables, andu; is an error process. The’s may be random or fixed. In the sequel,
y = (y1,...,yn) € R™ will denote the dependent vectoX, = [zy,... ,z,]) then x p



matrix of explanatory variables, and= (uq, ... ,u,)" € R" the disturbance vector. More-

over,Fy( - |xy,... ,z,) represents the distribution function @f conditional onX.
Inference on this model will be made possible through assiomgon the conditional

medians of the errors. To do this, it will be convenient tosidaradaptedsequences

S, F)=Av, Fp:t=1,2,...} (2.2)

wherev, is any measurable function &F, = (y;, z})’, F; is ac-field in 2, F, C F, for
s<t, o(Wy,..., W) C Fyando(W,... ,W,)is theo-algebra spanned By, ... , W,.
A common assumption — which allows for general forms of dele@ce — consists in
assuming thatt = {u; : t = 1,2,...} in the adapted sequen&&u, ) = {u;, F; : t =
1,2,...}is a martingale difference with respectip = o(W1,... W), t =1,2,....

Definition 2.1 MARTINGALE DIFFERENCE u in the adapted sequenc®u, F) is a
martingale difference sequence with respec{# : t = 1,2,...} iff E(w|Fi_1) =
0, vVt > 1.

We shall depart from this usual assumption, which requiregkistence of the first mo-
ments ofu,;. Indeed, our aim is to develop a framework which allows faeheskedasticity
of unknown form. From Bahadur and Savage (1956), it is kndwabhinference on the mean
of i.i.d. observations of a random variable without any further aggiom on the form of
the distribution is impossible. Such a test has no powers Pphoblem of non-testability
can be viewed as a form of non-identification in a wide sensgeds relatively strong dis-
tributional assumptions are made, moments are not emihyriceaningful. Thus, if one
wants to relax the distributional assumptions, one musbsb@nother measure of central
tendency such as the median. The median is especially ajgteoib the distribution of the
disturbance process does not possess moments. Thus, iedi@mmegression framework,
it appears that the martingale difference assumption shmeireplaced by an analogue in
terms of median. We call such a structurmediangalewhich may be defined conditional
on the design matriX' or unconditionally, as follows.

Definition 2.2 STRICT MEDIANGALE. u in the adapted sequenc®(u, F) is a strict
mediangale with respect toF; : t = 1,2, ...} iff Plu; <0] =P[u; > 0] =0.5and

P[ut < O|ft_1] = P[Ut > O|ft_1] = 05, fort > 1. (23)

Definition 2.3 STRICT CONDITIONAL MEDIANGALE. LetF, = o(uq,... ,u;, X), for
t > 1. uin the adapted sequencu, F) is a strict mediangale conditional oA with
respectto{ 7, : t =1,2,... } iff Plu; < 0/X] = P[u; > 0/X] =0.5and

Plus < Oluy, ..., ug—1, X] = Pluy > 0|uy, ..., ug—y, X] =0.5, fort > 1. (2.4)



The above definitions allow; to have a discrete distribution, but exclude the presence
of a probability mass at zero. This constraint is relaxedhefollowing definition.

Definition 2.4 WEAK CONDITIONAL MEDIANGALE. LetF;, = o(uq,...,us, X), for
t > 1. u in the adapted sequencu, ) is a weak mediangale conditional oxi with
respectto{ F; : t = 1,2,... } iff Plu; > 0|X] = Plu; < 0|X] and

Plu; > Oluq, ..., uy—q, X] = Pluy < Oluq, ..., up_q, X|, fort>1. (2.5)

The sign operatos : R — {—1,0,1} is defined asi(a) = 1, +o0)(a) — 1(—oo,0)(a)
where 14(a) = 1if a € Aandl,(a) = 0if a ¢ A. For convenience, if. € R™, we will
notes(u), then-vector composed by the signs of its components.

Stating thaf{u, : t = 1,2,...} isaweak mediangale with respect{tf, : t = 1,2,...}
is equivalent to assuming thft(u,) : t = 1,2, ...} is a martingale difference with respect
to the same sequence of sulalgebras{F; : t = 1,2,...}. However, the weak condi-
tional mediangale concept differs from a martingale défere on the signs because of the
conditioning upon the whole proce&s Indeed, the reference sequence of suddgebras
is usually taken td 7, = o(W4,... ,W;) : t = 1,2,...}. Here, the reference sequence
is{Fr=oc(Wy,... , W, X):t=1,2,...}. We shall see later that asymptotic inference
may be available under weaker assumptions, as a classictihgade difference on signs
or more generally mixing conditions d(u;), (W4, ... ,W;) : t = 1,2,...}. However,
the conditional mediangale concept allows one to develagterference (conditional on
X). We have replaced the difference of martingale assumgiiotihe raw procesa by a
quasi-similar hypothesis on a robust transform of this esss(u). Below we will see it
is relatively easy to deal with a weak mediangale by a sinmalesformation of the sign
operator, but to simplify the presentation, we shall focngle strict mediangale concept.
Therefore, our model will rely on the following assumption.

Assumption 2.1 STRICT CONDITIONAL MEDIANGALE. The components af =
(u1,...,u,) satisfy a strict mediangale conditional ox.
It is easy to see that Assumption 2.1 entailsl(uq|xy, ... ,z,) =0, and
med (u|z1, .y Ty, UL, oo, U) =0, E=2, ..., N (2.6)

Hence, we are in a median regression context. Our last reamerterns exogeneity. As
long as ther;’s are strongly exogenous, the conditional mediangale epins equivalent
to a martingale difference on signs with respecfio= o(Wy,... ,\W;), t =1,2,....3

3X is strongly exogenous fg# if X is sequentially exogenous andyifdoes not Granger causé; see
Gouriéroux and Monfort (1995, Volume 1).



Proposition 2.1 MEDIANGALE EXOGENEITY. Suppos€x;:t=1,2,...}Iis astrongly
exogenous process for Plu; > 0] = Plu; < 0] = 0.5, and

Plus > Oluy, ..., w1, @1, ..., 2] = Plug < Oluy, ..., ugq, @1, ..., ¢ = 0.5.

Then{wu; : t =1,2,...}is a strict mediangale conditional oa

Model (2.1) with the Assumption 2.1 allows for very generaimis of the distur-
bance distribution, including asymmetric, heteroskedast dependent ones, as long as
conditional medians are 0. We stress that neither densitynmument existence are re-
quired. Indeed, what the mediangale concept requires isna & independence in the
signs of the residuals. This extends results in Dufour (128t Campbell and Dufour
(1991, 1995, 1997).

Asymptotic normality of the LAD estimator, which is presedin its most general way
in Fitzenberger (1993), holds under some mixing concepts o(w,;),o(Wy,... , W) :

t = 1,2,...} and an orthogonality condition betweef,;) andz,. Besides, it requires
additional assumptions on moment&Vith such a choice, testing is necessarily based on
approximations (asymptotic or bootstrap). Here, we focusalid finite-sample inference
without any further assumption on the form of the distribos.

2.2. Special cases

The above framework obviously covers independence but aldarge spectrum of
heteroskedasticity and dependence patterns. For exaripls, satisfied if u; =
oi(r1,... ,x,) &, t=1,... ,n,wheres,... e, arei.i.d. conditional onX, which is rel-
evant for cross-sectional data. Many dependence schemassarcovered, especially any
model of the formu, = 0'1(523'1, R ,l't_l)El , Up = O't(flfl, e, L1, UL, .. 7ut—1)5t =
2,...,n, whereeq,...,e, are independent with mediaf, oq(zy,...,2,-1) and
oy(x1, ...,y ,u1,... 1), t = 2,...,n are non-zero with probability one. In time
series context, this includes models presenting robustpexperties to endogenous dis-
turbance variance (or volatility) specification, such ak; ARCH(q) with non-Gaussian

4Assumption2.2 can easily be extended to allow for another quantitey settingP[u; < 0|F;_1] = q,
Vt, which would lead toP[u; < Olug, ..., ut—1,21, ..., 2] = ¢ In Proposition 2.1. However, with
error heterogeneity of unknown form, such an assumptionptamsibly hold only for a single quantile.
So little generality is lost by focusing on the median casecl@ssical result in nonparametric statistics
consists in using this Bernoulli distribution to build exéests and confidence intervals on quantilesicfat.
observations); see Thompson (1936), Scheffé and Tukey5j194d the review of David (1981, Chapter
2). For a recent econometric exploitation of this resule &hernozhukov, Hansen and Jansson (2006).
Proposition 2.1 above provides general conditions und@twduch a result holds for nari-d. observations.

SFitzenberger (1993 show that LAD and quantile estimators are consistent aphpsotically normal
whenE[z;:sg(u:)] = 0, Vt, where(u:, x+) has a density and finite second moments.



noises:,’s,
Ou(T1, o, Ty, U, e, W) = o+ QU e agul
(2) GARCH(p, q) with non-Gaussian noisess,
o1, o, Ty, U, e, W) = Qo U e U O Y07
(3) stochastic volatility models with non-Gaussian noisés

up = exp(wy/2)rye;
Wy = QW1+ -+ G Wiy + Ty U1, ..., Uy, are.ii.d. random variables.

The mediangale property is more general because it doegaoifys explicitly the func-
tional form of the variance in contrast with an ARCH speciima. Note again that the dis-
turbance process does not have to be second-order stgtiGioamonstationary processes
that satisfy the mediangale assumption, sign-based mferwill work whereas all infer-
ence procedures based on asymptotic behavior of estimatydail or require difficult
validity proofs.

3. Exact finite-sample sign-based inference

The most common procedure for developing inference on &tital model can be de-
scribed as follows. First, one finds a (hopefully consigtestimator; second, the asymp-
totic distribution of the latter is established, from whicbnfidence sets and tests are de-
rived. Here, we shall proceed in the reverse order. We stuslythie test problem, then
build confidence sets, and finally estimatbidence, results on the valid finite-sample test
problem will be adapted to obtain valid confidence intereaid estimators.

3.1. Motivation

In econometrics, tests are often based ony? -statistics, which are derived from asymp-
totically normal statistics with a consistent estimatotted asymptotic covariance matrix.
Unfortunately, in finite samples, these first-order apprations can be misleading. Test
sizes can be quite far from their nominal level: both the piolity that an asymptotic test
rejects a correct null hypothesis and the probability tratraponent of; is contained in an
asymptotic confidence interval may differ considerablyrfrassigned nominal levels. One
can find examples of such distortions in the dynamic liteeafsee for example Dufour

5For the estimation theory, the reader is referred to CoudihRufour (2007).



(1981), Mankiw and Shapiro (1986) and Campbell and Dufo9881 1997)]; on infer-
ence based on;-estimators [see Dielman and Pfaffenberger (20888&), Buchinsky
(1995) and De Angelis et al. (1993)]. This remark usually iwatés the use of bootstrap
procedures. In a sense, bootstrapping (once bias corjésgeday to make approximation
closer by introducing artificial observations. Howeveg Hootstrap still relies on asymp-
totics and yields no guarantee that the level condition bisfeal in finite samples.

Another way to appreciate the unreliability of asymptotiethods in finite samples is
to recall the theorem established by Lehmann and Stein j1@$hsider testing whether
n observations are independent with common zero median:

Hy : X1, ..., X, are independent observations

each one with a distribution symmetric about zero. (3.1)

TestingH, turns to check whether the joint distributidty of the observations belongs to
the setH, = {F,, € F,, : F, satisfiesH,} without any other restriction. In other wordsg,
allows for heteroskedasticity of unknown form. For thisupetLehmann and Stein (1949)
established the following theorem [see also Pratt and Giblfp981, Chap. 4, Sect. 3, p.
218)].

Theorem 3.1 If a test has levekr for Hy, where0) < a < 1, thenit must satisfy
P[RejectingH, | |Xi],...,|X,|] < aunderHj .

The level of a valid test must equalconditional on the observation absolute values.
Theorem3.1 also implies that any procedure that does not satisfy theeabondition has
size one. It is not clear that least square-based procetiyieslly designated as “robust
to heteroskedasticity” or “HAC” [see White (1980), Neweydawest (1987), Andrews
(1991), etc.] do satisfy TheoreBi1 condition. For some examples of size distortion in
some specific setups, see the simulation study in section 7.

Sign-based procedures do satisfy this condition. Besatesie will show in section 4,
distribution-free sign-based statistics are availabknan finite samples. They have been
used in the statistical literature to derive nonparamsigo tests. The combination of both
remarks give the theoretical basis for developing an exdetence method.

3.2. Distribution-free pivotal functions and nonparametric tests

When the disturbance process is a conditional mediandp@égint distribution of the signs
of the disturbances is completely determined. These signs.d. and take the valuek
and —1 with equal probabilityl /2. This result is stated more precisely in the following
proposition. The case with a mass at zero can be covereddeabai transformation in the
sign operator definition.



Proposition 3.2 SIGN DISTRIBUTION. Under model(2.1), suppose the errors
(u1,...,u,) satisfy a strict mediangale conditional o = [z, ... ,z,]". Then the vari-
abless(u,),. .., s(u,) arei.i.d. conditional onX according to the distribution

Pls(u) =11zy, ..., xp] =Ps(uy) = =12y, ..., 2] ==, t=1,...,n. (3.2

More generally, this result holds for any combinationtof 1,... ,n. If there is a
permutationr : i — j such that mediangale property holds jothen the signs arei.d.
From Propositior8.2, it follows that the residual sign vector

s(y — XB) = [s(yr —210), ..., s(yn — 2,,06)] (3.3)

has a nuisance-parameter-free distribution (conditionaY), i.e. it is a pivotal function.
Its distribution is easy to simulate from a combinatiomahdependent uniform Bernoulli
variables. Furthermore, any function of the fofrm= T(s(y — X0), X) is pivotal condi-
tional on X. Once the form ofl" is specified, the distribution of the statisfitis totally
determined and can also be simulated.

Using PropositiorB.2, it is possible to construct tests for which the size is fabn-
trolled in finite samples. Consider testiif)(5,) : 3 = [, againstd,(5,) : 5 # 5.
UnderHy(5,), s(y: — x18,) = s(us), t =1,... ,n. Thus, conditional onX,

T(s(y — XBy), X) ~ T (S, X) (3.4)
wheresS,, = (s1,...,8,) andsy, ..., s, i B(1/2). A test with levela rejectsH,(3,)

when
T(s(y - XBy), X) > op(X, a) (3.5)

wherecr (X, «) is the(1 — «)-quantile of the distribution of'(.S,,, X). This extends results
in Dufour (1981) and Campbell and Dufour (1991, 1995, 1997).

This method can be extended to error distributions with asnaszero;i.e., Plu;, =
0| X, up,... ,u—1] = pe(X, ug,... ,us—1) > 0 where thep,(-) are unknown and may
vary between observations. A way out consists in modifyimg $ign functions(x) as
$(z,V) = s(x) + [1 — s(2)?]s(V — 0.5), where V ~(0,1). If V, is independent of
uy then, irrespective of the distribution af,

P[5(ue, Vi) = +1] = Pl3(u, Vi) = —1] = . (3.6)

This yields the following proposition.

Proposition 3.3 RANDOMIZED SIGN DISTRIBUTION.  Supposg2.1) holds with the
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assumptionthat,, ... ,u, belong to a weak mediangale conditional&nLetVy, ... ,V,
bei.i.d. random variable$/(0, 1) distributed and independent of, ... ;u,, and X. Then
the variabless; = 5(uy, V;) arei.i.d. conditional onX with the distribution

1

Pls, =1|X] =P[5, =—-1|X] =5

t=1,...,n. (3.7)

All the procedures described in the paper can be applied figaieg s by s. When
the error distributions possess a mass at zero, the testistat(s(y — X 3,, X)) has to be
used instead of (s(y — X 3y, X)).

4. Regression sign-based tests

In this section, we present sign-based test statisticatbkativots and provide power against
alternatives of interest. This will enable us to build Mo@&rlo tests relying on their exact
distribution. Therefore, the level of those tests is eyaobintrolled for any sample size.

4.1. Regression sign-based statistics

The class of pivotal functions studied in the previous secis quite general. So, we wish
to choose atest statistic (the form of théunction) that can have power against alternatives
of interest. Unfortunately, there is no uniformly most pofuetest of Hy(3,) : 5 = [,
againstH,(3,) : 0 # B,- Hence, for testing?y(3,) againstH;(3,) in model (2.1), we
consider test statistics of the following form:

Ds(By, £2,) = s(y — Xﬁo)/XQn (S(y — X By), X)X/S@ — X B) (4.1)

where Qn(s(y — Xﬁo),X) is ap x p weight matrix that depends on tle®nstrained
signss(y — X3,) under Hy(3,). The latter feature of the weight matrix allows one
to obtain a finite-sample distributional theory férs(53,, £2,). The weighting matrix
2.(s(y — XB,), X) provides a standardization that can be useful for poweriders
tions as well as to account for dependence schemes thattdammetiminated by the sign
transformation. Further(2, (s(y — X3,), X) would normally be selected to be positive
definite [although this is not essential to show the pivotalf the test statistic under the
null hypothesisf.

’Under more restrictive assumptions, statistics whichakpther robust functions of — X 3, [such as
ranks or signed ranks] can lead to more powerful tests. Hew#w fact we allow for both heteroskedasticity
and nonlinear serial dependence of unknown forms appeareak the required pivotality result and makes
the use of such statistics quite difficult if not impossibtetihe context of our setup. For discussion of
such alternative statistics (applicable under strongauragtions), see Hallin and Puri (1991, 1992), Hallin,
Vermandele and Werker (2006, 2008), Hallin and Werker (2008 the references therein.
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Statistics of the formDs(5,, (2,,) include as special cases the ones studied by Boldin
et al. (1997) and Koenker and Bassett (1982). Namely, omgafi, = I, and (2, =
(X'X)~1, we get:

SB(By) = s(y — XBo) X X's(y — X Bg) = | X"s(y — XBo)|*, (4.2)

SF(B,) = s(y — Xﬁo),P(X)S(y - XBy) = 1 X" s(y — Xﬁo)”?w ) (4.3)

whereP(X) = X(X’X)~'X". InBoldin et al. (1997), itis shown th&tB(3,) andSF(3,)
can be associated with locally most powerful tests in the cdisi.d. disturbances under
some regularity conditions on the distribution functiosdecially f'(0) = 0].% Their proof
can easily be extended to disturbances that satisfy theamgalie property and for which
the conditional density at zero is the safp@®|X) = f(0|X), Vt.

SF((,) can be interpreted as a sign analogue of the Fisher statldtice precisely,
SF(B,) is a monotonic transformation of the Fisher statistic fatiteyy = 0 in the re-
gression of(y — X 3,) on X: s(y — X 3,) = X~ +v. This remark holds also for a general
sign-based statistic of the form 4.1, whely — X 3,) is regressed or, /2 X.

Wald, Lagrange multiplier (LM) and likelihood ratio (LR) w®ptotic tests for M-
estimators, such as the LAD estimator, lin-regression are developed by Koenker and
Bassett (1982). They assumid. errors and a fixed design matrix. In that setup, the
LM statistic for testingHy(3,) : 8 = (3, turns out to be th& F'(j3,,) statistic. The same
authors also remarked that this type of statistic is asytigatily nuisance-parameter-free.
It does not require one to estimate the density of the diatab at zero contrary to LR and
Wald-type statistics.

The Boldin et al. (1997) local optimality interpretatiomdae extended to heteroskedas-
tic disturbances. In such a case, the locally optimal tedissic associated with the mean
curvature —.e., the test with the highest power near the null hypothesisralaeg to a trace
argument — will be of the following form.

Proposition 4.1 In model(2.1), suppose the mediangale Assumption 2.1 holds, and the
disturbances are heteroskedastic with conditional désif;(- | X), ¢t = 1,2,..., that

are continuously differentiable around zero and such tfjél|.X') = 0. Then, the locally
optimal sign-based statistic associated with the meanature is

SB(By) = s(y — XBo) X X's(y — X B,) (4.4)

8The power function of the locally most powerful sign-basest has the faster increase when departing
from §,. In the multiparameter case, the scalar measure requirmatoate that speed is the curvature of the
power function. Restricting to unbiased tests, Boldin e(E397) introduced different locally most powerful
tests corresponding to different definitions of curvatuse3(3,) maximizes the mean curvature, which is
proportional to the trace of the shape; see Dubrovin, Fomanki Novikov (1984, Ch. 2, pp. 76-86) or Gray
(1998, Ch. 21, pp. 373-380) for a discussion of various durganotions.
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whereX = diag(f1(01X), ..., f,(0]X))X.

When thef;(0|z)’s are unknown, the optimal statistic is not feasible. Théral
weights must be replaced by approximations, such as wedgriged from the normal
distribution.

Sign-based statistics of the form (4.1) can also be integgras GMM statistics which
exploit the property thafs, ® =}, F;} is a martingale difference sequence. We saw in the
first section that this property is induced by the mediangasumption 2.1. However,
these are quite unusual GMM statistics. Indeed, the pamréinterest is not defined by
moment conditions in explicit form. It is implicitly defineak the solution of some robust
estimating equations (involving constrained signs):

n

Z s(ye — 23) @ 1, = 0.

t=1

Fori.i.d. disturbances, Godambe (2001) showed that these estinfiaticigons are optimal
among all the linear unbiased (for the median) estimatingtionsy ;" | a;(3)s(y; —}03).
For independent heteroskedastic disturbances, the sqitiofiad estimating equations is
S s(ye — x8) ® & = 0. In those casesX (resp. X) can be viewed as optimal instru-
ments for the linear model.

We now turn to linearly dependent processes. We proposeet@ ugeighting matrix
directly derived from the asymptotic covariance matri>§%fs(y—X By)@X. Letus denote

it by J,, (s(y — XB,), X). We consider?, (s(y — X3,),X) = 2J,(s(y — Xﬁo),X)_1
whereJ, (s(y — X 3,), X) stands for a consistent estimate/ofs(y — X 3,), X ) that can

be obtained using kernel-estimators, for example [seeeR41957), White (2001), Newey
and West (1987), Andrews (1991)]. This leads to

1 - o
Ds(B, ") = Tsly — X5y X X'sy — XBy). (45)

Jn(s(y — Xﬁo),X) accounts for dependence among signs and explanatory lesviab
Hence, by using an estimate of its inverse as weighting mjatreé perform a HAC cor-
rection. Note that the correction depends®n

In all cases,Hy(3,) is rejected when the statistic evaluatedfat= (5, is large:
Ds(By, $2,) > cq, (X, a) wherecy, (X, «) is a critical value which depends on the level
«. Since we are looking at pivotal functions, the criticalued can be evaluated to any
degree of precision by simulation. However, as the distidious discrete, a test based on
cn, (X, @) may not exactly reach the nominal level. A more elegant smutonsists in
using the technique dflonte Carlo testswith a randomized tie-breaking procedure which
do not suffer from this shortcoming.
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4.2. Monte Carlo tests

Monte Carlo tests can be viewed as a finite-sample versioheobbotstrap. They have
been introduced by Dwass (1957) [see also Barnard (1968)jcan be adapted to any
pivotal statistic whose distribution can be simulated. &aeneral review and for exten-
sions in the case of the presence of a nuisance parameteeaither is referred to Dufour
(2006). It proceeds as follows. Let us consider a statiStichose conditional distribution
given X is continuous and free of nuisance parameters, and a teshwdjects the null
hypothesis whefI” > ¢(«). We denote by(xz) = P[T > z| the survival function, and
by F(x) = P[T < x| the distribution function. LeT'® be the observed value @f, and

T .., TW™) N independent replicates @f. The empiricap-value is given by
.. NGy(z)+1
pn(x) = N1 (4.6)

whereGy (z) = & SN | 1(5,00)(T% — z). Then we have

I[N +1)]

Plon(T?) < o] = Nl

, for0 <a <1,
where[z] stands for the largest integer less than equal;teee Dufour (2006). IV is
such thatv(N + 1) € N, thenP [ (T?) < a] = «a: the test level is exactly controlled.

In the case ofliscrete distributions, the method must be adapted to deal with ties.
Indeed, the usual order relation @is not appropriate for comparing discrete realiza-
tions that have a strictly positive probability to be equédere, we use a randomized tie-
breaking procedure for evaluating empirical survival fimes. The latter is based on re-
placing the usual order relation by a lexicographic ordeti@n [see Dufour (2006)]. Each
replicationT¥) is associated with a uniform random variablé”) ~ 2/(0, 1) to produce
the pairs(7V), W), The vector(W© ... W®) is independent of 7, ... TM),
(T, W@Ys are ordered according to:

(T(i), W(i)) > (T(J’)7 W(j)) o {T(i) > T o (T(i) =T and W > W(J‘))}.
This leads to the following-value function:

- NGy(z) +1
Pr(@) = JJVV(+)1

SDifferent procedures have been presented in the literailiney can be classified between randomized
and nonrandomized procedures, both aiming to exactly cbinéck the level of the test. For a good review
of this problem, the reader is referred to Coakley and H&i984).
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whereGy(z) = 1 — ~ SN sy (z—TW) + = SV LS(TD — 2)s (WO — WO with
S.,.(:L’) = 1[0700)(1'), 5(1’) = 1{0}. Then

Ia(N +1)]

Pl (T) < o] = =

, for0<a<1.
The randomized tie-breaking allows one to exactly contrellevel of the procedure. This
may also increase the power of the test.

To illustrate the method, consider testifg(3,) in (2.1) under a mediangale assump-
tion on the errors, and usinBs(3, X’ X~1). After computingSF© = Dg(3,, X' X 1)
from the data, choos&’ the number of replicates, such thatN + 1) is an integer,
wherea is the desired level. Then, generafereplicatesS FU) = S0V X (X' X)~1x'S0)
where SU) is a realization of an-vector of independent uniform Bernoulli random vari-
ables, and computgy (SF®). Finally, the Monte Carlo test reject,(3,) with level o if
ﬁN(SF(O)) < .

5. Regression sign-based confidence sets

In the previous section, we have shown how to obtain MontéoGagn-based joint tests for
which we can exactly control the level, for any given finitemer of observations. In this
section, we discuss how to use such tests in order to builfideste sets fof with known
level. This can be done as follows. For each valijec R?, perform the Monte Carlo
sign test forH(3,) and get the associated simulajedalue. The confidence sét_, ()
that contains anyj, with p-value higher thamv has, by construction, levél — o [see
Dufour (2006)]. From this simultaneous confidence setjat is possible, byprojection
techniques to derive confidence intervals for the individual compdseMore generally,
we can obtain conservative confidence sets for any transtiwny(3) whereg can be any
kind of real functions, including nonlinear ones. Obvigusbtaining a continuous grid of
RP? is not realistic. We will instead requigdobal optimization search algorithms

5.1. Confidence sets and conservative confidence intervals

Projection techniques yield finite-sample valid confidemtervals and confidence sets
for general functions of the parametérl® The basic idea is the following one. Sup-
pose a simultaneous confidence set with lavel « for 5, C,_,(5), is available. Since
B e Cioa(B) = g(B) € g(Ci_a(B)), We haveP[3 € Ci_o(B)] > 1 - a =
Plg(B) € g(Ci—a(8))] = 1 — a. Thus, g(Ci_a(B)) is a conservative confidence set

OFor examples of use in different settings and for furthecutision, see Dufour (1990, 1997), Ab-
delkhalek and Dufour (1998), Dufour and Kiviet (1998), Duf@nd Jasiak (2001), Dufour and Taamouti
(2005).
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for g(B). If g(p) is scalar, the interval (in the extended real numbé8),_.(3)] =

inf su has levell — o :
[5601 90 8 13(5)9(@}

Pl inf g¢(B8) <g(B)< sup g(B)| =1—a.
BeCi_a(B) BeC1—a(fB)

Hence, to obtain valid conservative confidence intervalgte individual component,
in the model (2.1) under mediangale Assumption 2.1, it ii@ahnt to solve the following
numerical optimization problems where s.c. stands for jeethto the constraint”. The
optimization problems are stated here for the statisfic

min (3, S.C. ﬁN(SF(ﬁ)) >, max f§, S.C. ﬁN(SF(ﬂ)) > a,

BERP BERP

wherepy is computed usingV replicatesS F7) of the statisticS F under the null hypoth-
esis. In practice, we usamulated annealingas optimization algorithm [see Goffe et al.
(1994), and Press, Teukolsky, Vetterling and Flannery §)]99

In the case of multiple tests, projection techniques allmpedrform tests on an arbitrary
number of hypotheses without ever loosing control of theralVéevel: rejecting at least
one true null hypothesis will not exceed the specified level

5.2. Numerical illustration

This part reports a numerical illustration. We generate fil®wing normal mixture
process, fon = 50,

N[0, 1]  with probability0.95

2.49.d.
=00+ O +ug, t=1,...,n, u ~ { N[0, 100%] with probability0.05.

We conduct an exact inference procedure with= 999 replicates. The true process is
generated with, = 5, = 0. We perform tests oty (") : § = 4" on a grid forg* =
(By, B1) and retain the associated simulagedalues. Asg is a2-vector, we can provide
a graphical illustration. To each value of the vectbrs associated the corresponding
simulatedp-value. Confidence region with levél— « contains all the values of with
p-values greater than. Confidence intervals are obtained by projecting the siamalous
confidence region on the axis gf or 3,, see Figure 1 and Table 1.

The confidence regions so obtained increase with the ledktaver other confidence
regions with smaller level. Confidence regions are highlyatigptic and thus may lead to
different results than an asymptotic inference. Concgrononfidence intervals, sign-based
ones appear to be largely more robust than OLS and White Chemndess sensitive to
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outliers.

 Projection-based 95% CI -
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Figure 1.
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Confidence regions provided by SF-based inference

Table 1. Confidence intervals

oLS White SF
B, 95%Cl [4.57,0.82] [-4.47,0.72] [-0.54,0.23]
98%Cl [-5.10,1.35] [-4.98,1.23] [-0.64,0.26]
B, 95%Cl [-2.50,3.22] [-1.34,2.06] [-0.42,0.59]
98%Cl [-3.07,3.78] [-1.67,2.39] [-0.57,0.64]

6. Asymptotic theory

This section is dedicated to asymptotic results. We pointtmat the mediangale Assump-
tion 2.1 excludes some common processes, whereas usugltasgmference still can be
conducted on them. We relax Assumption 2.1 to allow randorthat may not be inde-
pendent of.. We show that the finite-sample sign-based inference resr@asymptotically
valid. For a fixed number of replicates, when the number oEplaions goes to infinity,
the level of a test tends to the nominal level. Besides, vwasstthe ability of our methods
to cover heavy-tailed distributions including infinite Widhance variance.
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6.1. Asymptotic distributions of test statistics

In this part, we derive asymptotic distributions of the slgased statistics. We show that
the HAC-corrected version of the sign-based statiBt¢/,,, %J,;l) in (4.5) allows one to
obtain an asymptotically pivotal function. The set of asptions we make to stabilize the
asymptotic behavior will be needed for further asymptatgults. We consider the linear
model (2.1), with the following assumptions.

Assumption 6.1 MIXING. {(x},u;) : t = 1,2,...} is a-mixing of size—r/(r — 2),
r> 211

Assumption 6.2 MOMENT CONDITION. E[s(u;)z] =0, t=1,...,n, Vn € N.

Assumption 6.3 BOUNDEDNESS z; = (Z14,... ,2) andE[|zp,|"] < A < oo, h =
1,...,p,t=1,...,n, VneN.

Assumption 6.4 NON-SINGULARITY. J, = Var[% > iy s(ug)zy] is uniformly positive
definite.

Assumption 6.5 CONSISTENT ESTIMATOR OFJ,,. 2,(5,) is symmetric positive definite
uniformly overn and 2, — +J-1 % 0.

n

We can now give the following result on the asymptotic dsttion of Ds(83,, {2,)
underHy(3,).

Theorem 6.1 ASYMPTOTIC DISTRIBUTION OF SIGNBASED STATISTICS In model
(2.1), with Assumptions 6.1- 6.5, we have, unéigt3,), Ds(8,, 2.) — x*(p).

In particular, when the mediangale condition holds, reduces toE(X’X/n) and
(X’X/n)~!is a consistent estimator df !. This yields the following corollary.

Corollary 6.2 In model(2.1), suppose the mediangale Assumption 2.1 and boundedness
Assumption 6.3 are fulfilled. X' X /n is positive definite uniformly over and converges
in probability to a definite positive matrix, then, und@s(5,), SF(5,) — x*(p).

6.2. Asymptotic validity of Monte Carlo tests

We first state some general results on asymptotic validitylonte Carlo based inference
methods. Then, we apply these results to sign-based ifermethods.

11See White (2001) for a definition ef-mixing.
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6.2.1. Generalities

Let us consider a parametric or semiparametric mgtiet, 5 € ©}. Let S,(5,) be a
test statistic fotH,(3,). Let ¢, be the rate of convergence. Undés(3,), the distribution
function of ¢,,S,,(5,) is denotedF,,(z). We suppose thak,,(xz) converges almost every-
where to a distribution functiod’(x). G(z) andG,(z) are the corresponding survival
functions. In Theoren6.3, we show that if a sequence of conditional survival function
G, (2] X, (w)) given X (w) satisfiesd,, (x| X, (w)) — G(z) with probability one, wheré&
does not depend on the realizatisifw), thenG,, (z|X,,(w)) can be used as an approxima-
tion of G,,(z). It can be seen asgseudasurvival function ofc,,S,,(5,).

Theorem 6.3 GENERIC ASYMPTOTIC VALIDITY. LetS,(3,) be atest statistic for testing
Ho(B,) : B = Py againstH(8,) : B # 5, in model(2.1). Suppose that, undéf,(5,),

PlcnSn(By) = | X, = Gu(2|X,) =1 — Fo(2|X,,) — G(x)a.e
where{c, } is a sequence of positive constants and suppos&that| X, (w)) is a sequence
of survival functions such that, (x| X, (w)) — G(z) with probability one. Then

Tim PGy (€0 S (By), X)) < a] < a (6.1)

This theorem can also be stated in a Monte Carlo versionowoip Dufour (2006), we
use empirical survival functions and empirigal/alues adapted to discrete statistics in a
randomized way, but the replicates are not drawn from theeshistribution as the observed
statistic. However, both distribution functions redp, and F,, converge to the same limit
F.LetUN +1) = (UO® u® .. UM)be avectorofV + 1i.i.d. real variables drawn
from ai/(0, 1) distribution,S% is the observed statistic, arst} (V) = (S",..., 5" a
vector of N independent replicates drawn frd. Then, the randomizegseudo empirical
survival function undetd,(3,) is

G (z,n, S, S,(N), UN+1)) = 1- — Z 54 (2 — ¢, 89))

Gy (z,n, S S, (N),U(N + 1)) is in a sense an approximation ©f,(x). Thus it de-
pends on the number of replicatég, and the number of observations, The randomized
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pseudo empiricalp-value function is defined as

- NG;N) z)+1
) - N 1 6

We can now state the Monte Carlo-based version of The&r8m

Theorem 6.4 MONTE CARLO TEST ASYMPTOTIC VALIDITY. Let S,(3,) be a test

statistic for testingH, (5,) : 5 = 3, againsti, (3,) : 8 # B, in model(2.1) and 5" the
observed value. Suppose that, unégg3,),

Plc,Sn(8y) > z|X,] = Gu(z|X,) =1 = F, (2| X,) — G(x) a.e.,
where{c, } is a sequence of positive constants. Egtbe a random variable with condi-
tional survival functionz,, (z|X,,) such that

P[cngn > x| X,) = én(x|Xn) =1- F’n(x|Xn) — G(z) ae.,
and (Sﬁf), . ,S,(LN)) be a vector ofV independent replicates &f, where(N + 1)« is an
integer. Then, the randomized version of the Monte Carlondh levela is asymptotically
valid, i.e. lim,,_ P[ﬁgN) (By) < a] <a.

These results can be applied to the sign-based inferendetetowever, Theorems
6.3 and6.4 are much more general. They do not exclusively rely on asgtigphormal-
ity: the limiting distribution may be different from a Gaus one. Besides, the rate of
convergence may differ fronyn.

6.2.2. Asymptotic validity of sign-based inference

In model (2.1), suppose that conditions 6.1- 6.5 hold andsicen the testing problem:
Ho(3,) : B = B, againstH(5,) : 8 # B,. Let Dg(8,J; ') be the test statistic as de-
fined in (4.5). ObserveF©) = Dg(3,, J,;l). Draw N independent replicates of sign
vector, each one havingindependent components, frond1, .5) distribution. Compute
(SFV SF® . SFW) theN pseudaeplicates ofDg(5,, X' X 1) underH,(3,). We
call them “pseudo” replicates because they are drawn asér@htions were independent.
Draw N + 1 independent replicatésV (..., W ™)) from ai/(0, 1) distribution and form
the couple(SFW), W@). Computep"(3,) using (6.2). From Theorer.4, the confi-
dence region € Rp\ﬁﬁfv)(ﬁ) > «} is asymptotically conservative with level at least
1 — a.. Ho(B,) is rejected Whe[ﬁ%N)(ﬁO) < a.

Contrary to usual asymptotic tests, this metlkoés not require the existence of mo-
ments nor a density on the{u, : t = 1,2,...} process. Usual Wald-type inference is
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based on the asymptotic behavior of estimators and const#gisgemore restrictive. More
moments existence restrictions are needed, see Fitzemb@@Ob) and Weiss (1991).
Besides, asymptotic variance of the LAD estimator involnesconditional density at zero
of the disturbance procegs, : ¢ = 1,2,...} as unknown nuisance parameter. The ap-
proximation and estimation of asymptotic covariance magiconstitute a large issue in
asymptotic inference. This usually requires kernel meshdde get around those problems
by adopting the finite-sample sign-based procedure.

7. Simulation study

In this section, we study the performance of sign-based odstltompared to usual as-
ymptotic tests based on OLS or LAD estimators with differapproximations for their
asymptotic covariance matrices. We consider the signebatstisticsDg (3, (X'X)™!)

andDg(63,.J-') when a correction is needed for linear serial dependenceconsider a
set of general DGP’s to illustrate different classical peotls one may encounter in prac-
tice. Results are presented in the way suggested by theythEost, we investigate the
performance of tests, then, confidence sets. We use the/fofdinear regression model:

vy =80 +u, t=1,...,n, (7.1)

wherez; = (1,294, 23 ) and g, are3 x 1 vectors. We denote the sample size We
investigate the behavior of inference and confidence regimnl3 general DGP’s that are
presented in Table 2. For the first 7 onés; : ¢ = 1,2...} isi.i.d. or depends on the
explanatory variables and its past values im@tiplicative heteroskedastic or dependent
and stationary wayy, = h(x, ui_1, ... ,u1)e, t =1,... ,n.Inthose cases, the error term
constitutes a strict conditional mediangale givefsee Assumption 2.1). Correspondingly,
the levels of sign-based tests and confidence sets are thedentrolled. Next, we study
the behavior of the sign-based inference (involving a HA@edion) when inference is
only asymptotically valid. In cases C8-C10, andu, are such thakE(u,z;) = 0 and
E[s(u¢)x:] = 0 for all ¢. Finally, cases C11 and C12 illustrate two kinds of secori#o
nonstationary disturbances. As we noted previously, baged inference does not require
stationary assumptions in contrast with tests derived 1Guh

Cases C1 and C2 presentd. normal observations without and with conditional het-
eroskedasticity. Case C3 involves outliers in the errantérhis can be seen as an example
of measurement error in the observed Cases C4 and C5 involve other heteroskedas-
tic schemes with stationary GARCH and stochastic volgtiliisturbances. Case C6 is
a very unbalanced design matrix (where the LAD estimatofopers poorly). Case C6
BIS combines the previous unbalanced scheme in the desitnxméth heteroskedas-
tic disturbances. Case C7 is an example of heavy-tailedse(@auchy). Cases C8, C9
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Table 2. Simulated models

C1
C2:

C3:

C 4.

C5:

C6:

C 6 BIS:

CT7:

C8:

co:

C 10:

C11:

C1z:

NormalHOM::

NormalH ET"

Outlier:

Stat.
GARCH(1,1):

Stoc.
Volatility:

Deb.
design mat.:

Deb. design matrix

+ HET. dist.:

Cauchy
disturbances:
AR(1)-HOM,

Py = 9

AR(1)-HET,
Py = -0, .
Pz = -5

AR(1)HOM,
Py =9

Nonstat.
GARCH(1,1):

Exp. Var.:

(‘T2,t7 x3,t7ut)/ il N(O, I3),t=1,....n

(2,0, 25,0, ) "~ N(0, I3)
up = min{3, max[0.21, |zo ¢|]} X Gy, t=1,...,n

(w2,¢,73,¢) o N(0, Iy),

o, i { N[0, 1]  withp=0.95
t N0, 1000%] with p = 0.05

xt, ug, independentt = 1,...,n.

(x2,¢,23,¢) i N(0, I2), us = orer With
o2 = 0.666u2_, + 0.33302_, wheree, "% N(0, 1),

x4, €, independentt = 1,..., n.
(w21, x3,¢) i N(0, I), us = exp(we/2)e; with
id. ii.d.

wy = 0.5w;_q + vy, wheree, "% (0, 1), v "5 xo(3),

x¢, ug, independentt = 1,...,n.
a1 ~ B(1,0.3), x5, " N(0,.012),
w "B N(0,1), 24, u, independentt = 1, ..., n.

Tot s N0, 1) T3¢ K x2(1),

id .
up = w360, €~ N(0,1), x4, ¢ independentt = 1,...,n.

(302',;, $37t)/ ~ N(07 I2)v
up "5 C @y, uy, independentt = 1, n.

(1‘27t7 x37t, I/tu)/ ~ N(O, Ig),t = 2, coeyn,
up = pyui—1 + Vi,
(x2,1,231) ~ N(0, I2), v} insures stationarity.

Tt = Ppi-1+ Vi, j=1,2,
up = min{3, max[0.21, |2 ¢[]} X s,
Ut = p,Ut—1 + VY,
2 i.1.d
(v, v, v) "REN(0,13), t=2,...,n
v?,v3 andv¥ chosen to insure stationarity.

(22,4, 73 4, V2) ~ N(0,13),t =2,...,n,

Up = Pyut—1 + Vi,

(z2,1,231) ~ N (0, I1), v¥ insures stationarity.
(z2,¢, 3,1, €)' i N(O,I3), t=1,...,n,

uy = oye, 07 = 0.8u? | +0.802 .

(z2,¢, 3,1, €)' bl N(0, I3), us = exp(.2t)e;.
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and C10 illustrate the behavior of sign-based inferencenvthe error term involves lin-
ear dependence at different levels. Finally, cases C11 ddirolve disturbances that
are not second-order stationary (nonstationary GARCH apdreential variance) but for
which the mediangale assumption holds. The design matsimslated once for all the
presented cases. Hence, results are conditional. Cas@s C8-10 have been used by
Fitzenberger (199 to study the performance of block bootstrag B B).

7.1. Size

We first study level distortions. We consider the testingbpem: Hy(5,) : 6, =
(1,2,3) againstd; : 5, # (1,2,3). We compare exact and asymptotic tests based on
SF = Dg(3,(X'X)") andSHAC = Dg(3, J;'), whereJ; ! is estimated by a Bartlett
kernel, with various asymptotic tests. Wald and LR-typéstase considered. We consider
Wald tests based on the OLS estimate with 3 different coneeigstimators: the usual
under homoskedasticity and independentklY), White correction for heteroskedastic-
ity (W H), and Bartlett kernel covariance estimator with autombhaadwidth parame-
ter [BT, Andrews (1991)]. Concerning the LAD estimator, we study dMglpe tests
based on several covariance estimators: order statigtinasr (0.5),'? Bartlett kernel
covariance estimator with automatic bandwidth paramée?&r, [Powell (1984), Buchinsky
(1995)], design matrix bootstrap centering around the $argiimate DM B, Buchinsky
(1998)], moving block bootstrap centering around the sengstimate }/ BB, Fitzen-
berger (199@)].%* Finally, we consider the likelihood ratio statistic (LR)sasningi.i.d.
disturbances with a@.S estimate of the error density [Koenker and Bassett (198%)len
errors ard.i.d. and X is fixed, the LM statistic for testing the joint hypothesis(3,) turns
out to be theS F’ sign-based statistic. Consequently, the three usual ffivad, LR, LM)

of asymptotic tests are compared in our setup.

In Tables 3 and 4, we report the simulated sizes for a comdititest with nominal
level « = 5% given X. N replicates are used for the bootstrap and the Monte Carlo
sign-based method amdl = 2999. All bootstrapped samples are of size= 50. We
simulateM = 5000 random samples to evaluate the sizes of these tests. Fosigoth
based statistics, we also report the asymptotic level whergrocesses are stationary.

Table 3 contains models when the mediangale condition 2dsh&izes of tests de-
rived from sign-based finite-sample methods are exactlyrolded, whereas asymptotic
tests may greatly overreject or underreject the null hypsith This remark especially
holds for cases involving strong heteroskedasticity (€a54, C6 BIS). The asymptotic
versions of sign-based tests suffer from the same undectr@p than other asymptotic
tests, suggesting that, for small samples= 50), the distribution of the test statistic is

12This assumes.i.d. residuals; an estimate of the residual density at zero iirdd from a confidence
interval constructed for the/2th residual [Buchinsky (1998)].
13The block size is 5.
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Table 3. Linear regression under mediangale errors: ecapsizes of conditional tests
for Hy : = (1,2,3)

yr = 10 + uy, SIGN LAD oLS
t=1,...,50. | SF SHAC| OS DMB MBB BT LR |[IID WH BT
Stationary models

C 1. HOM .052 .050 | .086 .050 .089 .047 .068.060 .096 .113
pe=py =0, .047*  .019*
C 2: HET .052 .057 | .300 .037 .059 .051 .13fy.162 .100 .118
Pe = py =0, .045* .023*
C3: .047 .048 | .088 .043 .083 .039 .066.056 .008 .009
Outlier .044* .015*
C4: .042 .046 | .040 .005 .005 .004 .012.080 .046 .046
St. GARCH(1,1)| .040* .013*
C5: .043 .041 | .063 .006 .014 .006 .031.054 .014 .014
Stoch. Volat. .045*  .021*
Cé6: .047 .049 | .080 .048 .084 .043 .064.085 .060 .095
Debalanced .043* .022*
CT: .058 .059 | .069 .013 .033 .012 .044.061 .023 .023
Cauchy .049* .021*

Nonstationary models
C6BIS: .044  .042 | 687 .020 .044 .152 .30y .421 .171 .173
Deb.+ Het. .040* .018*
C 11: Nonst. .054 .057 | .003 .000 .001 .000 .002.060 .016 .016
GARCH(1,1)
C 12 Exp. Var. | .049 .051 | .017 .000 .000 .000 .000.132 .014 .014

* Sizes using asymptotic critical values based@d(B).

really far from its asymptotic limit. Hence, the sign-baseethod that deals directly with
this distribution has clearly an advantage on asymptotithous. When the dependence
in the disturbance process is highly nonlinear (case C6,Blh®)kernel estimation of the
LAD asymptotic covariance matrix is not reliable anymore.

In Table 4, we illustrate behaviors when the error term imgsllinear serial depen-
dence. The Monte Carl§ H AC sign-based test does not control exactly the level but is
still asymptotically valid, and yields the best results. Welerscore its advantages com-
pared to other asymptotically justified methods. Whereadthld and LR tests overreject
the null hypothesis, the latter test seems to better cotitedlevel than its asymptotic ver-
sion, avoiding under-rejection. There exists importaffedences between using critical
values from the asymptotic distribution 81 AC' statistic and critical values derived from
the distribution of theS H AC statistic for a fixed humber of independent signs. Besides,
we underscore the dramatic over-rejections of asymptoatd\iests based on HAC es-
timation of the asymptotic covariance matrix when the datairs/olves a small number
of observations. These results suggest, in a sense, that thhedata suffer from both
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Table 4. Linear regression with serial dependence: engpisizes of conditional tests for

Hy: 0= (1,2,3)/

yr = x5 + Uy, SIGN LAD OoLS
t=1,...,50. | SF SHAC| OS DMB MBB BT LR |[IID WH BT

Serial dependence (cases when mediangale condition fails)
C 8: HOM 26 .022 | 171 124 118 .085 .151.201 .240 212
Pe =25, p, =0 - .019*
C9: HET .218 .026 | .440 .131 .097 .108 .308.407 .328 .276
pE = pm = 5 - .017*
C 10 HOM 521 .012 | 553 516 .339 355 .551.649 .677 .534
Pe =9, pp = 0% - .003*

* Sizes using asymptotic critical values basedd(8).
x+ Automatic bandwidth parameters are restricted techi®) to avoid invertibility problems.

a small number of observations and linear dependence, 8tgfimblem to solve is the
finite-sample distortion, which is not what is usually done.

7.2. Power

Then, we illustrate th@ower of these tests. We are particularly interested in comparing
the sign-based inference to kernel and bootstrap methodsconsider the simultaneous
hypothesigi, as before. The true process is obtained by fixingnd, at the tested value,
i.e. f;, = 1 andj; = 3, and letting vary3,. Simulated power is given by a graph with
0, in abscissa. The power functions presented here (figures 3)aare locally adjusted
for the level, which allows comparisons between methodswéder, we should keep in
mind that only the sign-based methods lead to exact confedenels without adjustment.
Other methods may overreject the null hypothesis and doartdtal the level of the test,
or underreject it, and then, loose power.

Sign-based inference has a comparable power performatitcesvial methods in cases
C1, C2, C3, C6, C9 with the advantage that the level is exaxthtrolled, which leads
to great difference in small samples. In heteroskedastiteterogenous cases (C4, C5,
C7, C11, C12), sign-based inference greatly dominates otle¢hods: levels are exactly
controlled and power functions largely exceed others, evethods that are size-corrected
with locally adjusted levels. In the presence of linearaetependence, the Monte Carlo
test based o (ﬁ, J,;l), which is still asymptotically valid, seems to lead to go@iver
performance for a mild autocorrelation, along with a bestiee control (cases C9 and
C10)* Only for very high autocorrelation (close to unit root presg the sign-based
inference is not adapted.

The power functions for case C8 are not reported here asaheytd similar results as case C9.
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Figure 2. Power functions (1)
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Powers are level corrected. SighF = Dg(3,X'X 1), SHAC = Dg(3,J;'); LADIOLS: DMB =
design matrix boot.)/ BB = moving block boot..BT = Bartlett kern./I D = homo.,W H = White cor.,
OS = order stat.
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Figure 3. Power functions (2)
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Powers are level corrected. SighF = Dg(3,X'X 1), SHAC = Dg(3,J;!); LADIOLS: DMB =
design matrix boot.)/ BB = moving block boot..BT = Bartlett kern./I D = homo.,W H = White cor.,
OS = order stat.
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7.3. Confidence intervals

As the sign-based confidence regions are by constructiaevef higher thal — o when-
ever inference is exact, a performance indicator for confidentervals may be their width.
Thus, we wish to compare the width of confidence intervalaioled by projecting the sign-
based simultaneous confidence regions to those basestatistics on the LAD estimator.
We useM = 1000 simulations, and report average width of confidence intsrfca each

0, and coverage probabilities in Table 5. We only consider tagahary examples. In
the nonstationary cases, inference based-statistics may not mean anything. Spreads
of confidence intervals obtained by projection are larganthsymptotic confidence inter-
vals. This is due to the fact that they are by constructiorseorative confidence intervals.
However, itis not clear that valid confidence intervals withthis feature can even be built.

8. Examples

In this section, two illustrative applications of the sigased inference are presented. One
on financial data, one in growth theory. First, we considgting a drift on the Standard and
Poor’s composite price index (S&P) 1928-1987, which is kndwvinvolve a large amount
of heteroskedasticity. We consider robust tests on theevbetiod and on the 1929 Krach
subperiod. In the second illustration, we test for the presef3-convergence across the
U.S. States during the 1880-1988 period using the Barro atadi9viartin (1991) data set.
Finite-sample sign-based inference is also particulatgpéed to regional data sets, which
have by nature fixed sample size.

8.1. Standard and Poor’s drift

We test the presence of a drift on the Standard and Poor’s @sitepprice index § P),
1928-1987. That process is known to involve a large amouttetéroskedasticity and
have been used by Gallant, Hsieh and Tauchen (1997) and Darfidwaléry (2008) to fit
a stochastic volatility model. Here, we are interested busb testing without modeling
the volatility in the disturbance process. The data setistms a series of 16,127 daily
observations of P;, converted to price movements,= 100[log(SF;) — log(SP;—1)] and
adjusted for systematic calendar effects. We consider ahwath a constant and a drift:

w=a+bt+u, t=1,...,16127, (8.1)

where we let the possibility thdt,, : t = 1,...,16127} presents a stochastic volatility or
any kind of nonlinear heteroskedasticity of unknown formhit% and Breusch-Pagan tests
for heteroskedasticity both reject homoskedasticity/at®

Bwhite: 499 p-value=.000) ; BP: 2781pfvalue=.000).
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Table 5. Width of confidence intervals (for stationary cases

Proj. based SF

Proj. based SHAC

LABtat. with DMB  LAD ¢-stat. with MBB

LAD ¢-stat. with BT

T =50 B4 By Bs | By Ba Bs | By Ba B3 | B4 By Bs | 6 By Bs
(81,84, 03) = (1,2,3) Models which satisfy the mediangale condition
C1: av.spread 1.29 152 140|1.16 136 1.02| .81 .90 .89 .79 .88 .85 .82 .88 .87
Pu=p.=0 (st. dev.)| (.21) (.27) (.29)| (.14) (.28) (.29)| (.23) (.21) (.22) | (.21) (24) (24) | (.15 (19 (.22
HOM cov. lev. | 1.0 1.0 1.0 | 1.0 1.0 1.0 | .97 .97 .97 .95 .96 .95 .97 .96 .96
Cc2: .76 1.43 .74 | .66 1.26 .48 | .43 .94 .43 42 .90 41 .50 .92 .50
Pu=0p,=0 (.14) (29) (.17)| (\15) (.28) (.18)| (.09) (.24) (11) | (100 (27) (120 | (11 (29 (.11)
HET 1.0 1.0 1.0 | 1.0 1.0 1.0 | .98 .97 .99 .97 .95 .97 .99 .95 .99
C3: 1.26 137 1.05/1.15 124 .91 | .92 .94 .98 .88 .98 1.04 | .88 .88 .88
Outlier (.26) (.31) (.30)| (.25) (.29) (.30)| (.80) (.79) (1.29)| (.67) (1.36) (2.73)| (.17) (.20) (.24)
1.0 1.0 .98 | 1.0 .99 .96 | .98 .98 .98 .97 .97 .97 .97 .98 .97
C 4 50.4 585 57.3| 495 559 56.1306 334 259 |350 383 415 |29.3 326 323
Stat. (101) (118) (122) (100) (115) (117) (64.6) (74.6) (61) (76.7) (82.6) (84) (70.3) (76.9) (78)
GARCH(1,1) 1.0 1.0 .93 | .99 .99 94 (1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
C5: 273 304 331|228 294 27 |133 159 155 | 151 20.7 19.1 | 157 154 156
Stoc. Vol.: (14.4) (16.7) (18.1)(12.2) (17.6) (15.9)(6.4) (15.9) (15.5)| (9.6) (28.0) (19.3)| (7.5) (7.8) (7.5)
1.0 .98 1.0 | 1.0 1.0 1.0 | .99 1.0 .99 .98 1.0 .99 .99 1.0 .99
Cé6: 164 282 1885142 248 1629101 170 108.7| .99 1.64 104.2|1.03 1.68 105.67
Deb. des. mat.: (.29) (.50) (32.3) (.32) (.51) (34.4) (.26) (.36) (25.6) | (.31) (.43) (27.7)| (.21) (.33) (24.5)
1.0 1.0 1.0 | 1.0 1.0 1.0 | .96 .98 .97 .94 .96 .96 .96 .96 .96
CT: 220 275 259|188 233 195 125 147 147 |121 141 142 |139 152 1.53
Cauchy dist.: (.59) (.82) (.82)| (.56) (.78) (.74)| (.32) (.46) (.45) | (.38) (.57) (.B3) | (.37) (.49) (.47)
1.0 1.0 1.0 | 1.0 1.0 .99 | .98 .98 .98 .97 .98 .97 .99 .98 .99
Models which do not satisfy the mediangale condition
cs: 159 171 1.46| 163 1.47 1.05| .99 1.00 .94 1.17 .96 .86 1.23 .91 .81
Pu=-5, p, =0 (.30) (.32) (.30)| (.38) (.31) (.28)| (.25) (.26) (.24) | (.34) (.26) (.23) | (.36) (.23) (.21)
HOM .99 1.0 1.0 | .99 1.0 .99 | .86 .98 .99 .90 .97 .97 91 .96 .95
co: 125 1.46 156|123 1.64 .99 | .68 1.12 .96 .79 1.23 .96 .94 1.11 1.01
Pu=Pr =D (.31) (.40) (.40)| (\41) (.B1) (.35)| ((17) (.33) (.24) | (.24) (42) (.26) | (.33) (.55) (.36)
HET 1.0 .99 1.0 | .98 .97 .94 | 93 .88 .98 .95 .89 .98 .97 .83 .97
C 10: 246 242 269/ 3.00 200 241152 141 151 |246 156 153 |2.89 1.21 1.27
Pu="-9 p,=0 (.84) (.82) (.95)| (1.06) (.68) (.96)| (.57) (.56) (.61) | (1.00) (.60) (.63) | (1.46) (.47) (.61)
HOM .68 .99 1.0 | .74 1.0 .99 | 47 .95 .98 .66 .97 .98 71 .87 .91




We derive confidence intervals for the two parameters wighMlonte Carlo sign-based
method and we compare them with the ones obtained by Walditpats applied to LAD
and OLS estimates. Then, we perform a similar experimentvorsubperiods, the whole
year 1929 (291 observations) and on the last 90 opened dd@26f which roughly cor-
responds to the 4 last months of 1929 (90 observations)yésiigate behaviors of the dif-
ferent methods in small samples. Due to the financial casis,may expect data to involve
heavy heteroskedasticity during this period. Let us rentliredWall Street krach occurred
between October 28(ack Thursdayand October 29Klack Tuesday Hence, the second
subsample corresponds to September, October with the bexabd, and November and
December with the early beginning of the Great Depressi@tetdskedasticity tests reject
homoskedasticity for both subsamplés.

In Table 6, we repoi®5% confidence intervals far andb obtained by various methods:
finite-sample sign-based method (f8f" and S H AC which involves a HAC correction);
LAD and OLS with different estimates of their asymptotic adence matrices (order sta-
tistic, bootstrap, kernel...). If the mediangale Assumpt2.1 holds, the sign-based con-
fidence interval coverage probabilities are controlledstiiresults on the drift are very
similar between methods. The absence of a drift cannot leeteg] with5% level. But
results concerning the constant differ greatly betweerhous and time periods. In the
whole sample, the conclusions of Wald-tests based on the égtinator differ depending
on the choice of the covariance matrix estimate. Concerthagest of a positive constant,
Wald tests with bootstrap or with an estimate derived if obstgons ard.i.d. (O.S covari-
ance matrix) which is totally illusory in that sample, rdjaghereas Wald test with kernel
(so as sign-based tests) cannot reject the nullity. ofhis may lead the practitioner in a
perplex mind. Which is the correct test?

In all the considered samples, Wald tests based on OLS afpkarunreliable. Either,
confidence intervals are huge (see OLS results on both sodpgeither some bias is
suspected (see OLS results on the whole period). Take tletazdrparameter, on the one
hand, sign-based confidence intervals and LAD confideneevialis are rather deported to
the right, on the other hand, OLS confidence intervals sedre tmnased toward zero. This
may due to the presence of some influential observationseder, the OLS estimate for
the whole sample is negative. In settings with arbitraretetkedasticity, least squares
methods should be avoided.

Sign-based tests seem really adapted for small samplésgseti_et us examine the
third column of Table 6. The tightest confidence intervalstfe constant parameter is
obtained for sign-based tests based ontheAC statistic, whereas LAD (and OLS) ones
are larger. Note besides the gain obtained by uSiIHg\C' instead ofS F' in that setup. This
suggests the presence of autocorrelation in the distuelgaiocess. In such a circumstance,

161929: White: 24.2p-values: .000 ; BP: 12-values: .000; Sept-Oct-Nov-Dec 1929: White: 11.08,
p-values: .004; BP: 1.7¢-values: .18.
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finite-sample sign-based tests remain asymptoticallghgich as Wald methods. However,
they are also corrected for the sample size and yield vefgrdiit results.

8.2. [3-convergence across U.S. States

With the neoclassical growth model as theoretical backgipiBarro and Sala-i-Martin

(1991) tested’ convergence between the levels of per capita output acBss3. States

for different time periods between 1880 and 1988. They usadimear least squares to
estimate equations of the form

(1/T) (Y i /ys,i-1) = a = (g 7)) x [(1 =) /T] + 2i5 + 7,

i=1,...,48, T =8, 10 0r20, ¢t = 1900, 1920, 1930, 1940, 1950, 1960, 1970, 1980,
1988. Their basic equatiordoes not include any other variables but they also consider a
specification with regional dummieEq. with reg. dum). Thebasic equatiorassumes that
the 48 States share a common per capita level of personahmeab steady state while the
second specification allows for regional differences iagyestate levels. Their regressions
involve 48 observations and are run for each 20-year or Hd{yeriod between 1880 and
1988. They tended to accept a positivand concluded on a convergence between levels
of per capita personal income across U.S. States. Howeotit,thbe NLLS method and
the Wald-type tests they performed are only asymptotiga#liified and can be unreliable
for only 48 observations. This unreliability is strengtedrhere because the data suffer
from heteroskedasticity, departure from normality, pnegeof outliers and observations
with possibly high influence. Indeed, residual analysisistiat departures from a normal
standard case are present in most periods (see TableGily, the outstanding growth
period of 1960-1970 does not seem to show potential datdeansb Similar results hold
for the equation with regional dummies. This survey higldguces the validity of least
squares methods and suggests the need of a test, valid endamiples and robust to het-
eroskedasticity of unknown form.

Hence, we propose to perform finite-sample based sign teseetwhether the conclu-
sion of -convergence still holds. We consider the linear equation:

(1/T) Iy, o /yi o) = a + (Y 7)) + 20 + €T (8.2)

wherez; contains regional dummies when included, and compute @rojebased CI for
v, a, and forg = —(1/T) In(yT + 1) as a bijective transformation of, in both specifi-
cations. We compare projection-based valido-confidence intervals fos based on the
sign-based statistiS§ F' with Barro and Sala-i-Martin nonlinear least squares asptigp

17Omitted variables, misspecification of the model can alad te similar conclusions, we do not consider
those problems here, which leads to entirely rethink thevtiréheory and the model.
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95%-confidence intervals (Table 8).

The results we find for the basic regression are close to tifddarro and Sala-i-Martin
(1991). We fail to rejecti = 0 at5%-level, for the 1880-1900, 1920-1930, 1980-1988 pe-
riods, whereas Barro and Sala-i-Martin (1991) fail to rejée- 0 at5% (asymptotic)-level
for the 1920-1930 and 1980-1988 periods. Our results difidy for the 1880-1900 period.
That may be due to the strong heteroskedasticity and depdram normality affecting
least squares methods as we show in Table 7. When regionahehsnare included, we
fail to rejects = 0 at 5%-level 7 times over 9 whereas Barro and Sala-i-Martin (1991)
fail to reject 3 times over 9. Finally, a positiveconvergence seems to pass both NLLS-
based asymptotic tests and finite sample-based robusesignith the basic specification,
yielding to a strong argument in favor of the theory. Howetteatt is no longer true for the
specification with regional dummies, which reduces the @feastrictly positives conver-
gence with possibly different regional steady state levélss also may in part be due to
the conservativeness of the projection-based method bt th no evidence that smaller
exact confidence intervals can be constructed.

9. Conclusion

In this paper, we have proposed an entire system of inferércihe 5 parameter of a
linear median regression that relies on distribution-figm-based statistics. We show that
the procedure yields exact tests in finite samples for medianprocesses and remains
asymptotically valid for more general processes includitagionary ARMA disturbances.
Simulation studies indicate that the proposed tests anfidemte sets are more reliable
than usual methods (LS, LAD) even when using the bootstragsplle the programming
complexity of sign-based methods, we advocate their use atstrary heteroskedasticity
is suspected in the data and the number of available obgsrsas small. Finally we have
presented two practical examples: we test the presencerdt amdthe S&P price index,
for the whole period 1928-1987 and for shorter subsamplad, we reinvestigate whether
a -convergence between levels of per capita personal incenessU.S. States occurred
between 1880 and 1988.
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Appendix

A. Proofs

Proof of Proposition 2.1 We use the fact that, gsX; : ¢t = 1,2,... } is strongly exoge-
nous,{u; : t = 1,2,...} does not Granger cau$&; : t = 1,2,...}. It follows directly

thatl(s;|u_1,... ,u1, 2, ... ,21) = U(S¢|ws_1, ... ,u1, 2, ... ,21) Wherel stands for the
density ofs; = s(uy). O
Proof of Proposition 3.2  Consider the vector[s(u),s(us),...,s(u,)] =
(s1,82,...,5,)". From Assumption 2.1, we derive the two following equatitie

Plus > 0|X] = E(Plut > Olug—y, ..., uy, X]) =1/2,

Plu > 0|si—1, ..., s1, X] = Pluy > 0lug_1, ..., uy, X] =1/2,Vt > 2.
Further, the joint density dfs;, s, ... , s,)’ can be written:
[(s1, S2, ..., $p|X) = Hl(st|st_1, ooy 51, X)
t=1
= H Plus > Olug_1, ..., ug, X](l_st)/z{l — Pluy > Olug_q, ..., uq, X]}(Hsf)/2
t=1

T2 = (/20507 = (1/2)

Hence, conditional 0X, s, 59, ... , s, i B(1/2). O
Proof of Proposition 3.3 Consider model (2.1) withu, : t = 1,2, ...} satisfying a weak
mediangale conditional oX. Let show thats(u;), §(us),... ,$(u,) can have the same
role in Propositior8.2ass(uy), s(uz), ... , s(u,) under Assumption 2.1. The randomized

signs are defined b§(u,, V;) = s(u;) + [1 — s(ut)?]s(V; — .5), hence
P[g(uh ‘/t) = 1‘ut—17 ceey U, X] = P[S<ut)+[1_s(ut)2]8(%_5) = 1‘ut—17 ceey U, X]

As (Vi,...,V,)isindependent ofuy, ... ,u,) andV;, ~ U(0, 1), it follows

- 1
Pls(u, Vi) = 1] = Pluy > Oluy—q, ..., uq, X] + §P[ut =0lu_1, ..., ug, X]. (A1)
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The weak conditional mediangale assumption giXeantails:

1—p

Plu; > Olug_1, ..., up, X] =Pluy <Olug_q, ..., us, X| = 5 (A.2)
wherep; = Plu; = OJug—1, ... ,uq, X]. Substituting (A.2) into (A.1) yields
= _ l=pr pe 1
P[S(Ut, ‘/t) = 1|Ut_1, AT X] = 2 + 5 = 5 (A3)
In a similar way,
Pl3(us, Vi) = —Lfurer, -, u, X] = 1/2. (A.4)
The rest is similar to the proof of PropositiGr O

Proof of Proposition 4.1 Let us consider first the case of a single explanatory viarizdse
(p = 1) which contains the basic idea for the proof. The case with1 is just an adapta-
tion of the same ideas to multidimensional notions. Undedeh(2.1) with the mediangale
Assumption 2.1, the locally optimal sign-based test (coowdal on X) of Hy(5) : 5 =0
againstH, () : § # 0 is well defined. Among tests with level, the power function of
the locally optimal sign-based test has the highest slopenar zero. The power function
of a sign-based test conditional 6h can be writterP3[s(y) € W,|X], wherelV, is the
critical region with levelo. Hence, we should include W, the sign vectors for which
%Pﬁ[S(y) = 5| X]s=0, is as large as possible. An easy way to determine that diegya
to identify the terms of a Taylor expansion around zero. WAdsumption 2.1, we have

Ps[S(y) = s|X] = H Pa(y: > 0| X)] T2 [Pys(y; < 0[X)|1702 (A5)

[1— Fy(—a; 8| X)] 02 [Fy (=2, 81 X)) 002 (AB)

Il
=1

.
I
—

Assuming that continuous densities at zero exist, a TayWpa®esion at order one entails:

PolS(y) = 5IX] = QiH 1+ 2£,(0/X)zs5:0 + o(3)] (A7)
- 2% 1+zz £01X) 25558 + 0(3) | (A.8)

i=1

All other terms of the product decomposition are negligibteequivalent ta(3). That
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allows us to identify the derivative @t = 0:

d n
i —Ps_o[S(y) = s|X] =27 ; £:(01 X)) ;s . (A.9)

Therefore, the required test has the form

W, — {s: (51, .-+, 50)| >ca}, (A.10)

Zfi(O\X)xiSi

or equivalently}V,, = {s|s(y)’XX's(y) > ¢} , wherec, andc, are defined by the signif-
icance level. When the disturbances have a common conditiEmsity at zerof (0|.X),
we find the results of Boldin et al. (1997). The locally optim@n-based test is given by
W, = {s|s(y)’XX's(y) > ¢} . The statistic does not depend on the conditional density
evaluated at zero.

Whenp > 1, we need an extension of the notion of slope around zero farladimen-
sional parameter. Boldin et al. (1997) propose to resta¢hée class of locally unbiased
tests with given level and to consider the maximal mean curvature. Thus, a localy-u

ased sign-based test satisfié&.('>)| =0, and, asf/(0) = 0, Vi, the power function
=0
around zero is determined by the quadratlc term of its Tagipansion:

1 (d?Ps(W,)
v 5( 3 )

> IA(01X)si8'x] [ £5(01X) 525 (A.11)

1<i# j<n

2n2

The locally most powerful sign-based test in the sense ofitean curvature maximizes

the mean curvature which is, by definition, proportionalte trace ofdQF’jﬁ(ZV“) oy See
=0

Boldin, Simonova, and Tiurin (p. 41, 1997), Dubrovin, Forkerand Novikov (ch. 2, pp.
76-86, 1984) or Gray (ch. 21, pp. 373-380,1998). Taking theetin expression (A.11),
we find (after some computations) that

tr (M ) Z Zf’ 01.X) f;(0|1X)s;s; lekxjk (A.12)
B=0

2
dﬂ 1<i# j<n

By adding the independent sfquantityd ;" , >7_, 2%, to (A.12), we find

Z <Z 1’ikfi(0|X)$i> = 5'(y) X X's(y). (A.13)

k=1 i=1

35



Hence, the locally optimal sign-biased test in the senseldped by Boldin et al. (1997) for
heteroskedastic signs, i, = {s : s'(y) X X's(y) > ¢,} . Another quadratic test statistic
convenient for large-sample evaluation is obtained bydstedizing by X'X: W, = {s:
s ()X (X' X)" ' X's(y) > ¢} O

Proof of Theorem 6.1 This proof follows the usual steps of an asymptotic nortpaéisult
for mixing processes [see White (2001)]. Consider modél)(2n the following,s; stands
for s(u;). Under Assumption 6.4/, '/ exists for anyn. SetZ,, = NV, /*x}s(u;), for
some) € R? such that\'’A = 1. The mixing property 6.1 ofx}, u;) gets transmitted
to Z,,; see White (2001), Theorem 3.49. Hena&/, "/*s(u;) ® z; is a-mixing of size
—r/(r —2), r > 2. Assumptions 6.2 and 6.3 imply

ENV 220 s(u)] =0, t=1,...,n, VneN. (A.14)

EINV Y20l s(u)|" < A<oo, t=1,...,n, ¥n€N. (A.15)

Note also that
1 « 1 «
ar (% ; ng) = Var % ; )\/Vn_l/2s(ut) XRx| = )\/Vn_l/zvnvn_l/2)\ =1.
(A.16)

The mixing property ofZ,; and equations (A.14)-(A.16) allow one to apply a centraitlim
theorem [see White (2001), Theorem 5.20] that yields

ZX 26(uwy) @z, — N(0, 1) (A.17)

Since)\ is arbitrary with\’\ = 1, the Cramér-Wold device entails

n

Vo P2y " s(uy) @ — N0, 1) (A.18)

t=1
Finally, Assumption 6.5 states thé¥, is a consistent estimate bf~'. Hence,
n~ Y2012 Z s(u) ® x, — N(0, I,) (A.19)
t=1

andn='s'(y — X3,) X 2,X's(y — XBy) — x*(p)- n
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Proof of Corollary 6.2. Let F;, = o(vo,... , ¥, 20,---,2;). When the mediangale

Assumption 2.1 holds{s(u;) ® x;, F; : t = 1,...,n} belong to a martingale dif-
ference with respect té, . Hence,V, = Var [ﬁs@X] = L5 E(msisizy) =
L3 E(ma)) = LE(X'X), and X'X/n is a consistent estimate &(X'X/n). The-
orem6.1yields SF(5,) — x,(p)- O

In order to prove Theorer.3, we will use the following lemma on the uniform con-
vergence of distribution functions [see Chow and Teich8Bgl sec. 8.2, p. 265)].

Lemma A.1 Let(F, ).y and F' be right continuous distribution functions. Suppose that
F.(z) — F(x), Ve €R.Then, sup |F,(x)— F(z)] — 0.

—oco<xr<+00

Proof of Theorem 6.3 G(—o0) = G,(—o0) = 0, G(+00) = G,(+00) = 1, and
Gn(2|Xn(w)) — G(x) a.e.. By LemmaA.l, (G,).n converges uniformly td7. The
same holds fots,,. Moreover,G,, can be rewritten as

én(cnsn(ﬁoﬂXn) = [én(cnsn(ﬁo)|Xn(w)) - G(Cnsn(ﬁo))}
‘l’[G(CnSn(ﬁO)) -Gy (CnSn(ﬁoﬂXn(w))} + Gy (C"Sn(ﬁoﬂXn)a

hence ~
G (cnSn(B0)| X)) = Gr(caSn(Bo)|Xi) + 0,(1). (A.20)

As ¢, S} is a discrete positive random variable &g, its survival function is also discrete.
It directly follows from properties of survival functionthat for each € Im(G,(R")),
i.e. for each point of the image set, we have

P[Gn (cnSn(ﬁo)) < oz} = q. (A.21)

Consider now the case whene (0,1)\Im(G,(R")). a must be between the two values
of a jump of the functiorz,,. SinceG,, is bounded and decreasing, there exist o, €
Im(G,(R")), such thaty; < a < a and

PGy (cnSn(By)) < 1] < P[Gr(cnSn(By)) < @] < P[Gn(cnSn(By)) < aal.

More precisely, the first inequality is an equality. Indeed,

P[Gu(cuSu(B) < @] = P[{GuleaSu(Bo)) < on} U{an < CulcaSu(Bo)) < )]
= P[Gn(caSn(By)) < ar] +0,
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as{ay < G, (caSn(By)) < a}is a zero-probability event. Applying (A.21) to,
P[Gn (cnSn(ﬁO)) < a} = P[Gn (cnSn(ﬁo)) < al} =a; <. (A.22)

Hence, fora € (0,1), we haveP |G, (c.S.(8y)) < a] < a. The latter combined with
equation (A.20) allows us to conclude

P[G(cnSn(By)) < a] =P[Gn(cnSn(By)) < a] +0,(1) < a+ 0,(1).

0]
Proof of Theorem 6.4 Let S\ be the observed statistic ang(N) = (Sﬁf), e ,S,(LN)),
a vector of N independent replicates drawn fraff)(x). Usually, validity of Monte Carlo

testing is based on the fact the veth{S,(LO), . ,cnS,(LN)) is exchangeable. Indeed, in that

case, the distribution of ranks is fully specified and yighasvalidity of empiricap—value
[see Dufour (2006)]. In our case, it is clear that S\, ..., c,S%") is not exchange-
able, so that Monte Carlo validity cannot be directly apghlieNevertheless, asymptotic
exchangeability still holds, which will enable us to cord#u To obtain that the vector
(cnS,(f), o ,cnS,gN)) is asymptotically exchangeable, we show that for any peatiart
7:[1,N] — [1,N],

lim P[S©) >ty ..., SW™ >ty] —P[STO > ¢y, ..., STW) > ty] = 0.

n—00 -

First, let rewrite
PS> to, ..., SYV > tn] = Ex, {P[SY > to, ..., STV > tn, X, = w,]}.

The conditional independence of the sign vectors (re@ittand observed) entails:

N
PISY > tg, ..., SV > tn, Xy =] = P[X, =2,] [[PISY > t:| X = )]
=0

N
= Gu(to|Xo = ) [[ Gutil X = ).
=1

As each survival function converges with probability oné&ta:), we finally obtain

N
PISO > 1y, SO >, ..., SN > ty, X, = 2,] — [] G(t:)with probability one.
1=0
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Moreover, it is straightforward to see that for. [1, N| — [1, N], we have ag — oo:

N
PISY >t ), STV >y, .o, STV >ty X, =1, — HG(ti)with probability one.
=0

Note that as7(¢) is not a function of the realizatioX (w) so that

lim. PISO >t5, ..., S™ > tn] —=P[STO > 15, ..., ST > ¢y] = 0.

Hence, we can apply an asymptotic version of Propositior22r2 Dufour (2006) that

validates Monte Carlo testing for general possibly nonooiaus statistics. The proof of
this asymptotic version follows exactly the same steps agpthofs of Lemma 2.2.1 and
Proposition 2.2.2 of Dufour (2006). We just have to repldoe ¢xact distributions of
randomized ranks, the empirical survival functions anddhwirical p—values by their

asymptotic counterparts and this is sufficient to concliigppose thalv, the number of

replicates is such that(N + 1) is an integer. Therim,,_.. 5" (c,5)) < a. O
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B. Detailed analysis of Barro and Sala-i-Martin data set

This appendix contains additional results for the Barro%ald-i-Martin application. Table
9 contains results of heteroskedasticity tests. Compléamgsign-based inference results
for the model parameters are reported in Table 10.

40



Table 6. S&P price index: 95 % confidence intervals

Whole sample Subsamples
Constant parametes) (16120 0bs) 1929 (291 obs) 1929 (90 obs)
Methods
Sign
SF statistics [-.007, .105] [-.226, .522] [-1.464, .491]
SHAC statistics [-.007, .106] [-.135, .443] [-.943, .362]
LAD (estimate) (.062) (.163) (-.091)
with OS cov. matrix est. [.033,.092] [-.144, .470] [-1.015, .832]
with DMB cov. matrix est. [.007,.117] [-.139, .464] [-1.004, .822]
with MBB cov. matrix est. (b=3) [.008, .116] [-.130, .456] [-1.223,1.040]
with kernel cov. matrix est. (Bn=10) [-.019,.143] [-.454,-.780] [-1.265, 1.083]
oLS (-.005) (.224) (-.522)
with iid cov. matrix est. [-.041, .031] [-.276, .724] [-2.006, .962]
with DMB cov. matrix est. [-.054, .045] [-.142, .543] [-1.335, .290]
with MBB cov. matrix est. (b=3) [-.056, .046] [-.140, .588] [-1.730, .685]
Drift parameter ( b)
Methods x1075 x1072 x107!
Sign
SF statistics [-.676, .486] [-.342,.344] [-.240, .305]
SHAC statistics [-.699, .510] [-.260, .268] [-.204, .224]
LAD (.184) (.000) (-.044)
with OS cov. matrix est. [-.504,.320] [-.182,.182] [-.220, .133]
with DMB cov. matrix est. [-.688,.320] [-.256, .255] [-.281, .194]
with MBB cov. matrix est. (b=3) [-.681,.313] [-.236, .236] [-.316, .229]
with kernel cov. matrix est. [-.671,-.104] [-.392, .391] [-.303, .215]
OoLS (.266) (-.183) (.010)
with iid cov. matrix est. [-.119, .651] [-.480, .113] [-.273, .293]
with DMB cov. matrix est. [-.213,.745] [-.544, .177] [-.148, .169]
with MBB cov. matrix est. (b=3) [-.228,.761] [-.523, .156] [-.250, .270]
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Table 7. Regressions for personal income across U.S. Statgession diagnostics

Period Heteroskedasticity.* Nonnormality** Influent. obs.** Psible outliers**

Basiceq. EqReg.

Dum.

1880-1900 yes - yes - yes yes no no
1900-1920 yes yes yes yes yes yes yes (MT) yes
1920-1930 - - - - yes - no no
1930-1940 - - yes - yes yes no no
1940-1950 - - - - yes yes yes (VT) yes (VT)
1950-1960 - - - yes yes yes yes (MT) yes (MT)
1960-1970 - - - - - - no no
1970-1980 - - yes yes yes yes yes (WY) yes (WY)
1980-1988 yes - - yes yes yes yes (WY) yes (WY)

* White and Breusch-Pagan tests for heteroskedasticitypartormed. If at least one test rejects5&t
homoskedasticity, a “yes” is reported in the table, els€ &"reported, when tests are both honconclusive.
** Scatter plots, kernel density, leverage analysis, Sttided or standardized residuaits 3, DFbeta and
Cooks distance have been performed and lead to suspiciomofmormality, outlier or high influential
observation presence.

Table 8. Regressions for personal income across U.S. Sef@s-confidence intervals

Period Basic equation Eq. with reg. dum.

8 SIGN (SF) NLLS* SIGN (SF) NLLS*

1880-1900: 95%CI | [-.0010,.0208] [.0058,.0532] | [-.0033,.0251] [.0146,.0302]
(BNEES) (.0101) (.0224)

1900-1920: [.0092,.0313] [.0155,.0281] | [-.0081,.0558] [.0086,.0332]
(.0218) (.0209)

1920-1930: [-.0301,.0018] [-.0249,-.0049]| [-.0460,.0460] [-.0267,.0023]
(-.0149) (-.0122)

1930-1940: [.0043,.0234] [.0082,.0200] | [-.0187,.0377] [.0027,.0227]
(.0141) (.0127)

1940-1950: [.0291,.0602] [.0372,.0490] | [.0082,.0620] [.0314,.0432]
(.0431) (.0373)

1950-1960: [.0084,.0352] [.0121,.0259] | [.0007,.0506] [.0100,.0304]
(.0190) (.0202)

1960-1970: [.0099, .0377] [.0170,.0322] | [-.0112,.0431] [.0047,.0215]
(.0246) (.0131)

1970-1980: [.0021,.0346] [.0076,.0320] | [-.0227,.0721] [-.0016,.0254]
(.0198) (.0119)

1980-1988: [-.0552,.0503] [-.0315,.0195] | [-.0467,.0754] [-.0273,.0173]
(-.0060) (-.0050)

* Barro and Sala-i-Martin (1991) NLLS results are reportedhiose two columns.
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Table 9. Regressions for personal income across U.S. S1&@8-1988: tests for
heteroskedasticity.

Period Basic equation Eqg. with reg. dum.
p-values White test Breusch-Pagan test White test Breuaghsitest
1880-1900 .018 .652 .249 .830
1900-1920 .023 .043 .069 .050
1920-1930 723 .398 435 .557
1930-1940 673 .633 537 .601
1940-1950 243 .943 513 272
1950-1960 595 223 .740 221
1960-1970 .205 247 .236 441
1970-1980 .641 .675 T77 .264
1980-1988 .058 .022 .080 226
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Table 10. Regressions for personal income across U.SsS1880-1988: complementary

Period

results.

Basic equation

Eq. with reg. dum.

Variable: constanta)

95% projection-based C4j

1880-1900
1900-1920
1920-1930
1930-1940
1940-1950
1950-1960
1960-1970
1970-1980
1980-1988

[-.0147, -.0020]
[-.0205, -.0084]
[-.0018, .0328]
[-.0232, -.0042]
[-.0452, -.0258]
[-.0297, -.0080]
[-.0314, .0088]
[-.0296, -.0020]
[-.0414, .0695]

[.0206, .0005]
[-.0431, .0095]
[-.0351, .0589]
[-.0443, .0221]
[-.0517, -.0070]
[-.0435, .0043]
[-.0345, .0119]
[-.0478, .0288]
[-.0563, .0566]

Variable: In(y) (v)

95% projection-based C4|

1880-1900
1900-1920
1920-1930
1930-1940
1940-1950
1950-1960
1960-1970
1970-1980
1980-1988

[-.0170, .0010]
[-.0233, -.0084]
[-.0018, .0351]
[-.0209, -.0042]
[-.0452, -.0253]
[-.0297, -.0080]
[-.0314, -.0094]
[-.0292, -.0020]
[-.0414, .0695]
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[-.0197,.0034]
[-.0336, .0088]
[-.0369, .0584]
[-.0314, .0206]
[-.0462, .0079]
[-.0397, -.0007]
[-.0350, .0119]
[-.0514, .0255]
[-.0566, .0566]



C. Compared inference methods in simulations

Two sign-based statistiare studied ins Section 7: one adapted for the mediangategsp
SF(By) = Ds(By, (X/X)_l) =s(y — Xﬁo),X(X/X)_lXIS(?/ — X B) (C.1)

and one corrected for serial dependence,

SHAC = Dg(By, J7Y) = s(y — XB,) X' X's(y — X3,) (C.2)
where X
7 n J\ o
']TL = k o Fn ) C.3
n_pj=—zn+1 <B”) ) (€3
with
- LS Vi(Bo) Vi (B,) forj >0
La(j) = § =it 0 et | = C.4
G) {% Zt:—j+1 Vi (Bo)V/(By) forj <0, (C.4)
andV;(3,) = s(y: —,8,) x 7, t = 1,... ,nandk(-) is a real-valued kernel, here Bartlett

kernel is used with an automatically adjusted bandwidtlaipeters,, [Andrews (1991)].
Sign-based tests are compared to LR and Wald-type testsl loas@ LS and LAD
estimators with different covariance matrix estimatorsalditype statistics for testing
Hy(3,) : B = 0, are of the formn(5 — 3,)D:*(3 — 3,) whereD,, is an estimate of

the asymptotic covariance matrix ffj’r

The OLS estimator is computed in GAUSS;,, ¢ = (X'X)~'X"y. Both classic i.i.d.
andWhite covariance matrix estimatoase considered)” H asymptotic covariance matrix
estimator is corrected for heteroskedasticity but notifedr dependence:

-1
DVH(By,q) = ( thmt) ( T h) Zutxtxt) (%thxi)

The LAD estimator is computed in GAUSS by the greg procedure, whsels @ mini-
mization by interior point methodﬁ’LAD =argminy ., |y — 2;5|. The following LAD
covariance matrix estimators are considered:

The order statistic estimator}S) [see Chamberlain (1994), Buchinsky (1995, 1998)],
which is valid fori.i.d observations, is used as a benchmark. #od observations, the
LAD covariance matrix reduces to

1
4f2(0)

where f,, stands for the density af,. An estimate foro; 4p can be constructed from a

D(Bpap) = 5= (Elzz) ™! = 0} s p(Elza’]) 7,
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confidence interval for the sample median,, then/2-th order statistic. leg;, ys, . .. , yn
be independent random observations with distributiontiond”, (.) andy;), ), thej—th
and thek—th order statistics ofi, ya, . . . , yn. Note thatP[y ;) < & ] =D, ci(1/2)",
which entails

P[?J(j) < 51/2 < y(k)] = P[?J(j) < 51/2] —Ply ) < 51/2 ZCZ 1/2)".

A symmetric confidence interval with levél— « can be constructed as follows. Lgt=
int(n/2—1), k =int(n/2+1) andX ~ B(n,1/2), with E[X] = n/2 andvar(X) = n/4.
Then,

P[Yinttnj2—1) < 12 < Yint(mpaen] = Plint(n/2) —1 < X <int(n/2) +1]

Sixcatcd)

X\/_n_"//j — N(0,1) entails that = Z,_,/2\/n/4 whereZ,_,
is thel — «/2th quantile of a standard normal distribution. Approachihg width of
the exact confidence interval by that of asymptotic confideimerval givess? ,, =

-Y; ~ .
int(n/ e n)* . Finally, D(3, 4p) can be estimated by,
1—a/2

-1

DOS(BLAD —ULAD< sz )

Design matrix bootstrap centering around the sambleD estimate DM B) is also con-
sidered [see Buchinsky (1995, 1998)]. Wef,z}), i = 1,... ,m be a randomly drawn
sample from the empirical distribution functidn,,,. Let 62 4p be the bootstrap estimate
obtained from a LAD regressmn @/ﬁ on X*. This _process is carried ol times and

yields B bootstrap estlmateﬁLADl, ﬁLADQ, Ce ﬁLADB The design matrix bootstrap
asymptotic covariance matrix estimator is given by,

B
DPMEB — % {% Z(B*LAD]' - BLAD)(B*LAD]' - BLAD),} - (C.5)
j=1

The moving block bootstrap centering around the sampleneséi (\/ BB) was pro-
posed by Fitzenberger (199)7 Basically, blocks of fixed sizé are bootstrapped in-
stead of individual observationsq = T — b + 1 blocks of observations of sizg
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B; = ((yi,xi), ..., (yirp, Tizp)) are defined.m blocks, drawn from the initial sample,
constitute a bootstrapped samgleof sizem x b. From eachZ;, j =1,...,B,aLAD

regression is performed yielding the estiméﬁéAD. The M BB estimator of theLAD
asymptotic covariance matrix can then be approached thartke bootstrap paradigm, by

B

DMBB(ﬁLAD) = % {Z(ﬁLADj - 6LAD)(BLAD3’ - BLAD)/} : (C.6)

J=1

Both forOLS and L AD estimatord8artlett kernel covariance matrix estimators with auto-
matic bandwidth parametdi37") are also considered [see Parzen (1957), Newey and West
(1987), Andrews (1991)] with a methodology similar to theegresented previously for
deriving theS H AC-sign statistic.

Finally, the L R statistic[see Koenker and Bassett (1982)] has the following form:

4]Eu(0) [Z |y — 238 — Z lyi — x;@LAD| (C.7)

where arD S estimate is used fof, (0).
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